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Abstract. Starting from a dynamic tensor model about two second-order tensors, we derive the
frame hydrodynamics for the biaxial nematic phase using the Hilbert expansion. The coefficients in
the frame model are derived from those in the tensor model. The energy dissipation of the tensor
model is maintained in the frame model. The model is reduced to the Ericksen—Leslie model if the
biaxial bulk energy minimum of the tensor model is reduced to a uniaxial one.
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1. Introduction. Liquid crystals are featured by local orientational order, typi-
cally originated from nonuniform orientational distribution of nonspherical rigid mol-
ecules. One case that many of us are familiar with is the uniaxial nematic phase
formed by rodlike molecules. For the uniaxial nematic phase, the local orientational
order can be described by a unit vector n. The hydrodynamics of liquid crystals then
involves dynamics of the vector n, for which the well-known Ericksen—Leslie theory is
proposed [8, 14]. The Ericksen—Leslie theory, as well as its variants, has been studied
extensively in both analysis [17, 34, 32, 18] and simulation [20, 6, 2, 31]. For a detailed
survey on modeling, analysis, and computation of liquid crystals, we refer to [33].

Constructed on the assumption of uniaxial local anisotropy, the Ericksen—Leslie
theory is opaque to the building blocks of liquid crystals. Although the elastic con-
stants can be related to experimental measurements, several other coefficients in the
hydrodynamics are difficult to obtain. This deficiency can be overcome by studying
the relation of the Ericksen—Leslie theory to molecular models about the orientation
density function [13, 7], or tensor models about a second-order tensor @) [11]. From
molecular models or tensor models, one could derive the Ericksen—Leslie theory with
its coefficients expressed by those in the molecular models or tensor models. Such
derivations are based on the fact that the minimum of the bulk energy must be uni-
axial [21, 9]. When the bulk energy dominates, the dynamics can be regarded as
constrained in the states such that the bulk energy takes its minimum, so that it re-
duces to a dynamics of vector field. The whole procedure is done through the Hilbert
expansion that has been shown rigorously [35, 16, 15, 36]. The advantage of such a
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procedure lies in the clear reflection of architecture of different axisymmetric molecules
in the Ericksen—Leslie model. For example, the uniaxial nematics formed by cylinder,
spheroid, hourglass, and spindle can be distinguished by the derived coefficients in
the Ericksen—Leslie model.

Local orientational orders other than the uniaxial type have also been considered,
of which the biaxial nematics is discussed more [30, 24, 1, 4]. Since the mesoscopic
symmetry is no longer axisymmetric, the form of elasticity and hydrodynamics of the
biaxial nematics are distinct from the uniaxial nematics, which has been discussed
earlier: Its orientational elasticity is written down in various forms that turn out
to be equivalent [28, 29]; biaxial hydrodynamics are also proposed [28, 22, 5, 27,
10] in different forms. Analysis has been carried out for a few simplified models
[19]. These works focus on the form of the model, in which many more coefficients
are involved. A couple of previous works attempt to relate the elastic constants to
molecular parameters [12, 44], while other coefficients in the hydrodynamics are yet
to be considered. In other words, biaxial hydrodynamics describing specific molecules
is still not established.

The main goal of this paper is to reveal the connection between the biaxial hydro-
dynamics and the molecular architecture. Specifically, we shall derive the coefficients
in the biaxial hydrodynamics from molecular parameters. In principle, the procedure
is analogous to what is done from a Q-tensor model for axisymmetric molecules to
the Ericksen—Leslie model for the uniaxial hydrodynamics. Nevertheless, there turns
out to be an essential distinction regardless of the starting point or the derivation,
which we explain below.

For the molecular architecture, it is necessary to consider nonaxisymmetric mol-
ecules, which is based on previous results. Experimentally, it has not been reported
that rodlike molecules can form biaxial nematics without imposing external forces.
Theoretically, as we have mentioned above, it has been shown that the bulk energy of
molecular-theory-based one-tensor models so far considered can only exhibit uniaxial
nematics [21, 9]. For the phenomenological Landau-de Gennes theories, the quar-
tic bulk energy only exhibits uniaxial nematics as well [25, 36], while higher-order
bulk energies do not have clear relations to molecular information. For this reason,
we consider the dynamic tensor model for bent-core molecules (and also star-shaped
molecules as their variants) established in [45]. The model has multiple tensors as
order parameters because the molecule has no axisymmetry, and is derived from mo-
lecular theory. Its free energy is constructed on molecular architecture by expanding
the pairwise molecular interaction kernel, established in [41], which has the biaxial
nematic phase as an energy minimum. The interaction between the molecule and the
fluid is also carefully derived from the molecular architecture. As a result, the form of
the dynamic tensor model is determined by molecular symmetry, with all the coeffi-
cients calculated from molecular parameters. In this sense, the molecular architecture
can be distinguished in the tensor model by the derived coefficients.

Rigorous analyses show that under certain coefficients, the stationary points of
the bulk energy can only be isotropic, uniaxial, or biaxial [42, 43, 38]. Although
further rigorous analysis is still not available, numerical studies indicate that we can
indeed find some coefficients such that the biaxial nematic phase is the bulk energy
minimum [30, 23, 42, 41, 38]. Therefore, we assume that it holds and use the Hilbert
expansion near this bulk energy minimum. The free energy in the tensor model is
rotationally invariant, which is an essential ingredient to be utilized in our derivation.
In particular, the rotational invariance of the bulk energy implies that its minimum, if
not isotropic, can be freely rotated. The biaxial nematic phase has its own symmetry
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other than axisymmetry. When axisymmetry does not hold, the orientation of the
bulk energy minimum shall generally be described by an orthonormal frame, or an
element in SO(3). We would like to call it a “frame model” that gives the elasticity
and dynamics of the field of orthonormal frame.

Two key ingredients are needed to be dealt with in the Hilbert expansion.
When the tensors are constrained at the biaxial minimum, it actually gives a three-
dimensional manifold. We shall constrain the equations of tensors on this manifold
to obtain the evolution equation for the orthonormal frame field. The tangent space
of the manifold given by the bulk energy minimum gives a zero-eigenvalue subspace
of the Hessian of the bulk energy. This subspace is utilized to cancel the nonleading
terms in the Hilbert expansion, thus closing the system of the leading order. The
free energy about tensors can then be reduced to the orientational elasticity for
the biaxial nematic phase, with the elastic constants expressed as the coefficients
in the tensor model, which is exactly the results in [44].

Although the free energy can be reduced straightforwardly, we still need to handle
several high-order tensors, which call for a closure approximation to express them as
functions of the order parameter tensors. Intuitively, these high-order tensors shall be
consistent with the symmetry of the biaxial nematic phase, from which the form of
high-order tensors can be written down. This intuition can be made rigorously by the
closure through minimization of the entropy term. The entropy term can have two
choices. One is calculated from the density function of the maximum entropy state,
which we call the original entropy. The other is the quasi-entropy, an elementary
function of tensors, which maintains essential properties and underlying physics of
the original entropy [38]. No matter whether we choose the original entropy or the
quasi-entropy, their fine properties result in the particular form of high-order tensors
consistent with the symmetry of the biaxial nematic phase. From these symmetry ar-
guments, we could further arrive at alternative expressions of these high-order tensors
that are convenient for us to deduce the coefficients.

Using these properties, we could derive the frame model for the biaxial nematic
phase. Its form is actually determined by the symmetry of the biaxial nematic phase,
which is consistent with early works [10]. The coefficients, on the other hand, are
expressed as functions of the coefficients in the tensor model. We would like to em-
phasize again that since the coefficients in the tensor model are derived from physical
parameters, the frame model we obtain is connected to rigid molecules with certain
architecture. We shall show that the energy dissipation of the tensor model is main-
tained in the frame model. Furthermore, we will show that the biaxial hydrodynamics
can be reduced to the Ericksen—Leslie theory when the bulk energy has a uniaxial min-
imum. The corresponding coefficients are also derived, which turn out to be distinct
from those derived from the @Q-tensor hydrodynamics for rodlike molecules. In other
words, combining the results in this paper and those in previous works [41, 45], for
bent-core molecules (and star-shaped molecules), we arrive at biaxial hydrodynamics
and also uniaxial dynamics of certain architecture (bending angle, length, thickness,
etc.) and under certain physical conditions (concentration, temperature, etc.).

Below, we begin by introducing some notations for orthonormal frames and ten-
sors in section 2. The tensor model is briefly described in section 3. Here, we also
claim essential properties of the entropy term, bulk energy minima, and high-order
tensors. The Hilbert expansion is carried out in section 4, from which we derive the
biaxial hydrodynamics. The biaxial hydrodynamics can be reduced to Ericksen—Leslie
theory if the bulk energy minimum becomes uniaxial, which is shown in section 5.
Concluding remarks are given in section 6. We also provide supplementary materials

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/13/23 to 220.197.221.18 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1470 SIRUI LI AND JIE XU

(bif_suppm.pdf [local/web 446KB]), where detailed calculations and discussions on
high-order tensors are presented.

2. Preliminary. Let us introduce some notations for orthonormal frames and
tensors to be used subsequently. For the rigid molecules forming liquid crystalline
states, several essential quantities are defined through the orientational distribution.
The orientation of a single rigid molecule is described by an orthonormal, right-handed
frame (mj, ms, m3) fixed on the molecule. The axes of the frame are typically coin-
cident with symmetry axes of the molecule. Under a reference frame (e, es,es), the
coordinates of the molecular frame can be expressed by

(ij = €; - 1My, i7j:172737

which define a 3 x 3 rotation matrix q € SO(3).

In this paper, we also deal with fields of the orthonormal frame. To be distin-
guished from the molecular frame, we use the notation p = (nj,ny,n3) for a frame
field that is a function of the position x. The notations for n; are similar to those for
m; above.

Next, let us describe notations for tensors. An nth-order tensor U in R3 can be
expressed as a linear combination of tensors generated by the axes of the reference
frame (e1,e,e3), written as

(2.1) U=U, i€, ® -®e;, il,...,inE{l,Q,?)},

L

where U;, . ;, are the coordinates of the tensor U. Hereafter, we adopt the Einstein
summation convention on repeated indices. For any two nth-order tensors U; and Us,
the dot product U; - Us is defined as

Ur-Us=U1)iy...i,(U2)iy i -

A tensor can be symmetrized by calculating its permutational average,
1
Usym = E Z Uio(l)mia(n,)eh Q- ---Qe,
(e

where the summation is taken over all the permutations o of {1,...,n}. If U = Usym,
we say that the tensor U is symmetric. For an nth-order symmetric tensor, we define
its trace as the contraction of two of its indices, giving an (n — 2)th-order symmetric
tensor,

(0 )iy in s = Uiy iy ok

If a symmetric tensor U satisfies trU = 0, then U is called a symmetric traceless
tensor. For any symmetric tensor U of the order n, there exists a unique symmetric
traceless tensor (U)g of the form

(2.2) U)o=U—(i®W)sym,

where W is an (n — 2)th-order tensor (for the proof, see Proposition 3.2 in [37]). We
call (U)o the symmetric traceless tensor generated by U.

It could be convenient to express symmetric traceless tensors by polynomials. The
basic monomial notation is defined as

(2.3)

k k k3l . .
m11m22m331: m1®.®m1®m2®.®m2®m3®.®m3®1®.®1 s

k1 k2 ks l sym
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where i is the second-order identity tensor that can be expressed as
i=m? 4+ m3 + m?.

This equality holds independently of what frame (mj, mo, m3) is chosen. As we have
commented, the above definitions are also suitable for n;. When the symbol ® is
absent in a product, it means that the resulting tensor is symmetrized.

The orientational distribution of rigid molecules is denoted by p(x,q). However,
it is significant to introduce some simple quantities to classify the local anisotropy
given by the density function p. Such quantities are defined through the moments of
m;,

(2.4)

<mi1®“'®min>:/ m;, (q) ® - @m;, (q)p(x,q9)dq, i1,...,i,=1,2,3.
50(3)

Hereafter, the notation (-) is employed to represent the average of the distribution
function p(x,q) on SO(3), and dq denotes the Haar measure on SO(3). These mo-
ments, as well as their components, might be linearly dependent. To ensure that the
quantities we choose are linearly independent, it is necessary to use symmetric trace-
less tensors averaged by p [37]. These chosen averaged symmetric traceless tensors
are the so-called order parameters.

We will frequently encounter derivatives involving orthonormal frames. Let us
first define rotational differential operators. For any frame p = (n;,ns,n3) € SO(3),
its tangent space in SO(3) is spanned by three matrices, given by (0,ns3, —ns),
(—n3,0,n4), (n2,—ny,0). Thus, we define three differential operators .£; by taking
the inner products of the above three matrices and 9/9p = (0/0n;,9/0ns,0/0ns),
ie.,

(2.5)
0 0 0 0 0
A=ng-——ng-—, LH=n-—-—-n3-—, Lyg=nNg-—— —n3j-—.
! 3 8n2 2 8113 2 ! 31’13 3 8n1 3 2 81’11 ! (9112
The subscript indicates the differential operator is along the infinitesimal rotation
about n;(j =1,2,3). This can be verified by acting the differential operators on the
axes of the frame, resulting in

(2.6) Ziny, =e*ny,

where /%! denotes the Levi-Civita symbol.

For a frame field p(x), its orientational elasticity is characterized by an elastic
energy of the spatial derivatives of p(x). Let us express these spatial derivatives
under the local frame p. The derivative of n, along the direction ny is given by
ny - Vn,. Its v-component in the frame p can be written as ny;n,;0;n,;. Using
the equality n,;n,; = .., where we use the Kronecker delta, we obtain the relation
AN 0Ny = —NaiNyj0iny ;. Consequently, the first-order derivatives of the frame p
has nine degrees of freedom:

Dy = nlmzjaﬂlBj, Dy = nlinSjain1j7 D3 = nlinljaian,
(2.7) Doy =nginoj0insj, Dag=mnoingj0ingj, Doz =nginij0ing;,
D31 =nging;j0insj, D3z =mn3zinzjo0ini;, Dsz=nszini;j0ing;.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/13/23 to 220.197.221.18 . Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/terms-privacy

1472 SIRUI LI AND JIE XU

3. Tensor model. In tensor models, the local orientational order is described
by one or several order parameter tensors. From the structure of nonzero components
in the tensors, local anisotropy could be divided into several classes. Each class is
recognized as a phase, and phase transitions between them can be described. For
example, the transition between the isotropic and uniaxial nematic phases for rodlike
molecules can be described by an energy about a second-order symmetric traceless
tensor (). The dynamic tensor models could either be phenomenological, such as the
Beris—-Edwards model [3] and the Qian—Sheng model [26] based on the Landau-de
Gennes theory, or be derived from the molecular theory [11]. In the vicinity of a
bulk energy minimum, the tensors possess the nonzero structure of a certain phase,
so that the tensor model is reduced to a model with fewer variables. For the uniaxial
nematic phase of rodlike molecules, the models of a field of the @-tensor, which has
five degrees of freedom, could be reduced to models of a field of unit vectors, which
has two degrees of freedom.

When rigid molecules of more complex architecture are taken into account, such
as bent-core and star molecules, the corresponding molecular-theory-based tensor
models have also been derived [41, 45]. The most notable feature of this model lies
in the fact that its form and coefficients are determined by molecular symmetry and
molecular parameters, respectively. Depending on the coefficients, the bulk energy
may exhibit isotropic, uniaxial nematic, or biaxial nematic phases. The modulated
twist-bend nematic phase can also be described together with elastic energy. Since
the biaxial nematic phase is included in this tensor model, we choose this model as
our starting point.

Compared with the original form in [45], we have made a couple of simplifications
that are clarified below.

e The model in [45] has three order parameter tensors, one first-order and
two second-order. In the biaxial nematic phases, the first-order tensor takes
the value zero. This is also maintained in the leading order of the Hilbert
expansion. As a result, keeping the first-order tensor makes no difference in
our derivation. For this reason, we assume that the first-order tensor is zero
to discard all the terms about it.

e We ignore the spatial diffusion term. This is also adopted in the deriva-
tion from dynamic @Q-tensor models to the Ericksen—Leslie model (see [11]),
because the spatial diffusion term is actually not considered in the Ericksen—
Leslie model. Since we would like to derive an analog of the Ericksen—Leslie
model, this shall be a reasonable choice. The role of the spatial diffusion term
will be addressed in future works.

The tensor model is then about two second-order symmetric traceless tensors,
defined as

@ = (o= (i - 1), Q2= () = (3 - ).
Denote Q = (Q1,Q2)”. Let us also define a projection on to symmetric traceless
tensors,

1
3

The projection can also be imposed on an array of second-order tensors:

1
(3.1) (ZR);; = §(Rij + Rji) — = Ryi0ij-

P(Ry,...,Rp)=(PRy,..., PRy).
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3.1. Free energy. Assume that the concentration c of rigid molecules is constant
in space. The free energy contains two parts, the bulk energy and elastic energy,

FlQ,vQ 1
(3.2) QZ/dX -F(Q)+ F.(VQ) |,
kBT 3
which is measured by the product of the Boltzmann constant kg and the absolute
temperature 7. The bulk energy density, which can describe transitions between
homogeneous phases, consists of an entropy term and pairwise interaction terms,

2
c
(3.3) Fy =cFentropy + - (co2|@Q1* + co3|Q2] 4+ 2¢04Q1 - Q2) -

The elastic energy density penalizing spatial inhomogeneity contains a few quadratic
terms of VQ:

2

c
F, = ) (622|VQ1\2 + 23|V Q2|? + 2¢240;Q150; Q2

(3.4) + ¢280; Q1510 Q15K + €200; Q21,05 Q2% + 202,1081'Q1ikaj@2jk>~

The free energy (3.2)—(3.4) can be derived from the molecular model [41]. We have
introduced a small parameter € in the free energy (3.2). It can be regarded as the
reciprocal of squared relative scale L between the domain of observation and the rigid
molecule by a change of variable x = x/ L. We shall revisit the rescaling later in the
dynamic model to clarify it.

The entropy term acts as a stabilizing term that guarantees the lower-boundedness
of the bulk energy. There can be different choices, but it is always independent of
molecule architecture. Moreover, the entropy term is related to expressing the tensors
of higher order by @1 and Q). For this reason, we shall specify the entropy term
afterwards.

On the other hand, the coefficients c;; of the quadratic terms can be calculated as
functions of molecular parameters. For instance, if the hardcore molecular interaction
is adopted, we are able to compute these coefficients from molecular shape parameters
[41]. This is also the case for the dynamic tensor model, which we introduce below.

3.2. Dynamic model. Based on the free energy functional (3.2), (3.3), and
(3.4), let us write down the molecular-theory-based dynamic tensor model derived in
[45]. We define the variational derivative of (3.2) as

1 §F(QVQ) 1 g,(wa(Q)_ai(@Fe(VQ)))

Q= ksT ™ 6Q ksl \c 0Q 9(0:Q)
(35 Y7Q+o@).

where uq = (1, 1@.)" J(Q) = (71(Q), 72(Q))”, and G(Q) = (G1(Q), G2(Q))" are

calculated as

hor = (Q)+Gi(Q)

]‘ aFGn T0
== <328631py + ccoa@1 + CCO4Q2>
(3.6) — e AQ1jk — cc24AQ2jk — P(cca80;0;Quik + cc2,10050;Q2ik)s
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0. = - :(Q) +G:(Q)

]' aFeTL T0
= - PELPY | ceouQy + cco3Qo
€ Q2

(3.7) — s AQ1ji — cca3AQ2jk — P (cc2,1000iQuik + 20050, Q2ir)-

Recall the rescaling x = x/L. We rescale the time f =t/T, so that other variables
are rescaled accordingly, such as the velocity v = Lv/T. By taking T = L? =1/e and
some staightforward calculations, the dynamic tensor model can be expressed as

(3.8) aa? +v-VQ=Kq + Wq,
(3.9) ps(i;-kv.Vv):—Vp—l-V.o—i—Fe’
(3.10) V.v=0,

where p; is the density of the fluid (assumed to be constant), v the fluid velocity, and
p is the pressure to maintain the incompressibility. Let us denote by x;; = 0;v; the
velocity gradient. The terms Kq = (Kg,,Kq,) and Wq = (Wg,, Wq,) on the right-
hand side of (3.8) characterize the rotational diffusions and rotational convections,
respectively. They are given by

—(Kq@u )kt =4T2(1q, )ij (mims @ myms), ., + 403 (kg — pQ, )iy (Mime @ mymy), )
—(K@2)k =41 (1@, )i (mamz @ momy), 1y — 4T3(kQ, — 1@, )ij (Mimy @ mymy)
Wa, )k =2k ({(m1 ® m3) @ mymg) + e1((m; @ my) ® mymy)

—ex((me ®m;) ® m1m2>)ijkl )

(
(

(WQz)kl = 2K (((m2 ® m3) ® momg3) — e1((mM; ® my) ® mymy)
(

+ez((me ® mp) ® mimz)), ),

where T'; 0 (; = 1,2,3) are the diffusion coefficients, mg is the mass of a rigid

Tii
molecule, ( 12 the friction constant, e; (i = 1,2) are defined as e; =1 —eg = 111[_7_2122,
and I;(i=1,2,3) are diagonal elements of the moment of inertia for a molecule.
In (3.9), the stress tensor o consists of the viscous stress o, and the elastic stress
o.. The viscous stress o, includes the contribution of the fluid itself with a viscous

coefficient 7, and the fluid-molecule friction,

(3.11) oy =n(k+K") +0uy.
The second term o, is determined by the following equation:

411112

T s © )

(va)ij = CCFLM (122<m;1> + I11<m§> +
ijkl

The elastic stress o, can be written as

(0¢)m =2ckpT [(MQz)ij (mom3 ® (my ® my)), ., + (He, )i (Mm@ (my @ mg)),\,

1
+ ((MQ1 — 1@, )ij (Mimy ® ([pomy ® my — I1ymy @ ml)%-m) }
Iy + Iss J
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The body force F€ is given by

(3.12) Ff = ckpThq - 0,Q™ ckpT(uq, - 0;Q1 + Ho, - 9iQ2)-

The system (3.8)—(3.10) obeys the following energy dissipation law (see [45]):

d S| v|?
dt( [JaxPbE +f[Q,VQ])

= /dx{ - CI{JBT [Fl <(2MQ2 . m2m3)2> + Fg <(2uQ1 . m1m3)2>

+T1'3 <(2(MQ1 - MQz) : m1m2)2>} - 2,,7’%—’—2'% ’ K—;H
232 2\2 Ii11 2
(3.13) —c( {Izz«ﬂ'ml) )+ 11 ((k-m3)?) + Tt Iy ((2k - mymy) >} }

Note that several fourth-order tensors appear in the dynamic model. In order to
close the system, it is necessary to find a certain way to express them by @)1 and Q.
The closure approximation can be done by the entropy term, which will be introduced
below. Although there might be other ways of closure, one advantage of closure by the
entropy term is that it guarantees the nonpositiveness of the terms on the right-hand
side of (3.13).

3.3. Original entropy and quasi-entropy. We have mentioned that the en-
tropy term plays a significant role in both free energy and closure approximation. A
general approach is to deduce the entropy term by minimizing f S0(3 pln pdq with
the values of the tensors fixed, or finding the maximum entropy state. When the two
tensors (1 and @ are involved, the maximum entropy state is given by

1
(3.14) pla) = — exp(By -mf + By - m}),

where the normalizing constant Z and two second-order symmetric traceless tensors
By and Bs are Lagrange multipliers for the constraints,

Z :/ exp(B; - m? + By - m3)dq,
50(3)

1.
(3.15) Qi= 7 /so(s) (mf — 31) exp(B; - mj + By - m3)dq.

Taking (3.14) into [ 50(3) plnpdq, we obtain that the entropy term Fepropy is given
by

(3.16) Forig=B1-Q1+B2-Q2—InZ,

where we use the notation Fyjz to stand for the “original entropy.” The maximum
entropy state (3.14) is uniquely determined by @1 and Q2 [41]. Therefore, Fy,iz can
be viewed as a function around @1 and (2. It is observed that Fi,;s is invariant under
rotations on Q1 and (). Generally, a rotation of a tensor U can be understood as
follows: The coordinates U;, . ;, in (2.1) are kept, while the basis (e;) is replaced with
another right-handed orthonormal frame (e;’). Specifically, a rotation on Q1 and Q3 is
done by choosing a particular t € SO(3) and transforming @Q; into tQ;t=1. It is easy to
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verify that (3.16) is rotationally invariant under this transformation (see section SM2
of the supplementary materials).

The closure approximation can be done with the maximum entropy state, as the
high-order tensors can be calculated using the density function (3.14). An equivalent
viewpoint is that when @1 and Q)5 are given, the high-order tensors obtained in this
way minimize fSO(3) pln pdg.

The entropy term defined from the maximum entropy state that involves integrals
on SO(3), is given implicitly, which could bring difficulties in both analyses and nu-
merical studies. An alternative approach is proposed [38], where the original entropy
is substituted by the quasi-entropy. The quasi-entropy is defined by a log-determinant
covariance matrix, which is an elementary function of the order parameter tensors. To
write down the expression of the quasi-entropy, it is necessary to specify the highest
tensor order (that shall be even) to be involved. When only second-order tensors are
involved, the quasi-entropy for @; and Q2 is given by [38] (see also section SM2 of
the supplementary materials),

(3.17)
E0(Q1,Q2)=v (—lndet (Q1 + ;) — Indet (Qg + ;) — Indet (; - Q1 — Q2>) )

Let us briefly explain how Z5 is obtained (see [38] or section SM2 in the supplementary
materials for details). Notice that three log-determinants appear in Z5. This is
because the covariance matrix can be reduced to a block diagonal one, with the
blocks given by the three matrices in log-determinants. Apparently, Z5 does not have
a finite value if any of the three matrices is singular. We restrain its domain in those
(Q1,Q2) such that the three matrices are positive definite:

dom(Zy) = {Q (Q1+ é, Q2+ %, % — Q1 — Q2 positive deﬁnite} .

Actually, in this domain Z5 gives a barrier function: Consider a sequence dom(Z3) 3
Qi — Qg such that Qo makes any of the three matrices singular, then lim Zs(Qg) —
+00.

A free parameter v is introduced above. It can be estimated as v = 5/9 from
special cases (see section 6 in [38]), which we adopt in the current work. Moreover,
analyses show that the quasi-entropy possesses similar properties to the original en-
tropy. In particular, the results from the quasi-entropy (3.17) are very similar to
those from the original entropy (3.16), provided that other terms in the free energy
are identical. These results have all been reported in [38].

The quasi-entropy is also suitable for closure approximation. To deduce high-order
tensors in the dynamic model, we shall use the log-determinant covariance matrix up
to fourth order, denoted by Z, which is provided in (SM2.5) of the supplementary
materials. Similarly to 2o, the domain of =4 is specified by those tensors (including
@1, Q2, and some tensors up to fourth-order) such that the covariance matrix is
positive definite. To carry out the closure approximation, the fourth-order tensors
shall minimize =4 with the given values of ;1 and @2, so that they can be solved
as functions of Q. Thus, we can see that the closure approximation by the original
entropy and the quasi-entropy share the rationale, with the only difference lying in
the function to be minimized. In what follows, we shall see that these two approaches
of closure approximation lead to high-order tensors of the same form due to the same
symmetry arguments.
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The properties of the quasi-entropy have been discussed previously [38]. Here, let
us state those to be utilized in this paper. The proof is also provided in section SM2
of the supplementary materials.

PROPOSITION 3.1. The two functions Zo (see (3.17)) and E4 (see (B.5)) have the
following properties:
e They are invariant under rotations on the tensors.
o They act as barrier functions on the corresponding domains that have been
discussed above.
e They are strictly convex with respect to the tensors.

As an example, it is straightfoward to see the rotational invariance for =5 by taking
the rotation @; — tQ;t~! into (3.17).

The properties stated above are all crucial in our derivation below. The rota-
tional invariance is a foundation for the frame model to be established. The positive-
definiteness of covariance matrices is essential for energy dissipation to hold. The
strict convexity guarantees that the closure approximation by minimization results in
a unique solution.

Remark 3.2. A problem of interest is whether the domains of Fy.i; and 2y are
identical. Unfortunately, in general cases this problem is still open. However, if we
further require that @7 and @2 share an eigenframe, the two domains are indeed
identical, as we will discuss right away. This turns out to be sufficient for the current
work.

3.4. Stationary points of bulk energy. There are analyses on the stationary
points of the bulk energy F;, (given by (3.3)), but they are far from well-understood.
We summarize the main results up to date in the following proposition [38, 43]. To
simplify the presentation, the conditions on the coefficients are stricter than they need
to be.

PROPOSITION 3.3. Assume that the matriz (£2 ¢5%) is not negative definite, or
is negative but c2,/co3 — co2 < 2. Consider the two cases of the entropy term:
1. Fentropy takes Foig (see (3.16));
2. Fentropy takes Eo (see (3.17)) with v=>5/9.
For both cases, at the stationary points, Q1 and Q2 have a shared eigenframe.

When @1 and @2 has the same eigenframe, they can be written as

i

(3.18) Qi=s; (n% -3

) +b;(n3 —n3), i=1,2

Numerical studies indicate that the global energy minimum could be either uniaxial
(where b; = 0) or biaxial (where at least one b; # 0). For the original entropy, the
results can be found in [23, 30, 41, 42]; for the quasi-entropy Z, the results can be
found in section 6.3 in [38]. Here, we assume that under certain coefficients cp2, co3,
and cg4, we have a biaxial global minimum Q(® = (Q:(LO),QSJ)) of the form (3.18).

It shall be noticed that the bulk energy Fj is rotationally invariant, i.e. invariant
of p=(nj,ny,n3). This can be observed by combining Proposition 3.3 and the fact
that the three cy; terms are rotationally invariant. Thus, a rotation of an energy
minimum also results in an energy minimum.

At any energy minimum, we have J(Q() = 0. Let us fix s; and b; and let
p = (n;,n5,n3) vary, so that Q(® = Q(® (p) becomes a function of p. Since Q(*) is an
energy minimum whatever p is, it implies that 7 (Q() (p)) = 0. We then impose the
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operators .%Z; on it. By the chain rule, we obtain
(3.19) ZnT (Q)i; = T"(Q)iji(ZLn Q) =0, m=1,2,3.

This implies that the kernel of the Hessian J/(Q(®)) contains the space spanned by
Zn Q).
With the form (3.18), the scalars s; and b; shall satisfy

2 1 1 1
2 55 5 ) 7_7i:l:bi y ‘:1;2a y
(3.20) 38 + 3 >0 373" >0 i 3
where we define s3 = —s; — s5 and b3 = —by — by. If we only consider the cases where

@1 and @2 share an eigenframe, this is exactly the range such that both Fi.i; and =y
are well-defined: For the original entropy, the derivation can be found in [41]; for the
quasi-entropy Za, the condition (3.20) is equivalent to the requirement that Q1 +1/3,
Q2+1/3, and —Q1 — Q2 +i/3 are positive definite. Furthermore, when we fix Q; and
Q2 that share an eigenframe with the scalars satisfying (3.20), the domain of Z, is
nonempty so that the closure approximation is indeed well-posed (see section SM2 in
the supplementary materials for details).

3.5. High-order tensors and their symmetry. We have mentioned that the
high-order tensors in the dynamic model are determined from closure approximation.
However, there are many linear relations between these high-order tensors. It is
necessary to specify their linearly independent components, which can be done with
the help of symmetric traceless tensors. The use of symmetric traceless tensors turn
out to be crucial to figuring out symmetry arguments for these high-order tensors.

For the high-order tensors appearing in the dynamic tensor model, it turns out
that only the tensors below are involved other than @1 and Qs:

(3.21) (mimyms), ((m3)o), ((m3)o), ((mim3)o).

Here, we recall the notation (U)o in (2.2) for the symmetric traceless tensor generated
by U. The explicit expressions of these tensors, as well as the expressions of the fourth-
order tensors in the dynamic model by these tensors, are given in section SM1 of the
supplementary materials.

Therefore, in a closure approximation, our task is to determine the third-order
and fourth-order tensors in (3.21). In particular, when @); and Q2 have the form
(3.18), the tensors in (3.21) have the form indicated by the following theorem.

THEOREM 3.4. If Q1 and Q2 are biaxial of the form (3.18), then the third- and
fourth-order symmetric traceless tensors, solved from closure approximation by the
original entropy or the quasi-entropy, take the form

(m;myms3) = zninyns,
((m7)o) = a1(n})o + az(n3)o + az(nin3)o,
((m3)o) = a1 (n)o + @a(n3)o + az(nin3)o,
(3.22) ((mim3)o) = a1(n})o + @2(n3)o + az(nin3)o.

The scalars z, a;, a;, a; are solved as functions of s; and b;. Furthermore, if s; and
b; satisfy (3.20), these scalars can be uniquely solved.

Theorem 3.4 is actually a special case of Theorem 4.8 in [38]. The proof can
be also found in section SM2 of the supplementary materials. This result actually
determines the form of high-order tensors in the Hilbert expansion, which in turn
makes a great difference in determining the form of the frame hydrodynamics for the
biaxial nematic phase.
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4. From tensor model to orthonormal frame model. We make the Hilbert
expansion (also called the Chapman—Enskog expansion) of solutions with respect to
the small parameter . The O(1) system results in the orthonormal frame model
for the biaxial nematic phase, with the energy dissipation maintained. The coefficients
in the frame model are derived from those in the tensor model. Since the coefficients
in the tensor model are derived from physical parameters, we finally build the relation
between the frame model and the physical parameters. We also point out that the
derivations afterwards are suitable for both the original entropy and the quasi-entropy.

For convenience, we denote seven fourth-order tensor moments as follows:

(4.1)

Ri=((m} - 3)®(mi - 3)), Ra=((mj-3)®m3-3)),

R3:4<m1m2 ®m1m2>, R4:4<m1m3®m1m3>, Rs :4<m2m3®m2m3>,

Vo, =2(mims ® (m; ® m3))+ e (myms ® (m; ® my)) — e2(mjms ® (my ® my ),

Vo, =2 (mam3z ® (me @ m3)) — e1(mymy ® (m; @ my))+ ea(myms ® (my @ my ).

We frequently deal with contractions between fourth-order tensors and second-

order tensors. We could regard a fourth-order tensor as a matrix, and a second-order
tensor as a vector, so that the contractions can be formulated as matrix-matrix and
matrix-vector multiplications, as we explain below. When a fourth-order tensor is
contracted with a second-order tensor, we could write it in short as a matrix-vector
product, say

(4.2) (Va)ijrikk = Vg, K)ij-

When using this short notation, we always assume that the second to last index of the
fourth-order tensor is contracted with the first of the second-order tensor, and the last
of the fourth-order tensor is contracted with the last of the second-order tensor. By
the convention (4.2), we could define the transpose of a fourth-order tensor, such as

V4,ijet = Vo, Dkiij-
Let us define

(4.3) M= M Mig \ det [ ToR4 +T3Rs —I'3R3
' Mz My —I'3R3 I'MRs+T'3Rs )’
def V ] def
g v (V2] W N = 05, VB,
(45) 'PdZEfCC (IQQRl + 111 Ro +61[11R3).

The system (3.8)—(3.10) can then be rewritten as
2Q

(4.6) v +v-VQ=-Muq + Vk,
(4.7)

Ps (g‘; +v- Vv) = —0ip+nAv; + 0;(Pr)ij + ckpT0; (Nuqg)ij + cksTug - 0;Q,
(4.8) Vv =0,

where Mpuq is carried out by matrix-vector multiplication,

Miipg, + Miaug
Mg = 1 - ).
fa ( Mizpg, + Maopq,
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The terms involving V and A are interpreted similarly. In the above, we have incor-
porated some simple calculations for the viscous stress, such as

(4.9) MmHr=R1+Q1®i+i0QI+i®i)k=Rik+ (Q1 - K)i,

because the incompressibility can also be written as i-x = 0. Furthermore, the second
term in (4.9) can be merged into the pressure p, so that only the term R;x remains
in the operator P.

The fourth-order tensors R;(i =1,...,5) are positive definite in the sense that for
any second-order symmetric traceless tensor Y, we have Y - R;Y >0 and the equality
implies Y = 0. This result comes from the property of the entropy term, which is
shown in section SM2 of the supplementary materials. Consequently, we deduce that
for arbitrary second-order symmetric traceless tensors Y7 and Y3, it holds that

(4.10) Y1 PY: = cC (Io2Y1 - RiYi + [11Y1 - RoYi + e1111Y; - RsYi) >0,
(4.11)

Y;
(Y1,Y2)M < Y; ) =T1Y2 - R3Ya + oY - RaY1 +T1(Y1 — Ya) - R3(Y1 — Y2) > 0.

The equality in (4.11) leads to Y; = Y5 = 0, so that M(Y7,Y2)T =0 implies Y; = Y5 = 0.
(

4.1. The Hilbert expansion. Assume that (Q(¢,x),v(t,x)) is a solution to
the molecular-theory-based two-tensor system (4.6)—(4.8). We perform the following
Hilbert expansion with respect to e:

(4.12) Q(t,x) = QO (t,x) + QW (,x) + £2QP (t,x) + - -~ ,
(4.13) v(t,x) =vO(t,x) +evD(t,x) + v (t,x) + -+,

where Q) = (Qf), g))T, and (Q®W,v)(i=0,1,2,...) are independent of the small
parameter €.

Based on the expansion (4.12)—(4.13), we could write down the expansion of other
terms in (4.6)—(4.8), frequently by Taylor expansion. Since we focus on the O(1)
system, we only write down the terms up to O(1). In pq, the term J(Q) = 9”6%’789)

-1

is multiplied by €%, so we need to expand it to O(g),

I(Q=7@Q)+:7' (@) QW +0(?),

41910 s a fourth-order tensor. By (3.5), we deduce that

where J'(Q(®)
(414)  pg=e17(Q)+6(Q) =c"1T7(QV) + HOQW +6(Q®) +O(e).

Since the tensors in (4.1) are solved from closure approximation, they are functions
of Q. Thus, M, V, N, and P are functions of Q. Let us use the notation M) for
the M when Q takes Q(®). Then we have

M=MO 1+ 0@E), v=v9 +0(),
NZJ\/(O)+O(6)=V(0)T+O(5), P:P(O)+O(s)7

where M©) YO A©) and PO are given by adding superscripts (0) to the elements
in (4.3)-(4.5).
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Substituting the above expansions (4.12) and (4.13) into the system (4.6)—(4.8)
and collecting the terms with the same order of £, we can obtain a series of equations.
The O(e~!) system requires that

(4.15) MO 7(Q") =0.
Recalling the positive-definiteness of M(®) given by (4.11), (4.15) implies that
J(Q)=o.

It means that Q(©) is just the stationary point of F,(Q). We shall consider the case
that Q® is the biaxial global minimum, which takes the form (3.18).
The terms of order O(1) give

(4.16)
3‘;7;0) v 7QO = MO (HOQY +G(QY)) + VOO,
Ps (8;;0) +v©. Vv(0)> = —0,;p® + Aol + 9; (PO kO,
(4.17) Z
+ckpT; (N (HOQM +6(Q™)), ) + kT (HOQW +6(Q)) - 0,7,
(4.18)
v -v(0 —0.

In the O(1) system (4.16)-(4.18), Q) is a function of p = (n;,ny,n3) and x© =
Vv, The high-order tensors with the superscript (0) are functions of Q(®), thus are
functions of p. Therefore, if we could eliminate Q™) in the O(1) system, we would
arrive at a system of only p and v(®). Indeed, this can be done by examining the
kernel of H(©).

Our task becomes expressing terms with the superscript (0) in terms of nj, no,
nz. It turns out that the form (3.18) of Q) results in specific form of the following
terms.

e The derivatives of Q(®), which are related to the kernel of H(©).
e The variational derivative of the elastic energy, G(Q(®).
e The high-order tensors M©) VO A0 and PO,

Up to now, all the equations are expressed by the components in the basis gen-
erated by the reference frame (e1,e2,e3). In order to facilitate the specific form of
the above terms, we shall first rewrite the O(1) system in the basis generated by
p= (1’11, n2,n3).

4.2. Change to the local basis. In what follows, we denote by Ay and €2 the
symmetric and skew-symmetric parts of the velocity gradient "%('?) = ijgo), respec-
tively, i.e., Ag = (k9 4+ £OT) /2, Qy = (k) — OT) /2,

We consider the basis for second-order tensors given by i, five symmetric traceless
tensors,

1
2 . 2 2
(4-19) Sl:n1—§1> S2 =N3; — N3, S3=N1Ny, S4=N1N3, S5=N2N3,

and three asymmetric traceless tensors,

(420) a;=n;®ny, —nNy®n;, ar=nN3®n; —n;®n3g, az=np;Pn3—ns3Qns.
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Let us look into the fourth-order tensors M E(P, Mg), ./\/lé%). The first two com-
ponents of ng) are symmetric, and the contraction of the first two components gives
a zero second-order tensor. So is the contraction of its last two components. Thus, it
can be expressed as

(4.21) Mﬁ) = (Mu)ijsi & S;.

Similarly, M75 and My, are also defined.
When the last two indices of Mﬁ) are contracted with a second-order symmetric
traceless tensor Y =y;s;, it gives

(4.22) MPY = ((Mi1)ijyr) (si @ 5,)s%-

By the convention of the a fourth-order tensor times a second-order tensor (4.2), the
product (s; ® s;)sy gives a second-order tensor (s; - si)s;. Let us define a matrix A
by

. 2 111
(423) Ny =sios=ding (32.3.3.3).

So, Mg?Y is written as
(4.24) M(ﬁ)Y = ((M11)ijAjryr) si = (M11Ay)isi.

In other words, the coordinates of Mﬁ‘{)y under the basis s; are given by Mj;Ay.
For a product involving M(?), we just combine the coordinates into a single vector.
For instance, for the term M(O)Q(Q(O)), let us denote

My Mo g1 e A
4.25 M= , g= . A= ,
(4.25) < Mz Moo ) g ( 92 ) < A
where g; is the vector of the coordinates of Gi(Q(®), and g, that of Go(Q(®), i.e.,

G1(Q) = (g1)i8i, G2(Q®) = (g2)isi. Then, the term M(OG(Q(®) has the coordi-

nates

Mg — Mi1Agy + MiaAgs
MioAg1 + MasAgs )

We turn to the tensors N, (01), N, (02). For N, (01), its first two components are no
longer symmetric, so that we can express it as

(426) N(Ol) = (Nf)ljsl ® S; + (N{)”az ® S;.

The matrices N§ and N} are defined in the same way. By V() = N7 we can
further write

(4.27) V(Ol) = (Nlu)iij ®s; + (N{)iij ® a;.
Denote

_( N Ny AT
(4.28) N_(Nf Né ), V=N-",
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where the matrix N has the size 8 x 10, so that V' is 10 x 8. We have

NU)S R s; —|—(Nl)“S' ®a,) #(0)
4.99 P(0),.(0) _ ((Nf)ijsj @ 1)ij85 & a; .
(4.29) " ((N3)ijs; @si + (NS)ijs; @ a;) £(©)

We define an 8 x 1 vector w by the contraction of x(°) and the vector u =
(s1,.-.,85,a1,a2,a3)T formed by eight tensors, which is given by w = (wI,wD)T,

where w, and w, are defined as
=(Ag- Ag-s5)T =(Qo-a1, N -as, R -az)”
Ws =(A0"8S1,---,80°8S5) , Wq=1[340" A1,340 " A2,340 - A3) -

Then, the 10 x 1 vector Vw gives the coordinates of V() x(0),
Similarly to the vector g, we denote by g the coordinates of 8,Q), by §; the
coordinates of 8;Q(®, and by h the coordinates of H(YQ®). Then, the coordinates

of the material derivative Q© = 8,Q© + v(® . vQ© are given by ¢ =g+ v§0)61 +

véo)(jg + véo)(jg. Therefore, we could write (4.16) in the coordinates

(4.30) q—Vw=—MA(h+yg).

For (4.17), the term N (HO QMW + G(Q®)) can be expressed under the basis
s; together with a;,

(4.31)

o = ckpTN© (’H(O)Q(l) + Q(Q(O))) =ckgT(s1,...,S5,a1,a,a3) NA(h + g).
The term P©x©) is symmetric traceless, so that it can be written as
(4.32) PORO = (sy,...,85) Puws.

The dot product (K@ (QW)+G(Q®))-9,Q® is given by ¢TA(h+g). Thus, (4.17)

can be rewritten as

N 0 gy© (0) (0)
Ds 5 + v\ . Vv =—-0;p"” +nAv;” + 0, ((sl,...,s5)Pws)ij

i

+ ckpT0; <(s1,...,s5,a1,a2,a3)N/~\(h+g)>

ij
(4.33) + kTG A(h+ g).

4.3. Expressions of matrices and vectors under the local basis. We begin
to write down the matrices and vectors in (4.30) and (4.33). Let us first discuss the
derivatives of Q) i.e., § and §. Since Q) is a function of p, any derivative of
QO can be expressed linearly by .Z,Q(?). For this reason, let us first look into the

coordinates of .Z,Q(©).
For any differential operator D, we have

DQEO) = 2(81 — bl)(Dl’ll . 1’12)83 — 2(81 —+ bl)(Dng . nl)s4 —|— 4b1 (DI’IQ . 1’13)55.

DQ&O) is calculated similarly. We denote by L the coordinates of (.i”gQ(O),.,E”QQ(O)7
7 Q(O)), which is a 10 x 3 matrix. The calculation above gives

(4.34)
L= (02><3, diag(2(81 - b1), —2(81—|— bl),4b1)702><3, diag(Q(SQ— bg), —2(82+ b2),4b2))T.
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Choose D as 0y, 0;, and the material derivative 0; + UEO)@, respectively. The corre-
sponding coordinates are given by

Oy - ny Oiny -ny np -ny
(435) (j: L 6tn3 * 1 5 (L =L 61‘1’13 i 15} , q= L f13 * 1
Oy - n3 Oing - n3 n, - ng

Another important thing to be noticed is that (3.19) leads to HO QW ..Z(Q®) =
0. Recall that the coordinates of H(© Q™) is h. Thus, when writing this equation by
the coordinates, we deduce that

(4.36) LTAh=0.

The calculations of the matrices M, V, N, and P involve high-order tensors, which
are discussed in the supplementary materials (bif_suppm.pdf [local/web 446KB]).
Here, we only present the result. To express these matrices, we introduce six constant
5 x b matrices X; (i=1,---,6),

_ _3

X, =diag 90 ,—12,-12,-12 |, =diag 2 (1) ,—1,—-1,2 ),
0 -3 L
0 3 LI 16 16 4

X3 =di 2 -3,3,0 Xy=di 35 — =, —

3 1ag(< % 0 )a 39y )a 4 lag(( 0 3715 ) 355 35735 ’

27 _ 3 16 4 1

X5diag<( 148 138 >76776>v
-2 4 35'35° 35

-3 3 18 2 2
Xﬁzdlag<< 335 281 >a7_7_)'
3 2L 35735 35

The blocks of the matrix M can be expressed as

4
My = —B(Fz +T3)X: + = = ((Tas9 —T'3(s1 4 82)) Xo + (T'2ba — T'3(by + b2)) X3)

- 4( (Pa(ar +a1) —Taar) Xy + (T2(ag + az) — Fzaz) X5

+ (Do (a3 +as) — Taz) Xo
(4.37) dediag<< a2 >,Ot337044470455),

Q12 Q22

1 4
Mis = f].—‘gXl + ?Fg ((81 + 82)X2 + (bl + b2)X3) — 43 (61X4 + a9 X5 + C_ng(;)

(4.38) < dia (( o §;2>,633,ﬁ44,ﬂ55>,

4
(Pl + Fg)Xl + = ((I‘lsl — P3(81 + 82))X2 + (Flbl — Fd(bl + b2))X3)

5 7
- 4( (P1(@r +a1) —Taar) Xy + (T1(ag + az) — Fzaz) X5

M22=—1

+ (D1 (@3 + as) — Tsas) X6>

def
(4.39) = diag (< 11; 3;2 >77337’Y447’755>,
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where a;, a;, a; (i = 1,2,3) are those in (3.22). We shall keep in mind that these
scalars are functions of s;,b; (i =1,2). The blocks of the matrix V' are expressed as

1 2
Nf’ = 7T5€1X1 — ? (((61 — 62)81 — 26282)X2 —+ ((61 — 62)b1 — 2€2b2)X3)

— 2 ((a1 =+ 262&1)X4 —+ (CLQ —+ 262&2)X5 —+ (a3 =+ 262&3)X6)

def ..
(4.40) = diag (( pun ) 7M33,M44,M55) ;

H12  H22
1 2
N; = —T562X1 —+ ? ((26181 — (62 — 61)52)X2 —+ (261b1 — (62 — Gl)bg)Xg)

-2 ((&1 + 261(_11) X4 + (&2 + 2615,2) X5 + (ag -+ 261&3) Xﬁ)

(4.41) L' diag (( v T ) ,V33,V44,V55> )

Vig V22
)
2L

where L is given by (4.34). The matrix P can be expressed as

and

_( N
(4.42) V( Ny

4
Lo+ 111(1+43e1)) X1 — — ( ((I2 + 3I11e1)81 + 111 (1 + 3e1)s2) Xo

P:
o 21

1
_E<

+ ((I22 + 3111€1)b1 + I11 (1 + 3e1)b2) Xs) + (Ia2a1 + I1161 +411e1a1) X4

+ (Ia2a9 + I11G2 +4111e1a2) X5 + (Ia2az + Li1as +4111e1a3) X6‘|

(4.43)

def . Y1 Y2
= diag <( D1y Doy > 719:«13,1944,19'55) .

In the above, we intentionally introduce notations for the components of M, V,
and P, to emphasize that these matrices have specific forms. These specific forms are
significant in the forthcoming derivations. We have claimed that M and P are positive
definite in (4.11) and (4.10). As a result, the corresponding coefficient matrices M
and P are also positive definite. We do not consider the expressions of the vectors h
and g, because the terms involving them will be expressed by variational derivatives
of the elastic energy.

4.4. Orthonormal frame model. We are now ready to derive the frame hy-
drodynamics for the biaxial nematic phase from the O(1) system (4.16)—(4.18).

To begin with, we write down the elastic energy for the biaxial nematic phase. In
the tensor model, the elastic energy is a functional of Q. When Q takes Q(®) that is
a function of p, the corresponding elastic energy becomes a functional of the frame p,
which we denote by Fp;. Generally, the biaxial elastic energy consists of twelve bulk
terms [44], written as

Foi 1
Bilp] — [ da 7<K1111D%1 + Ko292 D35 + K3333 D35
CI{JBT 2

+ K1212D%5 + K2121D31 + Ko323 D35 + K3232D3 + K3131D5 + K1313D75
(4.44) + K991 D12 D21 + Kaz30Da3Dss + K1331D13D31)7
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where the nine invariants D;;(i,5 = 1,2,3) are defined by (2.7). We take no account
here of three surface terms, such as

(445) 8in216jn2j — 3in2j8jn2,- = 2(D33D11 — D31D13).

The coefficients in (4.44) can be derived from the coefficients in the tensor model [44]
as

Kiinn=Ja, Koxa=J1, Kszzz=J1+J2—Js,

Kig12 = Kzgzo=J1 +Jy, Koi21=Kz131=J2+ Js,

(4.46)

Kooz =Kizi3=J1+Jo — Jzs+ Jy + J5 — Jg,

Kioo1 = —Js, Kozzo=Js—2Jy, Kizz31=Jg—2Js,
where
(4.47)

Ji = 2¢ (ca2(s1 4 b1)? 4 ca3(s2 + b2)? 4 2¢24(s1 + b1) (52 + b2))

Jo = 8c (c22b3 + c23b3 + 2c24b1b2)

J3 = 8¢ (caoby(s1 + b1) + caszba(sa + ba) + caa[bi(s2 + ba) + ba(s1 + b1)]),
Ji= c(cas(s1+b1)? 4 ca0(s2 + b2)? 4 2¢2,10(s1 4 b1)(s2 + b2))

Js = 4c (cng% + co9b3 + 202,10b1b2) ,

Jo = 4c (cagh1(s1 + b1) + cagba(s2 + b2) + c2.10[b1(s2 + b2) + ba(s1 + b1)]) -

Using the chain rule, we deduce that

(4.48)

LFpi=ZLFpiQ" () = gggf) - 2Q = ckpTG(QY) - £Q) = ckpTL" Ag.
Therefore, it is deduced from (4.30) and (4.36) that
1
Tar=1(, _ _
(4.49) LM g = Vo) 4+ s O F i = 0.

In the above, we notice that M is positive definite, thus invertible.

To calculate (4.49), we rearrange the rows and columns of the matrices so that
they can be divided into blocks appropriately. To this end, we introduce a 10 x 10
permutation matrix

(4.50) C = (E,E¢, Ey,E7, E3, Eg, Ey,Eg, E5, Eq),

where E; is the 10 x 1 unit vector with the jth component equal to one. We have
CCT = Iy, which is the 10 x 10 identity matrix. Then we have

(4.51) CTMC = diag(Mo, My, My, M3),
where the blocks M; (i =0,1,2,3) are given by

1] ﬁn a2 P2
Bii y1 Bz M2
Mo =
0 arp P2 azx Poo |
ﬁu Y12 ﬁ22 Y22

a3z B33 044 Pag ass  Bss
M = My = , Msz= .
! < B33 V33 )’ 2 ( Baa Yaa > ° < Bs5  Vs5 >
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These blocks are all positive definite because M is. For the matrix V', we have

Vo |
Vi 0.0 Vi 0 0
0V, 0 0 Vs 0 |’
0 0 V5 0 0 Vg

(4.52) otV =

where the blocks V; (i=0,1,...,6) are given by

H11 H12

Vo = V11 Vi2 ’ VIZ(M?,?,)’ VQZ(M44>7 %:<M55)’
H12  H22 V33 V44 VUss
Vig V22

_ s1— by _ 1+ b1 . 2by
we(noh ) v ) we(l)
We also rearrange the indices of the vector ¢ by C,
(4.53) CTq=(04x1,2(1a; - 02)V4,2(faz - 11) Vi, 2(na - n3) V)",

where we use Oy, xn, to represent an Nj x Ny zero matrix. The matrix L is rearranged
as

(4.54) (CTL)" =L"TC = (03x4,L7),
where LT = diag(2V,, 2V, 2V )T, Thus, from (4.51) and (4.54), we have
(4.55)
PA
LTM 10 =(CTL)TCTM™1C=| 0344 2V My
2V Myt
Together with (4.55), we deduce that
(456) LTMilq = (LTC’)(CTMO)il(CTq) = (ngll ‘1o, nglg ‘1, lelg . Ilg)T s
where the coefficients x; (i =1,2,3) are given by
X3 =4V M WVa, xo =4VE My Vs, xa =4V My V.
From (4.51), (4.52), and (4.54), we have

LM Ww
(4.57)

T
1 1 1
= <773A0 83+ §X3Qo ~ay, MmAg-ss+ §X290 ~ag, MAg-s5+ §X190 . a3) ;

where the coefficients n; (i = 1,2, 3) are expressed by

ns =2V MWVA, oy =2V My Vo, oy =2V My,
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Therefore, using (4.56) and (4.57), (4.49) can be reformulated as
1

1
4. 1915 — =120 - a3 — Ao - L Fpi =0,
(4.58) X1z -1 — 5x180 - a3 — mAg S5+ckBT 1FBi =0
1 1
4. 1511 — = 2820 - as — 7oAy L Fpi =0,
(4.59) Xam3 -1 — 52800 - a2 — 72 Ag S4+ckBT 2Fpi=0
1 1
4. Ji 1o — = X3 - a1 — 73A0 85+ —— L Fp; = 0.
(4.60) Xsm -1y — 530 - a1 — 73 A0 53+ck’BT 3Fpi=0

It remains to derive the equation of the fluid velocity v(®). From (4.35), (4.48),
and (4.36), we have

(4.61)

GrA(h+g) = f

(L Fpiomy -ny + LFpidms -0y + L1 Fpiding -n3) = .

CkBT

Using this short notation § for the body force, and taking (4.30) into (4.33), we deduce
that

ov(®
Ps ( ‘E/)t +v(©® -Vv(o)) =—9,p + nAvZ(O) +0; ((s1,-..,85)Pws)

| is

7

— ckBTaj ((Sl, e ,S5,31,32,33)NM71((] — Vw))m
(4.62) + ckpT;.

In the above, we recall that the matrix P is given by (4.43).

Noticing N = V7, and by direct matrix manipulation, we obtain that the elastic

stress o) (4.31) can be expressed as

1
CkBTUS)) = —(Sl, e 7S5,317327{:13)]\7]\471((] — Vw)
= f1(Ag -s1)s1 4+ Bo(Aop - s2)s1 + Bo(Ag - s1)s2 + B2(Ap - 52)82
. 1
+ B3(Ao - s3)83 — 13 (111 ‘ng — 590 : a1> S3
. 1
+ B4(Ag - 84)84 — 12 (Ils ‘ny — 590 . az) S4
. 1
+ B5(Ao - 85)85 — 1 (112 ‘ng — 590 . a3> S5
1 1 ) 1
+ 57]3(A0 . 53)a1 — §X3 <1’11 ‘1o — EQO . al) ap
1 1 ) 1
+ QHQ(AQ . s4)a2 — 5)(2 <1’13 1Ny — 590 . ag) ao
1 1 . 1
(463) + §T]1(AQ . s5)a3 — §X1 <1’12 ‘N3 — 590 . a3> as,
where the coefficients (; are given by
(4.64)
VOTM01V0:< o ) By =VIMIWA, Ba=VEM;Wa, By =ViE My Vs
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Since My is positive definite, the matrix V& M V4 is symmetric positive semidefinite,
yielding

(4.65) Bi=0,i=1,2, B5<pips.
Therefore, from (4.62), the equation for v(®) reads
ov()
(4.66)  ps ( gt +v© -Vv(0)> = —0ip'” + 0; ((0750))17 + (Jéo))ij) + ckpT3Fi,

(4.67) V.-v®=0.

Here, the viscous stress 01(,0) is denoted by
(4.68) 01()0) =nAg+ (51,...,85)Pws = (s1,...,85) (A~ + P)ws,

where we have used the following fact,
L1
= - -1
AO_;w(AO.Si)Si_(Slv'"7S5)A Wg.

To sum up, the frame hydrodynamics for the biaxial nematic phase is given by
(4.58)—(4.60), (4.66), and (4.67).

Remark 4.1. Similar to the Ericksen—Leslie model, where n and —n stand for
the same nematic direction, in the frame model four different frames stand for the
same biaxial direction: (nj,ns,ns), (n1,—ng,—ng), (—ni,ng, —ns), (—n;, —nos,n3).
Therefore, in the frame model there will also be the problem of orientability, which
calls for discussion in the future.

4.5. Energy dissipation. Taking the derivative with respect to ¢ of the biaxial
elastic energy (4.44), we deduce that

d]:Bi 5]:31 8111 (5.7:31 ang 5]:31 3n3
T ‘ — + . dx

on;, Ot ' ony Ot ' ong Ot

:/ (6]’37: - (n2(nz - 9yny) +nz(nz - dny))

(51’11
0FB;
5 BL . (ny(ny - Oins) + ns(n; - Gns))
no
0FBi
5 Bi . (ny(n; - Oym3) + na(ny - 8tn3))> dx
ng
0Fpi 0FpBi 0FpBi 0Fmi
= n3EOgnay | N3 - —ny- + 10y | Ny - —ng3-
dny dng ons om
0FpBi 0FpBi
+ nokdinyy (ny - =24 —ny - = E dx
6111 5112

(4.69)
= / (N3 0enok L1 FBi + nkOnapLaF i + nopOinip L3 F pi) dx.

Taking the inner product on (4.66) with v(® and using V- v(®) =0, we derive that

s d
(4.70) %& / VO Pdx =~ (07, Ag) — (00, Vv ) + ckpT (F,v\V),
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where
ckpT(F,v() :/v§°) (n3r0inok L1 Fpi + nik0insk Lo F i + Nor0inip L3 F pi) dx.

Combining (4.69) with (4.70), and using (4.58)—(4.60), we obtain the energy dissipa-
tion law,

d (ps
L5 i)
= (o, Ag) — (o, Vv ()

+ / ((ng-n3) A Fp; + (N3 - 1)L Fp; + (Mg - no). L Fp;) dx

= /wg’(nA—l + P)wgdx + ckBT< — BillAo -s132 — 260 /(AO -51)(Ap - s2)dx
— BallAg - sall72 — Bsll Ao - s3l|72 — Ball Ao - sall7> — Bsl| Ao - 557
1
+ 2773/ <1’11 ‘1No — 590 . al) (AO . Sg)dX

1
—+ 27’]2/ <n3 ‘1N — 590 . ag) (AO . S4)dX

2
r'12~n3—§ﬂo~a3

2
L2

The dissipation can be recognized by noticing the following facts:
e A and P are positive definite.
e (31,82 >0 and 2 < 3132. This comes from (4.65).
e B3,x3 > 0 and 13 < B3xs. To realize this, we use the expressions B3 =
VEIM;'WVA, x3 =4V MV, and s = 2V,T M, 'Vy, and the fact that M; is
positive definite.

. 1
+ 2771/ <n2 ‘ng — 590 -ag) (Ap - s5)dx — x1

(4.71)

L2

1 2

. . 1
— X2 n3'n1—§90'32 — X3 nl'n2_§QO'al

L2

4.6. Comparison with previous formulations. In previous works, the dis-
cussion of biaxial hydrodynamics focused on the dissipation function, i.e., (4.71). If
the dissipation function is determined, the hydrodynamics can be established by de-
riving the forces from it and applying Newton’s law. For this reason, we compare the
dissipation function in this work and those in previous works.

On the right-hand side of (4.71), the first integral can be merged into the six terms
given by f3;, because of the special form of two matrices A and P. As a result, the dis-
sipation function can be written in twelve terms, which are exactly those given in [10].
Although the dissipation function had different expressions previously, they turn out
to be equivalent as claimed in [10]. While the form is identical, we manage to derive
the coefficients from the physical parameters, which was not attained previously.

5. Reduction to uniaxial dynamics. In the tensor model, the minimum of
the bulk energy (3.3) might be uniaxial in the form

(5.1) Qi =si <n§;>, i=1,2.
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In this case, the local anisotropy is axisymmetric, and the corresponding hydrody-
namics is reduced to the Ericksen—Leslie theory, which we derive in the following.

The essential fact is that the form of tensors in Theorem 3.4 will be reduced (see
the supplementary materials (bif_suppm.pdf [local/web 446KB]) for the proof).

THEOREM 5.1. Assume that Q1 and Q2 have the uniaxial form (5.1). Then, the
high-order symmetric traceless tensors obtained from closure by the original entropy
or the quasi-entropy have the following form:

(mymymg) =0, ((m})e) =a1(n})o, ((m3)o) =ai(n})o, ((mim3)o)=a1(n})o.

When b; = by = 0, the elastic energy only depends on ni, denoted by Fy,. We
immediately obtain

O0Fun B OFun _0
(51’12 B (5113 -
which implies that
5F 5F
(5.2) AFpi=0, LFpi=-ng —2 LBFpi=ny —"
ong ong

By b1,bo = 0 and Theorem 5.1, in the matrices M;;, N, and P (see (4.37)-

(4.43)), the coefficients of X3, X5, X4 are all zero. The matrices X1, X2, and X, are
all diagonal matrices with their elements satisfying the following relations:

(53) (X,L')33 = (Xi)447 (Xi)55 = 4(XZ‘)22, 1= 1,2,4.

Thus, the blocks in (4.51) become

Mo, def (011 Bi1 def [ oo a2
My = , Moy = , Moz = ,
0 < Moz ) o1 ( i1 T 02 Bz Y22

My=My=( @33 P33\ np an,.
Bsz v33 )’

Similarly, the blocks in (4.52) are reduced to

Vo ,u11> <N22> (NBS)
Vo= 5 Vo1 = 5 Voo = N Vi=V, = ,
0 < Vo2 ) ot ( V11 02 Vo e V33
. 22 (s _ (s (0
%—4(V22), v4—(82), Vo= (52>— Vi, vﬁ—(o).

We know from (5.2) and that Vg is a zero vector that (4.58) disappears. Mean-
while, noting the following relations between coefficients,

X3=Xo= 4V M Vi >0, ng=—np =2V, MV,
we could simplify the equations (4.59) and (4.60) as
5Fun

: 1 1
{Xz (n3'n1—§ﬂo'az>—772A0'S4—m113' s =0,

. 1 1 0Fun
X2 (nl'n2*590'a1)+T]2A0'Sg+mn2'ﬁ

(5.4)
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Denote the rotational derivative of the director and the molecular field as, respec-
tively,

1 0Fu
Ny=1n; - QVny;, hy=-— =,
LT Ty e T 0T oy
Then, (5.4) can be rewritten as
(5.5) n; x (hy —x2N; —n2Aony) =0.

It remains to reduce (4.66) to the unixial case. It follows from the derivations
above of the blocks in M and V that

Bo=0, m=0, x1=0, Xx2=x3, Mm2=-n3, Bs3=p01, P[5=4P,
and the coefficients By, 82, 83 are given by
Br=VoiMg'Vor, Ba=VypMay'Voz, 3=V My 'Vi.
Then, by a direct calculation, we obtain

ol + 00 = a;(Ag-n?)n? + axn; ® Ny + 03Ny @ ny + asAg
(5.6) + oz5n11;n1kA§£) + aﬁAgg)ﬂmnu,

where we have neglected the term (Ag-n?)i, since it can be absorbed into the pressure.
The coefficients a; (i =1,...,6) are given by

oy =11 + V22 — I35 + ckpT (1 + S2 — B3),
1 1
a2:—7cl{jBT(X2—|—7]2)’ Q3 = §CkBT(X2 —7']2), 044:77+2?922+28kBTﬁ27

as (933 4+ ckpT (B3 — n2)) — 2(Va2 + ckpT'f2),

w\}—‘w\H

(033 4+ ckpT (B3 +n2)) — 2(¥a2 + ckpT'f2),

which satisfy the following relations:

ap +ag=ag —as, ckpTxa=03—az, ckpTny=as—as.

Using 5;};" = 5(?;(13" =0, the body force can be simplified as
0Fun
(5.7) ckpTF: = Oy —22 = 9,05,
onik ’
where 0’5 = —8(‘967“%8 nik is called the Ericksen stress. Therefore, from (5.6) and

(5.7), the equation of the fluid velocity v(?) for the uniaxial case is given by

W 0 gy© (0) L B
where the Leslie stress oL = ( ) + a( )
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Equations (5.5) and (5.8) give the Ericksen—Leslie system, which also keep the
following energy dissipation:

d (ps
5 <p2/|v(0)|2dx+]:Un(n1)>

1

(5.9) = —/ (o/1|A0 22+ ab|Ao)? + b Agn |2 + ckBTX—\nl X h1|2> dx,
2

where

2 2
Ui Ui
af = —&—ck:BTX—Q7 ah = ay, ag=a5+a6—ckBTX—2.
2 2

It can be seen from Proposition 2.2 in [34] that the first three terms in (5.9) are
negative semidefinite if and only if

3
a5 >0, 2054 az>0, 504’2+ag+a’120.

Tt is easy to verify that (5.9) is indeed nonnegative, since we have n > 0, 911,922,933 >

0 from the positive definiteness of P, and 31, 32, 33 > 0, f3x2 —13 > 0 from the positive
definiteness of M.

6. Conclusion. Using the Hilbert expansion, we derive a frame hydrodynamics
for the biaxial nematic phase from a molecular-theory-based tensor model. Its coef-
ficients are all expressed as those in the tensor model, and the energy dissipation is
maintained. The model is further reduced to the Ericksen—Leslie model if the bulk
energy minimum becomes uniaxial.

The key ingredient is to recognize the form of the high-order tensors from the
properties of the original entropy or the quasi-entropy. This technique is also appli-
cable to other mesoscopic symmetries. It calls for expressions of tensors under other
symmetries [38, 39, 40], which we aim to investigate in future works.
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SUPPLEMENTARY MATERIALS: FRAME HYDRODYNAMICS OF
BIAXTAL NEMATICS FROM MOLECULAR-THEORY-BASED
TENSOR MODELS*

SIRUI LIt AND JIE XU#

SM1. Symmetric traceless tensors. As we have mentioned, any tensor can
be decomposed into symmetric traceless tensors. To carry out calculations of high-
order tensors, it is necessary to discuss some fundamental ingredients of symmetric
traceless tensors.

For a tensor U expressed in the basis generated by ¢ = (m;, mg, m3), let us denote
it as a function of q, i.e. U(q), to allow g to vary. For example, let us consider a tensor
U(q) = 3m; ® m3 — m3 ® my. For another orthonormal frame q' = (m/, m), mj),
we mean U(q') = 3m} ® m; — mj; ® m),.

SM1.1. Basis of symmetric traceless tensors. Any symmetric tensor can
generate a symmetric traceless tensor in the form (2.2). To write down a basis of
symmetric traceless tensors of certain order, we could choose those generated by
monomials. Their expressions are derived previously [SM2]. Below, we list the third-
order and fourth-order tensors that we will make use of.

A basis of third-order symmetric traceless tensors can be given by

(m?)o, (mimy)o, (mym3),, (m3)o,

(m%m?))()a (mlQOg)o, (mgmg)o_
Their expressions are given by

(m1m2m3)o = mpmpmgs,
3 .
(m?>0 = m? — —-mat,

5

1
(m?my) = mimy — gmzl.

The others can be written down by changing the indices. A basis of fourth-order
symmetric traceless tensors can be given by

(mf)o, (mfmy)o, (mim3)o, (mym3)o, (m3)o,

(m:fmS)o, (m%mzms)m (m1m§m3)0, (mng)o-
Their expressions are given by

(m{)o = mj — —mfi+

3 .,
7 —1

35

3 3 3 .
(mjms)p = mjmy — Zmimst,
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(m?m3)o = mim3 — 2(mf + m3)i + -

7( 35

2 2 :
(mimoms3)p = mymoms — ?m2m31.

An additional note is that for a monomial with the power of mg not less than two,

we could substitute it by m3 = i — m? — m3 to obtain equations such as (cf. the

uniqueness of W in (2.2))
(m3)o = (i —mi —m3)o = (~mf —m3)o, (m3)o = ((m}+m3)?),
For our discussion afterwards, we introduce the group %, that has four elements,
i =diag(1,1,1), by =diag(l,—1,—-1), by = diag(—1,1, 1), bg = diag(—1,—1,1).

The tensor U is called invariant of % if U(qb;) = U(q) (recall the notation at the
beginning of Appendix). All the invariant tensors of the order n form a linear subspace
of nth-order symmetric traceless tensors, denoted by AZ2™. According to a short
discussion in [SM2], its orthogonal complement (A?2™)+ consists of all the nth-order
symmetric traceless tensors U such that U(q) + U(qby) + U(qbz) + U(gqbsz) = 0.

It is evident that qb; transforms two of m;, ms, mgs to their opposites. From the
expressions of symmetric traceless tensors written above, we can easily identify the
decomposition AZ2" and (AZ2")L. For n = 1,2, 3,4, they are listed below,

(SM1.1) AZ>1 ={0}, (AZ>1)L =span{m;, my, m3},
A72? = span{(m?)g, (m2)o}, (A?>?)* = span{m;my, m;ms, myms},
A723 — span{m;msomg},
(A72%)% = span{(m?)o, (mimz)o, (mym3)o, (m3)o, (m¥ms)o, (m3ms)o},
A7 = Spaﬂ{(ml)m (mfm3)o, (m3)o},
(A72%)+ = span{(m{my)o, (m;m3)o, (m?ms)o,
(

m1m2m3)Ov (mim3my)o, (mims)o}.
Let us write down some equalities to be used later. Define
(SM1.2) S; = m% —1i/3, Sy = mg — m?,)7 S3 =mims, S4 = mimgs, S5 = momsg.
For third-order tensors, we have

mpmpms - m; @ S] :05 if (Z7J> 7& {(17 5)a (25 4)7 (3a 3)}7
(SM1.3) GiZS(mlQOg)jks(Sy ®@ Sy )ijiw =0, ifi# jand {v,v'} # {1,2}.

If U € (AZ2:3)L | then

U-m; ®8; =0, if (i,7) ={(1,5),(2,4),(3,3)},
(SM14) GilsUjks(Sy & Sy)ijkl = Eil UJkS(S1 & Sz)”kl == 6 ngs(s2 ® S )zgkl =0.

For fourth-order tensors, if U € AZ>%, then

(SML.5) U-S;®S; =0, ifijand{ij}+{1,2}.
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If U € (AZ24)L | then

The equalities (SM1.3)-(SM1.6) can be recognized straightforwardly by expanding
the tensors into several terms of tensor products of m;. The Levi-Civita symbol can
be expanded as

eijk:(m1®m2®m3+m2®m3®m1+m3®m1®m2
—m; @m3®my — Mz @My ® My — My ® My ® M3);jk.

The equations above hold independent of the orthonormal frame we choose. In
particular, they are valid if we substitute m; with n; and correspondingly S; with s;
(recall (4.19)).

SM1.2. Expressing tensors by symmetric traceless tensors. There are
complicated linear relations between high-order tensors. To figure out the linear
relations, we shall express them by symmetric traceless tensors that completely give
linearly independent components. These linear relations are inherited by averaged
high-order tensors. The special forms of averaged high-order tensors are also revealed
in this way.

To express a general tensor U by symmetric traceless tensors, we first decompose
it as U = Ugym + (U — Usym). The anti-symmetric part U — Usym can be written as
the sum of several terms of the form

ik
U.iij.—U. ji. =" Wy,

where W is an (n—1)th-order tensor (but notice that €9k, is an nth-order tensor).
Thus, U is expressed by a symmetric tensor of nth-order and some tensors of lower
order. Next, for each W occurring in the expression, we could do the similar decom-
position. Carry out this action repeatedly until we express U by symmetric tensors.
Then, each symmetric tensor can be expressed by a symmetric traceless tensor and
several symmetric tensors of lower order. Also do it repeatedly to finally express U
by symmetric traceless tensors. This procedure can be better understood shortly in
our calculations below.

In what follows, we use this procedure to deal with the tensors

2 2 1 2 1 2 2 2 2 2 2

(ml - g) ® (m1 - g)» (ml - g) ® (mz —m3), (m; —mj3) ® (m; — m3),

mpmy ® mpmg, M;m3 @ mM;ms, MymM3 @ MyIN3.
From the expressions of symmetric traceless tensors, we can derive that
3.

6 5.
mi = (m)o + Cmi -

7 (mt =)o (G- 3)°

=(m)o +
4 6, o . 1o
(SM1.7) =(m7)o + ?(ml)ol + =

2 2 2 2
i 2>~ (3_i)~2
(3 m3 )+ (51 35"

mim; = (mymj)o +
2.2 ov ., 1o
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For a second-order tensor U, define

3
1 (6:xUjt + 6;Usk + 00Uk, + 6;1.Ux),

def
B(U)ijit = Uidji — Urjdu + Upidjr. — Upjdig.

def
A)iji = Uij + 65Ut —

Using the expressions of symmetric traceless tensors and (SM1.7), it follows that

(SM1.9)
1
2 1 2 4
(m1 3‘) ij (ml 31) kl
6 R 1 1 1
= ((mil)o + ;(m?)ol + 312)”” - g%‘(m?)kl - §5kl(m?)ij + 500k
_ 4 6 PANS 1 22 15 2 15 2 15- 5
= ((ml)O + §(m1)01+ g‘ )ijkl ~3 ij((ml)o)kl T3 kl((ml)o)ij AL

4 1
((mzll)o)ijkl - E'A((m%)o)zjkl — £(25U6kl — 367k5]l — 351'l5jk)-
The symmetric tensor m3m3 is expressed by

1

5 (mlimljm2km2l + Mo;Mo;mipmayg

(SM1.10) + (m1smej + maoima;)(magmer + m2km11))-

(mim3)ijr =

Then we obtain from (SM1.10) that
(mimy ® mlmZ)ijkl - (m%mg)zjkl
= 1 (2mhmljm2kmgl + 2mo;mo;makmay
(SM1.11) — (migmaj + maymaj)(migmar + m2km1l))~
Using the equality
(SM1.12) M1iMa; — MMy = €M,
the tensor in the big parenthesis of (SM1.11) can be calculated as

(SM1.13)

mamar(mamak — Majmik) + magmay (mijme — majmay)

+ maima(mejmiy — mijmag) + maimak(magma — mijma;)
= (maimar — maimag)(majmay — majmak) + (Maimak — maimag)(majmear — majma)
_ (GilSG‘jkt + Eiksﬁjlt)(mg)st
=200k — dir0jt — Gurdjk

— 2035 (m3) 1 — 204 (m3);5 + dix (M3)j1 + 01 (03) 15 + 0k (MF) + 651 (m3 )i

=3 (25ij5kl — 0ikbji — 0udjk) — 26;; ((mg)o)kl — 264 ((m 0)”

+ 6 (m)o) 5+ 8a(m3)o) , + Gy (o), + b1 (o)



SUPPLEMENTARY MATERIALS: BIAXIAL FRAME HYDRODYNAMICS SM5

Thus, combining (SM1.8), (SM1.11) and (SM1.13) yields

(mymy @ mimy);jk
(SM1.14) = ((mim3)o), ,, + %A((mg)o)w - %(%Zjakl — 30161 — 3010 k)-
Similar to the calculation of (SM1.14), we obtain
(SM1.15) (mym3 ® mimg);jx
(SM116) = ((mim3),),,, + %A((mg)o)w _ %(zazjam 36080 — 30udsn),

(mom3 ® moms3);jix

= ((mim3)o),,, + %A((m%)o)w - %(2527‘%1 — 30ik0j1 — 36udjk)-
In the same way, we have
((m3 —m3) ® (m3 —m3)), ., — (m; — 2mIm3 + mg);jx

1

=-3 (2mzim2jm3km3l + 2mg;ma3jmagmay
(SM117) — (mgimgj + mgim2j)(m2km31 + mgkm2[)).
Similar to the calculation of (SM1.13), we obtain

(SM1.18)

2moimo;marma; + 2ms;ms;marma; — (MeiMaj + msime; ) (Morms; + Magpmay)
= MMz (Mojmag — M3jMak) + Maimazk (Mayma; — m3jmay)

+ mgima(Mmsjmar — Majmar) + mgimay(Mms;jmae; — majms;)
= (m2im3l - m3im2l)(m2jm3k - mSjmzk) + (inmSk - m3im2k)(m2jm3l - mSijZ)
_ (eilsejkt + eiksejlt)(m%)st
=26;;6k1 — Oir0j1 — 85101 — 20,5 (m3) g — 265 (m3);;

+ 0i(m?) 1 + 6 (m?) jx + 55 (m3)i + 051 (m7)

1
= § (26ij6kl — 5%5]'1 — 5il5jk) — 25@‘ ((m%)o)kl — 25kl ((m%)g)w

+ dik ((m%)o)j[ + da ((m%)o)jk + 6jk((m%)0)il + 5jl((m%)0)ik'
Note that

mj — 2mZm? 4+ mj3

6 .2 .4
= (mj — 2mZm3 + m})o + = (m3 + m3)oi + = (m?)pi + —i>

7 7 15
4 4
= (mj — 2m3m3 +mj)o — - (mi)oi + —i%.

7 15

Then, from (SM1.17) and (SM1.18), we deduce

4
((m% - mg) ® (m% - mg))ijkl = ((rn‘Q1 - ngmg + mé)o)ijkl + ?‘A((m%)o)ijkl
1
(SM1.19) — B(zaijékl — 36ik5jl — 35il5jk:)~
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The next task is to calculate the fourth-order tensor (m?)p® (m% —m3). A direct

calculation gives

MM T2k MM2) — 122511 K11

= maimar(mijmog — majmik) + majmag(maimar — maoyma)
(SM1.20) = ejksmumglmg,s + €ilsm1km2jm38.
Furthermore, the asymmetric part of (SM1.20) can be calculated as follows:
(SM1.21)
Ejksmumzlm:as + Gilsmlkajmi}s - Ejks(mlQOS)ils - €ils(m1m2m3)kjs

jks
= 6‘5] (mlim21m3s — Ma;M3M1s + M1;MM3s — M3;M1M2s

+ myi(mamss — maymag) + (Migma; — maymy)mss + (Miymss — mSimls)m2l>

1 .
ils
+ 66 (m1km2jmss — MaEM3jMis + M1pM2jM3s — M3 M1;M2s

+ mag(mao;mss — mgjmas) + (M1gMma; — Magma;)Mas + (Migmss — m3kmls)m2j>

1. 4 4 ,
= 66]ks (36zltm3tmss + e mgimay + €tmygmay + € tmygmy, + Esnmztmzz)

il kjt it kst jst kt
+ 661 8(36 T'msimss + €7 mapmoy + € mygmay + € miyma + €° m?thj)

1 ... 1
= ieJ’“e’”(mﬁ)ts + 5 ((5jl5kt — 0;¢0k1)MaiMar + (840K — 05i0ke) MMy

+ (05601 — 0510kt )maimas + (95i0ke — 6jt6ki)m2tm2l)

1. . 1
+ iﬁzlsﬁkﬂ(mg)ts + 6 ((5ij5lt — 03015 )marmar + (0it01k — 0ik01)M1ema
+ (65015 — 5501 )magmas + (0ixdre — 5it51k)m2tm2j>

1 . . . : 1
= 5(6]’”6’” + 580 (m3)s + 3 (5kz(mf)¢j — 0i(m?}) s + 6i5(m3) p — 5kz(m§)ij)

1
3 (5kl(m§)¢j — ;5 (m3) gy + 6;5(m3)p — 5kl(m§)ij),
where we have used the fact that

(EijEilt + Eilsekjt)(mg)ts

= (5ji6kl53t + 0510kt 0si + 05e0ki0s1 — 05i0s10kt — 0510kidst — 05¢0k10si
+ 03101505t + 03501: 05k + 03011055 — O3k 055018 — 05501805t — 5it5lj63k) (m3),s
= 0ju(m3) sk + ik (m3) 1 — i (m3)xr — Sy (m3)s
+ 85 (m3) g + O (m3)i; — i (m3) ju — 6;0(m3)
=0.
Then, using (SM1.10), (SM1.7)-(SM1.8), (SM1.14), (SM1.20)-(SM1.21) and the rela-

tion m? + m3 + m3 = i, we obtain

(SM1.22)
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2 1 1
4 2 2 2
= 2my;mymakmor + (M7 — O (M7)i; — §5ij(m2)kl - §5ij(m1)kz + §5ij5kz
2 2
= MM, MakMa; — MaiMa; MMy + 6(mims3); ik — 4(mymy ® myms);jx

2
+ (m) ik — Ope(mi)i; — g‘sz'j(mg)kz -

1 1
g&'j(m%)kz + §5¢j5kl

= % (mymomy) s + € (mymomy)y

1
+ (G (o). — 815 (M), + 83 (m3)o) ., = dwa (o)., )
6 . 2 .
+ 6((m§m§)0)ijkl - ?((mg)ol)ijkl + 5(12>i1kl
4 1
— 4((m%m§)0)ijkl — ?A((mg)o)ijkl + B(Qéijékl — 30305 — 36il6jk:)
6 . 1.
+ ((m%)o)ijkl + 7((m%)0‘)zjkl + 5(12)iﬂfl
2 1 1
- 5kl((m%)o)ij - §5ij ((mg)o)kl - g%((mf)o)kl - §5z’j5kl
= ejks(mlmgmg,)ils + eils(mlmgmg)kjs + 2((m%mg)o)ijkl + ((méll)())wkl

+3 A(( 10) i+ 3 A(( 2)0) i

where we have also used the following fact

5 (6u((mo),, — < 0)1 + 83 ((m3)o) ., — e (md)o),, )
1 6 . 2
- 5k1( 0)” ( 2)0)kl - géij((m%)o)kl - ?((mg)ol)ijkz + 5(12)”’@1
6
+ 7( 0‘)231@1 (i%)ijht — 5ij5kl
:_*(Q&d( ) "‘2511(( ) )}cl+§kl(( ) ) +5w(( ) )kl)
12 . 6 . 1
+ 7((1’1’1?)01)”“ + ?((mg)ol)ijkl — B(Z(Sij(;kl — 3§ik5jl — 35il6jk)
8 4 1
= 75./4((111%)0)”“ - ﬁA((mg)O)i]’kl — 1—5(25ij5kl — 35ik6jl — 3§il6jk).
Note that m3 — m% = (2m3 + m?),. It follows that

2

(m3)o ® (m3)o =~ (mj — m3 — (m})y) ® (mj — m3 — (m3),)

((m3 — m3) @ (m3 — m3) — (m§ — m3) © (m?)g
(SM1.23) ~ (m3)o @ (m3 — m3) + (m})o @ (m3)o ).

Thus, combining (SM1.23) with (SM1.9), (SM1.19) and (SM1.22), we obtain

4 1
= Z (((m;l — 2m2m3 + mg)o)ijkl - ?A((m%)o)ijk:l — B(Qéijiskl — 36ik6jl — 35il6jk)
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4

1
+ ((méll)o)ijkl - E'A((m%)o)ijkl — 4*5(2(2]‘(5“ — 36ik6jl — 36il5jk:)

8 16
—4((mim3)o).;,, —2((mho) 5y, — 57 A(mD0) 5~ 57 A(m3)0) )

4 1
= ((mé)o)ijkl — ﬁA((mg)o)ijkl — Z5(25ij5kl — Séikajl — 35il(5jk);

where we have employed the cancellation relation
"% (mymom;) s + € (mimoms) s
+ Glis(mlmgmg)kjs + ekjs(mlmgmg)us =0.
Next, we calculate the three tensors
m; ®m2m3, mo ®m1m3, ms X mims.

It turns out that

1
—mq;(Mmajmsg + mg;mMay)

2
1
= (mymomg),jx + 6 ((mliij — MM )Ma + (M1;Mag; — M3;maj)Mag
+ (m1imag — moymag)ms; + (myimay — m3im1k)m3j>
(SM1.25)
1/ .. .
= (mymoms)is + o (Gms«m?’»)O = (m3)o),,, + € ((m3)o <m%>0)js)’
1
§m2i(m1jm3k + mgz;mag)
(SM1.26)
1/ .. )
= (mumoms)ijp, + o (6135((111%)0 — (m3)o),, + € ((mi)o — (m§)0)js>’
1
§m3i(mljm2k + majmiy)

(SM1.27)
= (mymamg)yje + g (€9 (o — (md)), + ¢ () — (md)o) ).

The equations (SM1.25)—(SM1.27) also hold if we replace m; with n;, which we also
need to use later.
To deal with V(® in the subsection 4.1, we need to calculate

(m; ®my) @mimy, (M ®m;)®mpmsy,

(m1 ®m3)®m1m3, (m2®m3) ® moms.

Using the definition of REO) (i = 3,4,5), it follows that

1
2(mq;maj(mims)g) = 573;(;0) + {(m1ima; — moimy;)(mymsy) ),

1
2(maima;(mims)y) = =

5 O — ((mymaj — magma;)(myma)i),

2

) =5 =
2(m1;ms;(myms)y) = 173510) + ((maimaj — magma;) (mimg)y),
) =3R +((

0
2<m2im3j(m2m3)kl 5 ) + ((Mmaims; — m3im2j)(m2m3)kl>~

2
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In order to calculate the above tensor moments, it is desirable to utilize the following
relation:

(SM1.28) €TREt = 6,30kt — 6;u0ks-
Then, using (SM1.12) and (SM1.28), we derive that
(SM1.29)
(m1gmaj — maimyy)(Mmyms)g
1 ..
= §€”sm3s(m1km21 + marma)

ijs 1 1
=€ ((mlQOS)kls + 6m1k(m21m3s — MayMag) + 6m2l(m1km33 — M3KMis)

1 1
+ 6m2k(mllm38 — mgimis) + émll(m2km3s - m3kmzs))
. 1
Ist Kt It kst
= €7’ ((m1m2m3)kls + 6<m1km1t€ Tt mgymag €™ + mopmaoe™” + mymyge”® ))

. 1
= €7°(mimoms) s + 6 (mlkmlt(5it6jl — 0:01) + moymia 8k 01 — 0itdik)

+ maogmar (641056 — 0i051) + mumag (60, — 5ik5jt)>
o 1
= % (mumomy) s + ¢ (3((111%)0)”“ + B((mg)o)zjkl)'

In the above, we have encountered several symmetric traceless tensors. They have
the following relations.

(m3)o = —(m?)o — (m3)o,
(mfm3)y = —(m})o — (mim3)o,
(m3m3)y = —(m3)o — (mim3)o.

When averaged tensors are considered, the linear relations obtained above still hold.
Therefore, we only need to focus on the following tensors that are the linearly inde-
pendent:

<(m%mg)0>> <(m%m§)0>7 <(m§m§)0>7 <(m12)0>7 1=1,2,3.

SM1.3. Expression involving low-order tensors. When Q; = Qz(-o), we will
encounter a few terms only involving second-order tensors, which we provide alter-
native expressions below. They will be useful for matrix manipulations in the main
text, and the discussion afterwards.

Let us look into the last tensor in (SM3.2). Using the relation i = n? + n3 + n3,
we deduce that

20450k — 301051 — 30410
=2(nf + 03 + n3);;(n] + 03 + nj)w — 3(nf + 0 + n3)ix (0} + nj +nj);
—3(nf + 03 + nj)u(nf +n3 +n3);x
3
:2Zni®n%—42ni
a#pB a=1
— 12(111[12 Xning + ning ® nins + npns ® n2n3),
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where we have used the fact that nin, = 1(n; ® no + n» ® ny). The terms in the

second line are expressed linearly by s; ® s; We would also like to express the first
line in this form. Note that

o b1, 2 2
(SM1.30) ny— 3= §(2n1 —nj; —n3).

Thus, fitting with a term n? —i/3 in (SM1.30) yields

i i
—981 @81 = —9(nf - ) ®(nf - )

3 3
= — (2n] —n3 — n3) ® (2n] — n3 — n3)
(SM1.31) = —4n{+2(n{ ® (nj +n3) + (n3 + n3) ®n}) — (n3 + n3) ® (nj + n3).

Then the remaining terms are given by

— 4nj — 4n3 + 2(n) @ 03 + n3 @ n3) + (n3 + n3) © (nj + nj)

= -3(nZ —n2) @ (n3 —n?) = -3, Vsy.

Therefore, we arrive at

(SM1.32)
20,0k — 30,041 — 30;10j, = —981 @ 81 — 352 ® 83 — 12(S3 ® 53+ 84 @ 84 + S5 @ S5),

where the corresponding coordinate X3 is given by

-9 0
0 -3
X = —12
—-12
—12
We note that
s2 ® sy = (nj — n3) ® (n3 — n3)

Then A((n?)o). ., can be calculated as follows:

7kl

i i
A((m)o) 5, = +n3 +0d)ss(nf — 3+ (0 +-n +nd)s;(md — 7)

3 i 3 i
— (0] +n3 + n3)i (n% - §)jl — g+ 03+ 05) (n% - §>ik

3 i 3 i
- g0t nd e nda(nt - g) Tt g+ ad(af - g)
1
:g(@ng — 13— n2) ® (n? +nf + n)
+ (0?40 +n3) @ (207 ~ n3 — nd))

4 4 4
— (2n] —n5 —n3) — (njny ® NNy + NNz ® N1N3 — 2nNn3 @ Nong),
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where we have used the relation i = n? + n3 + n%. Using (SM1.31) and (SM1.33), we
get

1
5((2nf =3 —n3) ® (0} + 03+ n) + (0} + 0} + n3) © (207 — n — n3))

— (20} — nj — ny)
:é+%+( 2nf +n? @ (0 +n3) + (0 + n3) © n? — 2(n3 + n}) © (n3 + n}))

= 2 (0~ )+ (03— nd) © (0 — md)

S S + S Sa.
2 1 1 2 2 2

Consequently, we obtain

3 1
(SM1.34) A((n%)o)ijkl = 581081+ 582 @8y — (83 ®s3+ 54 @84 — 285 ® s5),

where the corresponding coordinate Xs is written by

_3
2

= O

0

I
\
—

X5

Next we deal with the term A (n3 n3) . Note that

3 3 i i
S(s1@s2 8o 051) = ((nf - )@ (03 —n}) + (0} — nd) © (n} - )

= —(nj —n3) + (n} ®n3 + n3 ®n}) — (n] ®n3 + n3 ®@nj).

Then, A(n3 — ng)ijkl can be calculated as

A(n —n3),,, = (0] + 03 +n3)u(nd —ni); + (nf + 03 +n3);;(n3 —n3)u
- Z(nf + 105+ n3)(n3 —n3); — i(nf + 103 +n3) (05 — n3)i
3 3
- z(nf + 13 + n3);(n3 —n3) — i(nf + 103 +n3) (03 — n3)y
=2(n; — n3) + (nj ®nj + nj @nj) — (0] @nj +nj @nj)
— 3(n‘2L — ng +nin, ®ning —ning ® n1n3)
3 i i
=2 ((n2-3) ® 3 —n})+ @ -nd e (nf-3))
— 3(1’111’12 X ning — njns (024] 1’11113)
3
(SM135) :7(51 ®52+52®Sl) —3(83@53—54@54),

2
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where the corresponding coordinate X3 is written by

viw O
S Nlw

X3

I
\
w

0

SM2. Closure approximation: Theorem 3.3. We discuss Theorem 3.3 that
recognizes the form of high-order tensors. Theorem 3.3 is stated for the original
entropy and the quasi-entropy. So we need to consider them separately.

Theorem 3.3 is actually a special case in previous works: for the original entropy,
it is a special case of Theorem 5.2 in [SM2]; for quasi-entropy, it is a special case
of Theorem 4.8 in [SM3]|. Nevertheless, both of them were shown for general cases
of symmetry and the explicit form (3.22) is not provided. For this reason, we shall
explain how those theorems are applied to the current work to obtain Theorem 3.3,
and at places show some results.

SM2.1. Original entropy. We first discuss the closure by the original entropy.
The following result has been shown in Appendix in [SM4].

LEMMA SM2.1. If s;,b; satisfy (3.20), then there exists a unique density function

1
pa) = - exp > Aij(miny)? ],

i,j=1,2

such that {(m?)g) = s;(n?)o + b;(n3 — n3). It minimizes fSO(B) plnpdq when @Q; is
fized.

Recall that ¢ = (m;,my, m3) and p = (n,ns,n3). The density function satisfies
p(pbrpTq) = p(q) for k = 1,2,3. This can be seen by noticing that m; - n; is the
(4,1) element of p”q. Thus, when q is replaced by pbxp?q, the dot product m, - n;
becomes the (j,) element of p7 (pbrp”?q) = brpTq = (pb})Tq. It suffices to notice the
equalities like pb? = (n;, —na, —n3).

By Theorem 5.2 in [SM2] and the related discussions before the theorem, when
an nth-order symmetric traceless tensor is calculated from the density function above,
it could be expressed as W (p) for some W € AZ2". Using the decomposition written
down in (SM1.1), we arrive at the expression in Theorem 3.3.

The positive-definiteness of the averaged tensors R; in (4.1) is obvious because
they are calculated from a positive density function.

SM2.2. Quasi-entropy. To illustrate some ideas, let us start from the second-
order quasi-entropy Z. Denote by r; the vector formed by 1 and m;-n;, 1 <4,5 <3,
which is a 10 x 1 vector. For a first-order tensor U, we define a row vector as

®1(U); = (U -my).
For a second-order tensor U, we define a matrix as

(SM21) \IIQ(U)ij = (U ‘n; ® Ilj).
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The general second-order quasi-entropy, denoted by Eg, is defined as the minus log-
determinant of the second moment of ry (hereafter we omit the free parameter v
introduced in (3.17)),

(SM2.2)
25 = — Indet(rr?)
1 @1 ((my)) @ ((my2)) ®;((m3))
C lndet | 2r((ma)T s ((mi)) Uy ((my @ my))  Wy((my @ ms))
®((mg))”  Wy((my ® my)) Wy ((m3)) Vs ((mg ® m3))
P ((m3))" Vy((mz @ my)) Vy((mz ® my)) Uy ((m3))

In [SM3], the second moment of r; is replaced by the covariance matrix of the 9 x 1
vector formed by the last nine components of r;. It can be seen that these two
formulations are equivalent.

Here, we need to emphasize that the notation (-) does not assume that they are
averaged by certain positive density function, but only implies that the tensors obey
linear relations such as what we have obtained in Appendix SM1.2. For second-order
tensors not symmetric, we express them using symmetric traceless tensors, such as
(m; ® ma);; = (Myms);; + €7%(m3);. Thus, =5 is a function of symmetric traceless
tensors up to second order. If we choose a basis of symmetric traceless tensors, their
‘average’ are independent variables in Z.

Now, for our problem, the tensors specified are Q1 and @2, which determine
(mi) = Qi +1/3, (m3) = Q2 +i/3, (m3) = —Q1 — Q2 + /3. To obtain the quasi-
entropy =2 about ()7 and @2 only, we shall minimize =, with Q1 and Q- fixed. At
the minimizer many tensors vanish, because we have the following lemma.

LEMMA SM2.2. For a symmetric positive-definite matriz K, suppose that it is
given in blocks as

K A
sz ke (54

Then we have
(SM2.4) det K < det K; det Ko.

The equality holds if and only if A = 0.

Notice that off-diagonal blocks are functions of (m;) and (m;m;) for ¢ # j, which
are independent of @; and Q). Using this lemma, we immediately deduce that the
minimizer is attained when all the off-diagonal blocks are zero. In this way, we obtain
the quasi-entropy Zs in (3.17).

It is worthy noting that for Q1 and Qa, m? —i/3 and m3 — i/3 are invariant
under Z,. On the other hand, the off-diagonal blocks vanish when averaged over %5,
since in these blocks the times of m;, my, m3 appearing are not all odd or not all
even. This result actually holds for quasi-entropy up to arbitrary order, as indicated
by Theorem 4.8 in [SM3].

The ideas above are also useful when discussing the fourth-order quasi-entropy
Z4. Denote by ry the vector formed by 1, m;-n;, 1 <4¢,5 <3and S;-s; 1 <4,5 <5,
which has the size 35 x 1. The fourth-order quasi-entropy is defined as the minus
log-determinant of (ror2). It is a function of symmetric traceless tensors up to fourth
order.
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The closure approximation minimizes the quasi-entropy with @; and Qs fixed.
Still, if the times of m;, my, mg are not all odd or not all even, then the tensor
vanishes when averaged over %5. Theorem 4.8 in [SM3] guarantees that when seeking
the minimizer with @1 and Q> fixed, these tensors are zero. After setting these tensors
as zero in the quasi-entropy, we could get a reduced expression, which we write down

below.
For a second-order tensor U, we define a 1 x 5 row vector as

®,(U); = (U - s;).
For a third-order tensor U, we define a 3 X 5 matrix,
U3(U);; = (U-n; ®s;).
For a fourth order tensor U, we define a 5 x 5 matrix,
Uy(U)ij = (U -s; ®sj).

The reduced quasi-entropy is given by

(SM2.5)
=y =
‘1’2(<m§ ) ®2((m3 — m3))
lndet( )T (i -y emi-3)  w(((mf-md) e mi-g))
% % T wa(((m3 —m3) ® (mf - §))" Va(((m3 —m3) ® (m3 —m3)))

i rammam)

U3 (m1 ® m2m3)) U4 ((mam3 ® maoms))
lndet< ¥3({m2 ® mims)) )

U3((m2 ® m1m3))T V4((mym3 ® mims))

In det < V2 ((m3)) ¥3({ms ® mimz)) )
U3((mz @ mima2))T  u((mimo @ mymy)) )

The first matrix is 11 x 11, while the other three are 8 x 8. The blocks can be
expressed by symmetric traceless tensors as we have calculated in Appendix SM1.2.

The quasi-entropy Z4 is defined on the domain such that the four matrices in =24
are positive definite. Thus, we conclude that if the high-order tensors are calculated
from the constrained minimization of Zy4, the tensors R; in (4.4) are positive definite
in the sense of (4.10). This is because that many of R1, R3, R4, Rs are diagonal blocks
of 24, and for Ry we use (SM1.23).

Now, let us assume that @; has the biaxial form (3.18). First, we claim that
the domain of quasi-entropy Z4 is not empty when s;,b; are fixed with the conditions
(3.20). This is because that the high-order tensors calculated from any positive density
function must make the covariance matrix positive definite. Such a density function
exists because of Lemma SM2.1.

We are now ready to show Theorem 3.3. By (SM1.25)-(SM1.27), (SM1.32),
(SM1.34) and (SM1.35), the zeroth- and second-order tensors could fill the following
entries in the quasi-entropy. In the 11 x 11 matrix, they are labelled as
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(SM2.6) * *

* *

In the three 8 x 8 matrices, they are labelled as

* *

(SM2.7)

* *

The third-order and fourth-order symmetric traceless tensors are expressed by the
bases,

(mymym3) = zninyng + 25 (03)g + 25(n3ny)g + 25(nin3)o
+ 24 (n3)o + z5(nfnz)o + z5(n3n3)o,
((m})o) = ar(n})o + az(n3)o + az(nin3)o

+ as(nfny)o + as(nins)o + ag(ninans)o

+ az(nyn3)g + ag(nininsz)g + ag(nins)o,
((m3)o) = @1(n7)o + az(n3)o + dz(nin3)o

+ as(niny)o + ds(ninz)o + dg(ningns)o

+ ar(n1n3)o + as(nin3ng)o + dg(ning)o,
((mfm3)o) = a@1(n})o + as(n3)o + az(nin3)o

+ ay(n3ny)g + as(nsnsz)o + ag(nngns)g

(SM2.8) + a7(n1n2) + ag(n1n2n3)0 + ag (n§n3)0

Using (SM1.3)—(SM1.6), the terms a;, a;,a; for ¢ = 1,2,3 and z contribute only to
the starred entries, while the terms z; and aj,a;,a; for 4 < j < 9 contribute only
to the non-starred entries. Meanwhile, as long as the starred entries form a positive
definite matrix, the determinant reaches its unique maximum when the non-starred
entries are zero. This can be observed by rearranging the rows and columns of the
four matrices in Z4. In the 11 x 11 matrix, we group the indices as {1, 2, 3,7, 8}, {4, 9},
{5,10} and {6,11}. In the three 8 x 8 matrices, we group the indices as {1, 8}, {2, 7},
{3,6}, {4,5}. After rearrangement, these matrices become block diagonal. Thus, the
determinant must be no less than that the off-diagonal blocks are zero. Therefore, at
the minimizer of =4 we must have 2z, =0 and a; =a;, =a; =0,i=4,---,9.
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SM3. Explicit expression with biaxial @;. Next, we calculate the blocks in
(SM2.2) when the tensors take (3.22). They also give the matrices in Section 4.3.

Using (3.22) and the average of (SM1.14) with respect to the density function,
we derive that

(mymo @ mims);jk

1
*A(QEO) + QéO))ijkl

= (&1(n411)0 + az(n3)o + ‘_13(11%“%)0)@1@1 -

7
1
— @(2%51@1 — 30105 — 30410,%)
_ _ _ 1
= (@ (nf)o + a2(nd)o + as(nfnd)o) y, — = (51 +s2)A((@o)
1
(SM?)].) + (bl + bQ)A(l’lg — ng)ijkl) — %(2(5”5]@1 — 35ik5jl — 35zl5]k)

From here, we can see that we shall need to express the six tensors below in the basis
of s; ® s,
(SM3.2)
20i0k — 30051 — 30adjk, A((01)o) 5y A(03 —n3), ). (7)o, (n3)o, (nin3)o.
Actually, we will see that they only have the following terms:
S1 ®s1, S1®sS2, S2®sS1, S2&82, S3®S3, S4&84, 85X Ss5.

The first three tensors in (SM3.2) have been discussed in Appendix SM1.3. In what
follows, we calculate the other three tensors.
For the calculation of the term (n})o, employing (SM1.33) and the following

equality

3
(SM3.3) 2Zni®n%f42ni27951®sl7352®SQ,
a#B a=1
we deduce that
(SM3.4)
6 5. 3.
(n})o =nj — ?nft + £12

1
4
=0 — - (nlin1j5kl + n1in1kd 1 + NN dik + N1N1kdiy + NNl + nlkﬂ1l5ij>

1
+ %(&jékl + 5ik5jl + 5i15jk)

1
== (nt - (m}@n}+njeni +nfon}+nfon)

— 4(111112 Xniny +ning ® n1n3))
1 3
2 2 4
—|—35(Zna®n5+32na+4(n1ng®n1ng
B a=1
+ning ®nng +nn3 & n2n3)>

18 ®s1 + ! ® 16( ®s3 + 5S4 ®84) + 1 &
=5 @81+ -5 sy — - (53083 +85,®s —s5®s
351 @81+ 38 @8 — (83 @83+ 81 ®8y) + 5285 @ s,



SUPPLEMENTARY MATERIALS: BIAXIAL FRAME HYDRODYNAMICS SM17

where the corresponding matrix X, is given by

18
= 0
0 5
X, = 18
_16
35
4
35
Similarly, from (SM3.3) and (SM1.33), we derive that

(SM3.5)

6 . 3.
(n3)o =nj — ?ngl + £12

g 1
=n; -~ N2iN2;0k1 + N2iNakbj + NNk + NajNak b + Nojnedik + n2kn2l5ij>

1
+ %(&jékl + 5ik5jl + 5il§jk)

—

=*( 3 — (nf ®n3 +nj ®n} +nj ®n3 +n3 ®n3)

EN|

— 4(111112 X nins +nsong ® n2n3))

3
—l—315<z:ni<§§n%—i—i’»az_:lnf¥

aFf

—|— 4(n1n2 ® ninyg —|— ning ® ning —|— nsns ® I121'13)>
= s @8+ sy @ S (5108 5 @8)
T4t TSI T g R T gt TR e

10 (o5 @55 1 55 @ 85) + 54 ®
35 S3 @ 83 + S5 X S5 3554 S4,

where the corresponding matrix X5 is given by

2t _ 3
140 28
_3 19
28 140
_ 16
X5 = —38
4
35
16
35

We may now proceed to deal with the term (n?n3)g. Analogously, we have

1 . 1,
(3n)o =nnd — L(0F + nd)i+ ¢
1

6 (nlﬂlljnzknzl + N13N2N1xN21 + N1iN2N2KEN 1]

+ n2inyjnigno; + nainijnakni + n2m2jn1knu)
1

— E (nlinljékl + nlinlkdjl
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+ n1nudje + nijnagds + nyjnadix + nlk”ll%‘)
1
42

+ N2iNoi0jk + Nojnokbs + NajNadik + n%”m@‘j)
1
105

1
- 6(n% ®n3 +1nj @n} +4nin; @ niny)

(nzin2j5kl + n2iNakdj

+ (6:50kt + Oidji + 0iudjn,)

=+ 4(111112 ® nins —+ Nonsg ® Il2113)>
1 3
2 2 4
*m(Zna®na+3Zna
a#B a=1
+ 4(111112 Xnin, +ning ®nin3 + nong @ n2n3)>

9 1 3
= — —S1®81 — =52 @82+ —=(S1 @S2+ 82 Q81)

35 70 28
(SM3.6) +18 ® 2( ® S4 + 85 ® S5)
. —83R83— — (8484 +85R8
3553 @83 = 31 (84 &84+ 85 ©85),
where the corresponding matrix Xg is given by
_9 3
35 28
3 _ 1
28 70
Xo = 18
_2
35
_2
35
A direct calculation leads to
) . 3
(SM3.7) e”t(nlngng)jkt + €]kt<n1n2n3>ilt = 5(51 ® s2 — 82 ®81),

where the associated coefficient matrix II is given by

0

3
2
0

[SI[9)

(SM3.8) = 0
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Based on the above calculations, we immediately give the expressions of REO)(i =
1,---,6) under the basis s, ®s;. Using (3.22) and the averages of (SM1.9) with respect
to the density function, we deduce that

o _ 2 L. 2 1.
Ri’ = <(m1 31) ® (ml 31)>ijkl
4 0 1
=((m7)o) ;. — ﬁ,zt(Qg D) g = 15 (205308 — 30850 — 30adj).
In the light of Theorem 3.3, and from (SM1.32), (SM3.4)-(SM3.6), we deduce that
4
0
Rg ) :al(n%)o + CLQ(I’I%)Q + ag(n%ng)o — ﬁ (SlA((n%)o)ijkl + b1./4(11§ — ng)ijk:l)
1
(SM3.9) - £(26ij5kl — 305051 — 30:1051),
for which the matrix R; is written as
1 4
X1 — — (1 X2+ b1 X3) + a1 X4 + a2 X5 + a3Xs.

45 21
Similarly, for RS, it follows that

0 =t -4) = (wi-1)

4 1
= <(m%)()> — ﬁA( go)) - 4*5(251']'5]@[ — 35ik§jl — 3§il(sjk)

(SM3.10) Ry =

4
=a1(n})o + @2(n3)o + az(nfng)o — —— (32“4((“?)0)151&1 + by A(n3 — ng)ijkl)

21
(SM3.11)
1
— 15(25@5;@1 — 30051 — 300jk),
for which the matrix Ry is written as
1 4
(SM3.12) Ry = _EXI — ﬁ(SQXQ + b2 X3) + a1 X4 + a2 X5 + asXs.

Combining (SM3.1) with (SM3.4)-(SM3.6), the tensor Réo) is expressed by

4
RS =4(a (nd)o + az(nd)o + as(nind)o), ,, — = (51 + s2)A((03)o),

7
(SM3.13) 4 (b +b)A(n3 ) ) - %(zaij(skl 36080 — 30udin),
for which the matrix Rj3 is denoted by
(SM3.14)
R3 = _%Xl - é((51 + 82) X + (b1 4 b2) X3) + 4(a1 X4 + @2 X5 + a3 Xe).

7

Analogously, the tensor moment Rz(lo) can be expressed by
Rio) = — 4((&1 + dl)(néll)o + (az + @2)(113)0 + (a3 + @3)(11%11%)0)
(SM3.15)
+ (2 ),y + b2A(n3 — n3) L (261,00 — 36,0, — 3645,
? S92 ((nl)O ijkl 2 (Il2 ns ijkl ﬁ( 35 Okl A il jk)v

ijkl
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for which the matrix R4 is denoted by

4 _
Ry=——X1+ =(s2X2 + b2X3) — 4((a1 4 @1) X4 + (a2 + a2) X5 + (a3 + a3) Xe).
In the same way, we obtain

RE = —4((@ + @) (nd)o + (a2 + a2)(nd)o + (ds + @3)<n?n3)0)ijkl
(SM3.17)

4 1
+ = (81.»4((11?)0)”“ + b1 A(n3 — n?,),.jkl) - ﬁ(Zdij5kl — 301051 — 30:10;%),

for which the matrix R5 is denoted as

(SM3.18)
R; —1—15X1 + %(SlXQ +b1X3) — 4((ar + a1) X4 + (a2 + a2) X5 + (as + a3) Xe).
By
(m3)o = (m7)o + (m3)o + 2(mim3)y, (mM3m3)y = —(m3)o — (mfm3)o,

we derive from (SM1.19) that
Ro = {(m — m3) & (m3 — m3)
= {(mi)o) + 4{(mi)o) + 4((mim)o) + 2A(Q")

1
_ T5(25ij5kl — 35ik5jl — 35il(5jk)

= (a1 +4a; +4a,)(n])o + (ag + 4as + 4as)(n3)o + (a3 + 4as + 4az)(n?ni),
(SM3.19)

4 1
+ ? (SlA((n%)o)ijkl + bl.A(n% — ng’)ijkl) — T5<25ij(5kl - 35ik6jl — 35il6jk)7
for which the matrix Rg is given by

1 4 - _
Rg = — 1—5X1 + ?(leg +01.X3) + (a1 +4a; +4a1) Xy
(SM320) + (ag + 4as + 4(12)X5 + (a3 + 4as + 4(13)X6.
We turn to the term ((m?)p ® (m3 — m3)). By (SM1.22), we have
S ={((m})o ® (m3 — m3))
= /" (mymymg)s + € (mymoms) g + 2((mm3)o) + ((m7)o)
4 )y, 8 (0)
+57AQT) + 57 A(R:7)
= Zejks (nlngng)ils =+ zells(nlngng)kjs

+ (a1 + 2&1)(11411)0 + ((12 + 2&2)(113)0 + (a3 + 2(_13)(1’1%113)0

4
(SM3:21)  + (51 4+ 252)A((nd)o) , + (b1 + 202)A(n3 = m3) ).
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where the coefficient matrix S is given by

4
S =zII + ﬁ ((81 + 282)X2 + (bl + 2b2)X3)

+ (a1 + 2a1) X4 + (a2 + 2a2) X5 + (a3 + 2a3) Xs.

We are now able to give the matrices M and P. By (4.3) and (4.5), the corre-
sponding coordinates M1, M12 and Moy are

(SM3.22) My =T9R4 +T3R3, My =—-13R3, Moy =I1R5+1'3R3,
(SM323) P :CC(122R1 + IHRQ + .[1161R3).

Using the expressions of R;, we arrive at (4.37)—(4.39) and (4.43).
The remaining part is to express averages of fourth-order antisymmetric traceless
tensors and third-order tensors. From (SM1.29), we deduce that

(SM3.24)
<(m1im2j - m2im1j)(m1m2)k1>

3 1
= ze*(ninong) s + 5 (B( 50))”,“ + B( éO))ijkl)

3 1
= z€* (nnang)us + ¢ <(51 = 52)B((n1)o) 4, + (b1 — b2)B(m3 — n%)ijkl)

We would like to express the above tensors linearly by the three tensors below,

a;®s3=(n] ®ny —ny ®ny) @niny,
a®s; = (N3 ®n; —n; ®ng) ®ning,

a3 ®s5 = (N ® N3 — N3 ® Nz) @ Nang.

Direct calculations lead to

B((m)o) 5 = 5 ((2nf =03 = nd)u(n +n3 + nd),.
~ (202 — 3 — nd)y; (03 + nf + nd)
+ (207 — n3 — n3);(n] + n3 + n3);;,

2

1

—nj —n3);(n] +n3 + n?a)v:k)

:2(111 XN —ng ® 1’11) Xning + 2(111 ®nzg —ns® 1’11) ®Xning

(SM325) = 2(31 (9 S3 — ag ® S4),
B(n3—n3),,,, = (03 — n3),,(n? +n +n2); — (n3 — ), (0 +n3 + )y

+ (03 — n3),,(nf + n3 +n3);x — (03 —n3),.(n] + 03 +n3),

=—2(n;®ny —ny ®n;) @niny +2(n; ® N3 — N3 ®nNp) @NinNg
=+ 4(n2 X ns —ns & ng) & nonjs
(SM326) = — 2(31 ® S3 + ao ® S4) + 4a3 X S5.

By virtue of the definition of symmetric tensors and (SM1.12), it follows that
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(SM3.27)

€% (n1nang) ks

1 .
= 66”5 (nlkn2ln35 + NoEN3iNLs + N3EN1N2s + N1EN3N2s + NopN1N3s + nsknzlms)

1
= 6 ((mmzj - n2in1j)n1kn2l + (n2in3j - nSian)nanSZ + (n?n'nlj - nlin?)j)n{}knll

+ (nginy; — niing;)nigns; + (n1ngj — noinj)nogny + (neing; — n3in2j)n3kn2l)

1
:g(a1®S3+a2®S4+a3®s5).

Rotation of the indices leads to

- 1

(SM328) e]”(nlngng)ksl = — g(al ®S3t+ax®¥ss+az® S5),
o 1

(SM3.29) e”s(nlngng)skl = 5(31 ®sS3t+as®ss+az3® S5).

Analogous to the derivation of (SM3.24), it holds
(SM3.30)
((mumsj - m3im1j)(m1m3)kl>
1 (0) (0)
= z€ (n1n2n3)l~csl + 6 (QB(Ql )ijkl - B(QZ )ijkl)
g 1
=z (ninong) e + 5 ((281 + 52)3((11%)0)1'3'1@1 + (2b1 + b2)B(n3 — n%)ijkl),
(SM3.31)
<(m21'm3j - m3im2j)(m2m3)k,l>

ijs 1
= ze”* (nimgng) s + 6 (B(Qg()))ijkl - QB(QEO))MM)

- 1
= Zeljs(n1n2n3)sk[ + 6 ((81 + 252)5’((n§)0)ijkl + (bl + 2b2)B(1’1§ — ng’)ijkl)'

Therefore, taking advantage of the definition of Nc(gol) and combining (SM3.13)
and (SM3.15) with (SM3.24)—(SM3.28) and (SM3.31), and using 1 — e; — ez = 0, we
deduce that

(SM3.32)
1 1 z
/\/’(01) = 5724(10) + 5(61 — eg)RéO) — §(a1 ®s3+as®sy+agQss)
+ (e1 + 62)%(31 ® 83+ az @84 + a3z @ s5)
1
+ 6 ((281 + 82)8((1’1?)0)”,“ + (2b1 + bg)B(n% — ng)ijkl)
1
+ (e1 + 62)6 ((31 — @)B((H?)o)ijkl + (b1 — b2)B(n3 — ng)ijkl)
NGO, ©
= 57?,4 + 5(61 - 62)R3 + (81 - bl)a1 ® 83 — (81 + b1>ag ® s4 + 2bjaz ® s5.

Similarly, combining (SM3.13) and (SM3.17) with (SM3.24)-(SM3.27), (SM3.29) and
(SM3), then we have
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(SM3.33)
1

0 10 0 2
N(z)zﬁRé)+§(€2—€1)Rg)+§

z
—(e1 +€2)§(al ®s83+az sy +ag®ss)

(a; ®s3 +ay ®sy +az @ ss)

+ 1((31 +252)B((03)o),, + (b1 +262)B(n3 — ) )

6
1
— (61 + 62)6 ((81 — @)B((Hf)o)ijkl + (bl — bg)B(ng — nﬁ)ijkl)
1 1
= 5725—)0) + 5(62 — 61)R§0) + (82 — bg)a1 ® S3 — (Sg + bg)aQ ® 84 + 2bsasg ® ss.

The equations (4.40)—(4.42) then come from (SM3.32) and (SM3.33).
Finally, we deal with the third-order tensors. By a direct calculation, we get

(ninong)j, = 6 (nli(n2jn3k + nzjnak) + noi(nijngk + ngjnik)
+ nzi(ninog + n2jn1k))

1
:g(n1®s5—|—n2®s4—|—n3®53).
Meanwhile, we also easily deduce that

Gijs((n%)o)ks + ¢'ks ((lﬂ%)o)j5 = (naingj — n3inaj )Nk + (N2iNsk — N3iNak )N
=2(ny ® s4 — n3 ® s3),
e”'s(n% - nﬁ)ks + €iks(n§ — n%)js =nog(nzini; — n1inz;) — Nak(N1ng; — Noinij)
+ ngj(nginie — niingk) — ngj(N1iNek — N2iNik)

22(113@53—2111 ®55+H2®S4)~

Hence, by using (SM1.25), we derive from Theorem 3.3 that

(my @ mamg) g = (mymzma)i + 5 (¢9°((m)o) — (m3)o)),,
e ((m3)o) — (md)o),,)
= =(mmomg)ign — ¢ (77 (Q1 +2087) , + (@ +201") )
= z(ningng)ijr — é(sl + 282)(6”5((11?)0)“ + eiks((n%)o)js)

!
6

1 1
25(24-2()1 +4b2)1’11 ® sy + 5(2’ — 81 — 289 — by — 2b2)1’12 X S84

(by + 2by) (eijs(ng —n3)s + € (n — ni)js)

1
(SM334) + g(z + 81 4 282 — by — 2b2)n3 ® s3,
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for which the coefficient matrix 77 under the basis n; ® s; is given by

0 0 0 0 (2 + 2b1 + 4b)
(oo 0 3z — 51— 257 0
(SM3.35) Ty = by — 2by)
0 0 %(z + 51 + 289 0 0
—by — 2b)

Following the same procedure, we obtain

(my ® mymg);jp = (Mymomsz)jx + %(Eijs(«mf)o) — ((m3)o)),.

+ € ((m2)o) — (m3)o)) , )
=z(nynon3)ijk + é(%l + s2) (€ijs((n%)o)ks + €iks((n%)0)js>
+ é(zbl + bz)(eijs(ng —n3)ks + € (n3 - n§)js)
= %(z —4b; — 2b9)n; ® 85 + %(z + 281 + 82+ 2b1 + ba)ng @ 84
(SM3.36) + é(z — 281 — 89+ 2b; + by)n3 ® s3,
(m3 ® mymy);jp = (Mymomsz)jx + %(6ijs(<(mg)o> — ((m})o)),,
+ e ((m3)o) — (o),

= z(n1n2n3)ijk — é(Sl — 82) (eijs((n%)o)ks + eiks((n%)o)js)

1 . )
= (b= b) (7 (3 — m)i + € (0] — ) )
1 1
= g(z + 2b1 — 2b2)n1 X S5 + g(z — 81 + 89 — bl + bg)l’lg X 84
1
(SM3.37) +3(z s =52 — b1+ b2)ns @ s,

where the associated coefficient matrices To,T5 in (SM3.36) and (SM3.37) can be
written as

0 0 0 0 $(z — 4by — 2by)
o o 0 3(z+ 251 + 52 0
(SM3.38) T = +20; + by) ’
0 0 2(z—2s1—s2 0 0
+2b1 + bg)
0 0 0 0 (2 + 2by — 2b)
0 0 0 %(z — 81 + s9 0
(SM3.39) T3 = b1+ by)
0 0 %(Z + 81 — 8o 0 0

—by + ba)
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Define

(SM3.40)
w! = (54,04,0,0,0), i =1,2,
(1 1 1
Wi = d1ag<3(231 +1), g(l —s1) + b, 5(1 —s1) — b1>7

. 1 1 1
WQ = dlag<3(252 =+ 1), g(l — 52) + b27 5(1 — 32) — b2>7

1 1 1
W3 = d1ag<3(1 — 281 — 282), 5(1 4+ $51 —|—82) — by — by, 5(14—81 —|—82) + b —|—b2>

Then, the quasi-entropy =4 can be reduced to

E4,Bi = —Indet A w1 R1 S A
2wy + wq ST Rg A

1 w 2wg + wq T
[eu ) -
= —Indet w1 R, S — Indet
T Rs
2wy +wy; ST Rg

(SM3.41)

W2 T2 W3 T3
— Indet — Indet — 10Indet A.
TF Ry T Rs

The expressions of R;, S, T; can all be found above.

SM4. The uniaxial case: Theorem 5.1. Assume that Q); are uniaxial, i.e.
b; = 0 so that
Q4*5»<n271) i=1,2
1 T 1 1 3 bl - K N
By (3.20), we require that the two scalars s; satisfy

1
(SM41) — 5 < 81, S2, — 81— 82 < 1.

For the original entropy, the discussion is similar to the biaxial case.
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LEMMA SM4.1. If s; satisfy (SM4.1), then there exists a unique density function

1
p= 2 exp Z )\,-(mi : n1)2
1=1,2
such that {(m?)g) = s;(n?)o.

We omit the rest of the derivation since it is the same as the biaxial case.
We turn to the quasi-entropy. Here, we need to notice that

3
0 3
3
= 0
" 4 def 1
(SM4.2) 2Xe+ Xy = = = Xg,
4
7
0
0
0 1
(SM4.3) 8Xg + 8X5 4+ Xy = 0 def xr.
0
—4
Let us define
al=a 1a+a a’—la a—l(a az)
1 — @1 23 827 2_82; 3_23 2)5
T T
a; = ax 2&3 8a27 a9 = 8a2; az = 9 az — az),
a)=a la +§a a’—la a—l(a as)
1 =01 = 503+ 2hp, Gy = 2z, a3 = (a3 — Ga).

It can be verified that
a1 Xy + as X5 + a3 Xeg = a&X4 + a’zXé + aéXé

In what follows, we show that when (); are uniaxial, 24 p; reaches its minimum
only when a), =ay =a, =ay =a,=a4, =2z =0.

Let us discuss each of the log-determinant in (SM3.41). We could rearrange the
indices to arriave at

1 wi 2wy +wy)T
— Indet w1 R S
2wy +w; ST Rg
1 (81,281 + s2) 01x2
= —Indet | (51,251 +s2)T T, 13—4@3 — 211
02x1 %@34-21_[1 Ty + 09

4 4
(SM4.4) —Indet(Y3 + ?93) —Indet(Y3 — ?@3) —Indet(4Ty — 405),
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where the blocks Y;, ©; and II; are given by

T 1y2g %a’l —2(sy + 255) + 1 (a] + 2a))
1= ) i :
—2( 51+252) 32 (ah +2a) %*%51+£(a1+4a3+4a3)
Ty = 15~ 2ot a0 Z(s1+ 282) + 35 (a) + 2a))
21 s1+ 2s9) + 35(al—|—2&’1) %+%31+%(a/1+4&’1—|—4&’1)
T3 = 15+ 2181~ 5500 —5r(s1 + 259) — 32 (a) + 2a))
% s14252) — 53(a1 +231) 5 — 71— 530 +4a; +4a))
aby + 2a,
0 =
a2 + 2a2 Cl2 + 4a2 + 4a2
as + 2ak
@3 3 3
as + 2a3 al + 4as + 4aj

“1<—§ o)'

Notice that Y; does not depend on al, a}, @, for i = 2,3, and ©4, O3 only depend on
them.
By Lemma SM2.2, we deduce that

1 (s1,281 + $2) O1x2
— Indet (81, 281 + SQ)T T, %@3 — zII4
O2x1 205+ =1L Ty + 6,
1 §1,281 + s
(SM4.5) > _Indet . (51,261 + 52) ~Indet(Ts + Os).
(s1,281 + $2) T,

The equality holds if and only if z = 0 and ©3 = 0. In addition, it shall be noticed
that —Indet A is strictly convex about A (see, for example, Lemma 4.5 in [SM3] for
a proof). Therefore, we obtain

—Indet(YTs + O2) —Indet(4Yy —403) > —2Indet To — 21n4,
(SM4.6) ~Indet(Ts + g@g) ~ Indet(T; — %63) > _2Indet Ts.

The equalities hold if and only if O3 = O3 = 0.
Let us look into another log-determinant in (SM3.41). It follows that

Wy, T
—In det =
T R

&1

Wl

&2 —&3+ 32
&2 £3+ 32
g 3 —/
4 140
1 T & + 0 4
) §3+ 32 €6 + 7a5 .\
—{3+ 32 6 — 705

— Indet

W=



SM28 SIRUI LI AND JIE XU

In the above, those &; are given by

1 1 1
&= 5(281+1)’ 52:§(1_51), 3 = 5(51+282),
3 6 72
§a = 5 + ?(81 +s2) + £a’17
12 1
& = 5 ?(81 +s2) + %a'h
4 4 64
§6 = 5 + ?(81 + 89) — %all'
Since the function —Inx is monotonely decreasing and strictly convex, we have the
inequality
(et~ — 22) 2 (60— Bt (60— 1Y’
1 5 3 9 2 6 7 2 3 3
4, 1 2 ., 3, 2
—Inf{& §6+?a2 - §3+§Z —In| & (& +ag) — 1%
—/ 47, 9 2
> —In(& (48 —4ag)) —In { & (&6 — 702 ) — &+ 5532

—In (52 (fa + Z;@é) —& - 5532> —1In(& (& +az))
=—In& —Inéy —1In4
—In(& —as) —In (& + as)

SICICEEAREFE S BN CICEE=A)
(SM4.7) > —In& —In& —Ind — 2In&s — 21n (&6 — &5) -

The equalities hold if and only if @) = a5 = z = 0.

Similarly, we could deal with the other two log-determinants in (SM3.41). Sum-
marizing (SM4.5), (SM4.6) and (SM4.7), we conclude that when @; are uniaxial, at
the minimizer we must have a5 = ay = a4 = a4 = ah = as =z = 0.

SM5. The orientational elasticity. For the readers’ convenience, we present
the orientational elasticity for the biaxial nematic phases that can be found in [SM5],
where the elasitic constants expressed the coefficients in the molecular-theory-based
static @-tensor model. In addition, the variational derivatives with respect to the
orthonomal frame p = (n,ns, n3) are derived.

We first write down an equivalent formulation of (4.44). Using the following
relations

V-ny = —D3; + D3, ny -V xng = D33 + Dy,

ns -V X ng = —Dog, ny -V xng =—Doq,
Ny x V xngl? = (n; -V xny)? + (n3-V x ny)?,
together with (4.44) yields that the equivalent expression analogous to the Oseen-
Frank energy can be given by
Fpi(p) 1

ckgT /d”” §(K1<V ‘ny)” + Kp(ny -V xng)? + Ka(ng x V xng)?
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+ K4(V . n2)2 + K5(Il2 -V x Il2)2 + Kﬁ(n2 x V X n2)2
+ K7(V . 1’13)2 + Kg(l’lg -V x 1’13)2 + Kg(ng x V x 1’13)2
(SM51) + Klo(nl -V X 113)2 + Ku(ng -V x 111)2 + K12(n3 -V x n2)2),

where the elastic coefficients K;(i = 1,---,12) can be expressed by K;;ni(4,7,k,1 =
1,2,3) (see [SM1] for details). In the above, we also neglect the surface terms (4.45).

The next task is to provide the biaxial elastic energy with the form (4.44) de-
rived from the molecular-theory-based static tensor model (3.2), where the elastic
coefficients K are expressed by molecular parameters. We refer to [SM5] for more
detailed discussion.

Assume that the minimizers of the bulk energy in (3.2) has the following biaxial
form:

1
Qo = (Sa + ba)n§ + 2ban§ — (gsa + boé>i7 a=1,2.
Then the corresponding derivative terms are calculated as

\VQQ|2 =2(sq + ba)2(8kn1i)2 + 8bi(8kn2i)2 + 8ba(8a + ba)n1ing;Okn1;Okna;,
8iQ110iQ2jk =2(s1 + b1)(52 + b2)(Binj)? + 8b1ba(Iin25)”
+4[bi(s2 + ba) + ba(s1 + b1)]n1n2k0in1k0ing;,
9iQaird;Qpjk = (Sa + ba)(sp + bs) (IV - m1[* + niyni;0inakdina)
+ 2[ba(35 +bs) +b(sq + ba)] ((V -1 )N1KN2; 05Nk
+ (V- m2)ninopdinay + ning;0inx0;nar)

+ 4babg (|V . Il2‘2 + Tlgianaingkaank).
From which and the elastic energy in (3.2) implies that

Fpi(p)
C]{ZBT

1
= /ng {Jl (&-nlj)Q + Jz(@ﬂlgjf + Jgnlingjaknljakngi
+ J4(|V . 111|2 + nlmlj[“)inlkajnlk) + J5(|V . 112|2 + ngmgj(“)ingkajngk)
(SM52) + JG((V . nl)nlkmjajngk + (V : ng)nlmgkamlk + n”ngjainlk@jngk)} ,

where the coeflicients J;(i = 1,--- ,6) are given by (4.47).
We need to express the derivative terms in (SM5.2) by the nine invariant Dys(\, § =
1,2, 3). For example, the following four terms can be respectively expressed as

(9in17)? = 610:1,0kn1105m1
= (ngjnar + n3jngi) (Ninak + n2inok + N3inak)Oxn10ing
= (nlin2jn1kn2l + N2N2jN2kN2r + N3 N2;N3EN2L + N1N3jN1EN3]
+ noinginakna + nging nakns ) Oknyding
= Di3 + Di3 + D33 + Diy + Diy + D3,
8jn1j :51-]-3,%1]' = (ngingj + n3m3j)8mlj
= D32 — Dos3,
113M2;Ok1j0kN2; = 010ksN1iM210KM1 5 0s N

=ng;ng(N1kN1s + NarNas + Naknzs)n1in2 Ok 0sno;
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= (Tllknzjnmﬂu + nogngjnasni; + n3kn2jn3snli)3knljasn2i
= — (D} + D33 + D33),
nlinljainlkajnlk :5kln1in1jainllajn1k
= (nagnor + Narnar)niingj0iny0ny
= Di, + Dis.

While the remaining four terms can be similarly expressed as follows:

(0ing;)? = Di3 + D33 + D33 + D3, + D3, + D3y,
0jngj = D13 — D3,
anQjﬁmgkajngk = Dgl + D%g,

n13N2;0in1,0;nar = — D12 Da;.

Plugging the above eight relations into (SM5.2), we immediately obtain the biaxial
elastic energy (4.44), where the elastic coefficients K;;xi (¢, 7, k,1 = 1,2, 3), completely
determined by the molecular parameters, are given by (4.46).

Then, we calculate the variational derivative about the frame p, and derive the
variational derivative along the infinitesimal rotation round n;(i = 1,2,3). For in-
stance, the variational derivative along the infinitesimal rotation round n; is given
by

) )
nza% - n3a%7
where the operator ﬁ represents the variational derivative about nsg assuming that
nz is an independent vector (ignoring the constraints that nz -ng = 1 and n3 - n; =
ng-ng = O)
Therefore, the variational derivatives of the elastic energy (4.44) with respect to
the frame p can be respectively calculated as follows:

(SM5.3)
0FB;
oy = Ki111D11m2k0anzk — K22225k(D22n2kn3a) + K3333D3313,0k 24
+ K212 (D12n3k0an1k — Ox(D12n1knsa)) + Kas2z DasnokOknaa
— K32320k(D32nsknsa) + Kiz13D13n1% (026 + Oanok)
1
+ 5Kz (Da1ngkBanik — O (Dainiknsa))
1
+ §K2332 (DsanorOknae — Ok(D2snsrnsa))
1
+ §K1331D31n1k(3kn2a + Oanork),
(SM5.4)
0FBi
S K111 D111m150kn30 + K220 Doonsg0anag — K33330k(D3znsinia)

+ K2121 D125 (Okn3a + Oansk) + Kasos (Dagnikdanar — Ok (Dagnarnia))
+ K3131 D311310kn30 — K13130k(D13n18M104)

1
—+ §K1221D12n2k(6kn3a + Oansk)
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1

+ §K2332 (D32n1,0anok — Ok (Ds2nzrnia))
1
+ §K1331 (D13nskOknsa — Ok (Dsiniknia)),
(SM5.5)
0FBi
e K11110k(D11113020) + Ko200 D2onogOpnia + K333 D311, 0012k
+ K1212D 121110k 10 — K21210k (D21M2kM24 ) + K3232 D32n3k (O 10 + Oanik)
+ K131 (D31n2k0ansk — Ox(Ds1ngknaa))
1
+ §K1221<D21n1kakn1a — O (D12n2kn2a))
1
+ §K2332D23n3k(8kn1a + Oanir)
1
+ §K1331 (D13n2k0ansk — Ok (Disnsinaa)).
Using the variational derivatives (SM5.5) and (SM5), we have
0FpB; 0FpBi
n —-n
2c 5”304 3o 6n2a
= —K1111m2a 0k (D1111%120) — K2222 D22(D23 + D32)
+ K333 (D33 D23 + n3aOk(Dssnarnia)) — Ki212D12Dis
— K2121(D21D31 + 11200k (D21m2kn24)) + Ks232D32(D22 — Dsg)
— Ka323(D33 D23 — 1300k (Dagnarnia))
+ K131 (D31D21 — 1200k (D31m3knaa)) + Ki313n300k(D13n1knia)
1
- §K1221 (D21D13 + D12Ds1 4 noadk(Di2naknaa))
1
+ §K2332 (D23(Da2 — D33) — D3gDsa + n3a Ok (Daanaknia))
1
(SM5.6) + §K1331 (D13D21 — n240k(D13n3kn2a) + nsaak(Dslnlknla))-

Similarly, we have

0FB; 0FB;

onia e 0Nz

= K1111D11(D13 + D31) — K22220k (n2x D22) — K3333D33(D13 + D31)
+ Ki212 (D12D32 - 5k(n1kD12)) + (Ka121 — K2323) D23 Doy
— K332 (D12D32 + ak(”BkDSQ)) + Ki313D13(D33 — D11)

N3

1
— K3131D31(D11 — D33) + §K1221 (D21 D3z + D12Dag — O (n1iD21))
1

- §K2332 (D32Da1 + DagD1s + Ox(nsiDas))
1
(SM5.7) + §K1331(D31 + D13)(D33 — D11),
and
Fsi  6Fmi

Nia N2a
5n2a (5n1a
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= —K1111D11(D12 + Da1) + K2222D22(D12 + D21) — K33330k (n3xD33)
+ K2121 D21 (D11 — Da22) + Kaso3 (D23D13 - 5'k(n2kD23))
+ (K3232 — K3131) D31 D32 — K1313(D13Dag + O (n1xD1s))

1
— K1212D12(D22 — D11) + §K1221(D12 + D91)(D11 — D22)

1
+ §K2332 (D32D13 + DagDs1 — Ok (naieDsz))

1
(SM5.8) - §K1331 (D32D13 + DagDs1 + 0 (n1xDs1)).
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