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Abstract. Starting from a dynamic tensor model about two second-order tensors, we derive the
frame hydrodynamics for the biaxial nematic phase using the Hilbert expansion. The coefficients in
the frame model are derived from those in the tensor model. The energy dissipation of the tensor
model is maintained in the frame model. The model is reduced to the Ericksen--Leslie model if the
biaxial bulk energy minimum of the tensor model is reduced to a uniaxial one.
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1. Introduction. Liquid crystals are featured by local orientational order, typi-
cally originated from nonuniform orientational distribution of nonspherical rigid mol-
ecules. One case that many of us are familiar with is the uniaxial nematic phase
formed by rodlike molecules. For the uniaxial nematic phase, the local orientational
order can be described by a unit vector n. The hydrodynamics of liquid crystals then
involves dynamics of the vector n, for which the well-known Ericksen--Leslie theory is
proposed [8, 14]. The Ericksen--Leslie theory, as well as its variants, has been studied
extensively in both analysis [17, 34, 32, 18] and simulation [20, 6, 2, 31]. For a detailed
survey on modeling, analysis, and computation of liquid crystals, we refer to [33].

Constructed on the assumption of uniaxial local anisotropy, the Ericksen--Leslie
theory is opaque to the building blocks of liquid crystals. Although the elastic con-
stants can be related to experimental measurements, several other coefficients in the
hydrodynamics are difficult to obtain. This deficiency can be overcome by studying
the relation of the Ericksen--Leslie theory to molecular models about the orientation
density function [13, 7], or tensor models about a second-order tensor Q [11]. From
molecular models or tensor models, one could derive the Ericksen--Leslie theory with
its coefficients expressed by those in the molecular models or tensor models. Such
derivations are based on the fact that the minimum of the bulk energy must be uni-
axial [21, 9]. When the bulk energy dominates, the dynamics can be regarded as
constrained in the states such that the bulk energy takes its minimum, so that it re-
duces to a dynamics of vector field. The whole procedure is done through the Hilbert
expansion that has been shown rigorously [35, 16, 15, 36]. The advantage of such a
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1468 SIRUI LI AND JIE XU

procedure lies in the clear reflection of architecture of different axisymmetric molecules
in the Ericksen--Leslie model. For example, the uniaxial nematics formed by cylinder,
spheroid, hourglass, and spindle can be distinguished by the derived coefficients in
the Ericksen--Leslie model.

Local orientational orders other than the uniaxial type have also been considered,
of which the biaxial nematics is discussed more [30, 24, 1, 4]. Since the mesoscopic
symmetry is no longer axisymmetric, the form of elasticity and hydrodynamics of the
biaxial nematics are distinct from the uniaxial nematics, which has been discussed
earlier: Its orientational elasticity is written down in various forms that turn out
to be equivalent [28, 29]; biaxial hydrodynamics are also proposed [28, 22, 5, 27,
10] in different forms. Analysis has been carried out for a few simplified models
[19]. These works focus on the form of the model, in which many more coefficients
are involved. A couple of previous works attempt to relate the elastic constants to
molecular parameters [12, 44], while other coefficients in the hydrodynamics are yet
to be considered. In other words, biaxial hydrodynamics describing specific molecules
is still not established.

The main goal of this paper is to reveal the connection between the biaxial hydro-
dynamics and the molecular architecture. Specifically, we shall derive the coefficients
in the biaxial hydrodynamics from molecular parameters. In principle, the procedure
is analogous to what is done from a Q-tensor model for axisymmetric molecules to
the Ericksen--Leslie model for the uniaxial hydrodynamics. Nevertheless, there turns
out to be an essential distinction regardless of the starting point or the derivation,
which we explain below.

For the molecular architecture, it is necessary to consider nonaxisymmetric mol-
ecules, which is based on previous results. Experimentally, it has not been reported
that rodlike molecules can form biaxial nematics without imposing external forces.
Theoretically, as we have mentioned above, it has been shown that the bulk energy of
molecular-theory-based one-tensor models so far considered can only exhibit uniaxial
nematics [21, 9]. For the phenomenological Landau--de Gennes theories, the quar-
tic bulk energy only exhibits uniaxial nematics as well [25, 36], while higher-order
bulk energies do not have clear relations to molecular information. For this reason,
we consider the dynamic tensor model for bent-core molecules (and also star-shaped
molecules as their variants) established in [45]. The model has multiple tensors as
order parameters because the molecule has no axisymmetry, and is derived from mo-
lecular theory. Its free energy is constructed on molecular architecture by expanding
the pairwise molecular interaction kernel, established in [41], which has the biaxial
nematic phase as an energy minimum. The interaction between the molecule and the
fluid is also carefully derived from the molecular architecture. As a result, the form of
the dynamic tensor model is determined by molecular symmetry, with all the coeffi-
cients calculated from molecular parameters. In this sense, the molecular architecture
can be distinguished in the tensor model by the derived coefficients.

Rigorous analyses show that under certain coefficients, the stationary points of
the bulk energy can only be isotropic, uniaxial, or biaxial [42, 43, 38]. Although
further rigorous analysis is still not available, numerical studies indicate that we can
indeed find some coefficients such that the biaxial nematic phase is the bulk energy
minimum [30, 23, 42, 41, 38]. Therefore, we assume that it holds and use the Hilbert
expansion near this bulk energy minimum. The free energy in the tensor model is
rotationally invariant, which is an essential ingredient to be utilized in our derivation.
In particular, the rotational invariance of the bulk energy implies that its minimum, if
not isotropic, can be freely rotated. The biaxial nematic phase has its own symmetry
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1469

other than axisymmetry. When axisymmetry does not hold, the orientation of the
bulk energy minimum shall generally be described by an orthonormal frame, or an
element in SO(3). We would like to call it a ``frame model"" that gives the elasticity
and dynamics of the field of orthonormal frame.

Two key ingredients are needed to be dealt with in the Hilbert expansion.
When the tensors are constrained at the biaxial minimum, it actually gives a three-
dimensional manifold. We shall constrain the equations of tensors on this manifold
to obtain the evolution equation for the orthonormal frame field. The tangent space
of the manifold given by the bulk energy minimum gives a zero-eigenvalue subspace
of the Hessian of the bulk energy. This subspace is utilized to cancel the nonleading
terms in the Hilbert expansion, thus closing the system of the leading order. The
free energy about tensors can then be reduced to the orientational elasticity for
the biaxial nematic phase, with the elastic constants expressed as the coefficients
in the tensor model, which is exactly the results in [44].

Although the free energy can be reduced straightforwardly, we still need to handle
several high-order tensors, which call for a closure approximation to express them as
functions of the order parameter tensors. Intuitively, these high-order tensors shall be
consistent with the symmetry of the biaxial nematic phase, from which the form of
high-order tensors can be written down. This intuition can be made rigorously by the
closure through minimization of the entropy term. The entropy term can have two
choices. One is calculated from the density function of the maximum entropy state,
which we call the original entropy. The other is the quasi-entropy, an elementary
function of tensors, which maintains essential properties and underlying physics of
the original entropy [38]. No matter whether we choose the original entropy or the
quasi-entropy, their fine properties result in the particular form of high-order tensors
consistent with the symmetry of the biaxial nematic phase. From these symmetry ar-
guments, we could further arrive at alternative expressions of these high-order tensors
that are convenient for us to deduce the coefficients.

Using these properties, we could derive the frame model for the biaxial nematic
phase. Its form is actually determined by the symmetry of the biaxial nematic phase,
which is consistent with early works [10]. The coefficients, on the other hand, are
expressed as functions of the coefficients in the tensor model. We would like to em-
phasize again that since the coefficients in the tensor model are derived from physical
parameters, the frame model we obtain is connected to rigid molecules with certain
architecture. We shall show that the energy dissipation of the tensor model is main-
tained in the frame model. Furthermore, we will show that the biaxial hydrodynamics
can be reduced to the Ericksen--Leslie theory when the bulk energy has a uniaxial min-
imum. The corresponding coefficients are also derived, which turn out to be distinct
from those derived from the Q-tensor hydrodynamics for rodlike molecules. In other
words, combining the results in this paper and those in previous works [41, 45], for
bent-core molecules (and star-shaped molecules), we arrive at biaxial hydrodynamics
and also uniaxial dynamics of certain architecture (bending angle, length, thickness,
etc.) and under certain physical conditions (concentration, temperature, etc.).

Below, we begin by introducing some notations for orthonormal frames and ten-
sors in section 2. The tensor model is briefly described in section 3. Here, we also
claim essential properties of the entropy term, bulk energy minima, and high-order
tensors. The Hilbert expansion is carried out in section 4, from which we derive the
biaxial hydrodynamics. The biaxial hydrodynamics can be reduced to Ericksen--Leslie
theory if the bulk energy minimum becomes uniaxial, which is shown in section 5.
Concluding remarks are given in section 6. We also provide supplementary materials
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1470 SIRUI LI AND JIE XU

(bif suppm.pdf [local/web 446KB]), where detailed calculations and discussions on
high-order tensors are presented.

2. Preliminary. Let us introduce some notations for orthonormal frames and
tensors to be used subsequently. For the rigid molecules forming liquid crystalline
states, several essential quantities are defined through the orientational distribution.
The orientation of a single rigid molecule is described by an orthonormal, right-handed
frame (m1,m2,m3) fixed on the molecule. The axes of the frame are typically coin-
cident with symmetry axes of the molecule. Under a reference frame (e1,e2,e3), the
coordinates of the molecular frame can be expressed by

qij = ei \cdot mj , i, j = 1,2,3,

which define a 3\times 3 rotation matrix q\in SO(3).
In this paper, we also deal with fields of the orthonormal frame. To be distin-

guished from the molecular frame, we use the notation p = (n1,n2,n3) for a frame
field that is a function of the position x. The notations for ni are similar to those for
mi above.

Next, let us describe notations for tensors. An nth-order tensor U in \BbbR 3 can be
expressed as a linear combination of tensors generated by the axes of the reference
frame (e1,e2,e3), written as

U =Ui1...inei1 \otimes \cdot \cdot \cdot \otimes ein , i1, . . . , in \in \{ 1,2,3\} ,(2.1)

where Ui1...in are the coordinates of the tensor U . Hereafter, we adopt the Einstein
summation convention on repeated indices. For any two nth-order tensors U1 and U2,
the dot product U1 \cdot U2 is defined as

U1 \cdot U2 = (U1)i1...in(U2)i1...in .

A tensor can be symmetrized by calculating its permutational average,

Usym =
1

n!

\sum 
\sigma 

Ui\sigma (1)...i\sigma (n)
ei1 \otimes \cdot \cdot \cdot \otimes ein ,

where the summation is taken over all the permutations \sigma of \{ 1, . . . , n\} . If U =Usym,
we say that the tensor U is symmetric. For an nth-order symmetric tensor, we define
its trace as the contraction of two of its indices, giving an (n - 2)th-order symmetric
tensor,

(trU)i1...in - 2
=Ui1...in - 2kk.

If a symmetric tensor U satisfies trU = 0, then U is called a symmetric traceless
tensor. For any symmetric tensor U of the order n, there exists a unique symmetric
traceless tensor (U)0 of the form

(2.2) (U)0 =U  - (i\otimes W )sym,

where W is an (n - 2)th-order tensor (for the proof, see Proposition 3.2 in [37]). We
call (U)0 the symmetric traceless tensor generated by U .

It could be convenient to express symmetric traceless tensors by polynomials. The
basic monomial notation is defined as

mk1
1 mk2

2 mk3
3 il =

\left(  m1 \otimes \cdot \cdot \cdot \otimes m1\underbrace{}  \underbrace{}  
k1

\otimes m2 \otimes \cdot \cdot \cdot \otimes m2\underbrace{}  \underbrace{}  
k2

\otimes m3 \otimes \cdot \cdot \cdot \otimes m3\underbrace{}  \underbrace{}  
k3

\otimes i\otimes \cdot \cdot \cdot \otimes i\underbrace{}  \underbrace{}  
l

\right)  
sym

,

(2.3)
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1471

where i is the second-order identity tensor that can be expressed as

i=m2
1 +m2

2 +m2
3.

This equality holds independently of what frame (m1,m2,m3) is chosen. As we have
commented, the above definitions are also suitable for ni. When the symbol \otimes is
absent in a product, it means that the resulting tensor is symmetrized.

The orientational distribution of rigid molecules is denoted by \rho (x,q). However,
it is significant to introduce some simple quantities to classify the local anisotropy
given by the density function \rho . Such quantities are defined through the moments of
mi,

\langle mi1 \otimes \cdot \cdot \cdot \otimes min\rangle =
\int 
SO(3)

mi1(q)\otimes \cdot \cdot \cdot \otimes min(q)\rho (x,q)dq, i1, . . . , in = 1,2,3.

(2.4)

Hereafter, the notation \langle \cdot \rangle is employed to represent the average of the distribution
function \rho (x,q) on SO(3), and dq denotes the Haar measure on SO(3). These mo-
ments, as well as their components, might be linearly dependent. To ensure that the
quantities we choose are linearly independent, it is necessary to use symmetric trace-
less tensors averaged by \rho [37]. These chosen averaged symmetric traceless tensors
are the so-called order parameters.

We will frequently encounter derivatives involving orthonormal frames. Let us
first define rotational differential operators. For any frame p = (n1,n2,n3) \in SO(3),
its tangent space in SO(3) is spanned by three matrices, given by (0,n3, - n2),
( - n3,0,n1), (n2, - n1,0). Thus, we define three differential operators Lj by taking
the inner products of the above three matrices and \partial /\partial p = (\partial /\partial n1, \partial /\partial n2, \partial /\partial n3),
i.e.,

L1 = n3 \cdot 
\partial 

\partial n2
 - n2 \cdot 

\partial 

\partial n3
, L2 = n1 \cdot 

\partial 

\partial n3
 - n3 \cdot 

\partial 

\partial n1
, L3 = n2 \cdot 

\partial 

\partial n1
 - n1 \cdot 

\partial 

\partial n2
.

(2.5)

The subscript indicates the differential operator is along the infinitesimal rotation
about nj(j = 1,2,3). This can be verified by acting the differential operators on the
axes of the frame, resulting in

Ljnk = \epsilon jklnl,(2.6)

where \epsilon jkl denotes the Levi-Civita symbol.
For a frame field p(x), its orientational elasticity is characterized by an elastic

energy of the spatial derivatives of p(x). Let us express these spatial derivatives
under the local frame p. The derivative of n\mu along the direction n\lambda is given by
n\lambda \cdot \nabla n\mu . Its \nu -component in the frame p can be written as n\lambda in\nu j\partial in\mu j . Using
the equality n\mu jn\nu j = \delta \mu \nu , where we use the Kronecker delta, we obtain the relation
n\lambda in\nu j\partial in\mu j = - n\lambda in\mu j\partial in\nu j . Consequently, the first-order derivatives of the frame p
has nine degrees of freedom:\left\{     

D11 = n1in2j\partial in3j , D12 = n1in3j\partial in1j , D13 = n1in1j\partial in2j ,

D21 = n2in2j\partial in3j , D22 = n2in3j\partial in1j , D23 = n2in1j\partial in2j ,

D31 = n3in2j\partial in3j , D32 = n3in3j\partial in1j , D33 = n3in1j\partial in2j .

(2.7)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1472 SIRUI LI AND JIE XU

3. Tensor model. In tensor models, the local orientational order is described
by one or several order parameter tensors. From the structure of nonzero components
in the tensors, local anisotropy could be divided into several classes. Each class is
recognized as a phase, and phase transitions between them can be described. For
example, the transition between the isotropic and uniaxial nematic phases for rodlike
molecules can be described by an energy about a second-order symmetric traceless
tensor Q. The dynamic tensor models could either be phenomenological, such as the
Beris--Edwards model [3] and the Qian--Sheng model [26] based on the Landau--de
Gennes theory, or be derived from the molecular theory [11]. In the vicinity of a
bulk energy minimum, the tensors possess the nonzero structure of a certain phase,
so that the tensor model is reduced to a model with fewer variables. For the uniaxial
nematic phase of rodlike molecules, the models of a field of the Q-tensor, which has
five degrees of freedom, could be reduced to models of a field of unit vectors, which
has two degrees of freedom.

When rigid molecules of more complex architecture are taken into account, such
as bent-core and star molecules, the corresponding molecular-theory-based tensor
models have also been derived [41, 45]. The most notable feature of this model lies
in the fact that its form and coefficients are determined by molecular symmetry and
molecular parameters, respectively. Depending on the coefficients, the bulk energy
may exhibit isotropic, uniaxial nematic, or biaxial nematic phases. The modulated
twist-bend nematic phase can also be described together with elastic energy. Since
the biaxial nematic phase is included in this tensor model, we choose this model as
our starting point.

Compared with the original form in [45], we have made a couple of simplifications
that are clarified below.

\bullet The model in [45] has three order parameter tensors, one first-order and
two second-order. In the biaxial nematic phases, the first-order tensor takes
the value zero. This is also maintained in the leading order of the Hilbert
expansion. As a result, keeping the first-order tensor makes no difference in
our derivation. For this reason, we assume that the first-order tensor is zero
to discard all the terms about it.

\bullet We ignore the spatial diffusion term. This is also adopted in the deriva-
tion from dynamic Q-tensor models to the Ericksen--Leslie model (see [11]),
because the spatial diffusion term is actually not considered in the Ericksen--
Leslie model. Since we would like to derive an analog of the Ericksen--Leslie
model, this shall be a reasonable choice. The role of the spatial diffusion term
will be addressed in future works.

The tensor model is then about two second-order symmetric traceless tensors,
defined as

Q1 = \langle (m2
1)0\rangle =

\biggl\langle 
m2

1  - 
i

3

\biggr\rangle 
, Q2 = \langle (m2

2)0\rangle =
\biggl\langle 
m2

2  - 
i

3

\biggr\rangle 
.

Denote Q = (Q1,Q2)
T . Let us also define a projection on to symmetric traceless

tensors,

(PR)ij =
1

2
(Rij +Rji) - 

1

3
Rkk\delta ij .(3.1)

The projection can also be imposed on an array of second-order tensors:

P(R1, . . . ,Rk) = (PR1, . . . ,PRk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1473

3.1. Free energy. Assume that the concentration c of rigid molecules is constant
in space. The free energy contains two parts, the bulk energy and elastic energy,

\scrF [Q,\nabla Q]

kBT
=

\int 
dx

\biggl( 
1

\varepsilon 
Fb(Q) + Fe(\nabla Q)

\biggr) 
,(3.2)

which is measured by the product of the Boltzmann constant kB and the absolute
temperature T . The bulk energy density, which can describe transitions between
homogeneous phases, consists of an entropy term and pairwise interaction terms,

Fb = cFentropy +
c2

2

\bigl( 
c02| Q1| 2 + c03| Q2| 2 + 2c04Q1 \cdot Q2

\bigr) 
.(3.3)

The elastic energy density penalizing spatial inhomogeneity contains a few quadratic
terms of \nabla Q :

Fe =
c2

2

\Bigl( 
c22| \nabla Q1| 2 + c23| \nabla Q2| 2 + 2c24\partial iQ1jk\partial iQ2jk

+ c28\partial iQ1ik\partial jQ1jk + c29\partial iQ2ik\partial jQ2jk + 2c2,10\partial iQ1ik\partial jQ2jk

\Bigr) 
.(3.4)

The free energy (3.2)--(3.4) can be derived from the molecular model [41]. We have
introduced a small parameter \varepsilon in the free energy (3.2). It can be regarded as the
reciprocal of squared relative scale \~L between the domain of observation and the rigid
molecule by a change of variable \~x= x/\~L. We shall revisit the rescaling later in the
dynamic model to clarify it.

The entropy term acts as a stabilizing term that guarantees the lower-boundedness
of the bulk energy. There can be different choices, but it is always independent of
molecule architecture. Moreover, the entropy term is related to expressing the tensors
of higher order by Q1 and Q2. For this reason, we shall specify the entropy term
afterwards.

On the other hand, the coefficients cij of the quadratic terms can be calculated as
functions of molecular parameters. For instance, if the hardcore molecular interaction
is adopted, we are able to compute these coefficients from molecular shape parameters
[41]. This is also the case for the dynamic tensor model, which we introduce below.

3.2. Dynamic model. Based on the free energy functional (3.2), (3.3), and
(3.4), let us write down the molecular-theory-based dynamic tensor model derived in
[45]. We define the variational derivative of (3.2) as

\mu Q =
1

ckBT

\delta \scrF (Q,\nabla Q)

\delta Q
=

1

ckBT
P

\biggl( 
1

\varepsilon 

\partial Fb(Q)

\partial Q
 - \partial i

\biggl( 
\partial Fe(\nabla Q)

\partial (\partial iQ)

\biggr) \biggr) 
def
=

1

\varepsilon 
\scrJ (Q) + \scrG (Q),(3.5)

where \mu Q = (\mu Q1
, \mu Q2

)T , \scrJ (Q) = (\scrJ 1(Q),\scrJ 2(Q))T , and \scrG (Q) = (\scrG 1(Q),\scrG 2(Q))T are
calculated as

\mu Q1
=

1

\varepsilon 
\scrJ 1(Q) + \scrG 1(Q)

=
1

\varepsilon 

\biggl( 
P

\partial Fentropy

\partial Q1
+ cc02Q1 + cc04Q2

\biggr) 
 - cc22\Delta Q1jk  - cc24\Delta Q2jk  - P(cc28\partial j\partial iQ1ik + cc2,10\partial j\partial iQ2ik),(3.6)
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1474 SIRUI LI AND JIE XU

\mu Q2
=

1

\varepsilon 
\scrJ 2(Q) + \scrG 2(Q)

=
1

\varepsilon 

\biggl( 
P

\partial Fentropy

\partial Q2
+ cc04Q1 + cc03Q2

\biggr) 
 - cc24\Delta Q1jk  - cc23\Delta Q2jk  - P(cc2,10\partial j\partial iQ1ik + cc29\partial j\partial iQ2ik).(3.7)

Recall the rescaling \~x= x/\~L. We rescale the time \~t= t/ \~T , so that other variables
are rescaled accordingly, such as the velocity v= \~L\~v/ \~T . By taking \~T = \~L2 = 1/\varepsilon and
some staightforward calculations, the dynamic tensor model can be expressed as

\partial Q

\partial t
+ v \cdot \nabla Q=\scrK Q +\scrW Q,(3.8)

\rho s

\biggl( 
\partial v

\partial t
+ v \cdot \nabla v

\biggr) 
= - \nabla p+\nabla \cdot \sigma +Fe,(3.9)

\nabla \cdot v= 0,(3.10)

where \rho s is the density of the fluid (assumed to be constant), v the fluid velocity, and
p is the pressure to maintain the incompressibility. Let us denote by \kappa ij = \partial jvi the
velocity gradient. The terms \scrK Q = (\scrK Q1 ,\scrK Q2) and \scrW Q = (\scrW Q1 ,\scrW Q2) on the right-
hand side of (3.8) characterize the rotational diffusions and rotational convections,
respectively. They are given by

 - (\scrK Q1)kl = 4\Gamma 2(\mu Q1)ij \langle m1m3 \otimes m1m3\rangle ijkl + 4\Gamma 3(\mu Q1  - \mu Q2)ij \langle m1m2 \otimes m1m2\rangle ijkl ,
 - (\scrK Q2)kl = 4\Gamma 1(\mu Q2)ij \langle m2m3 \otimes m2m3\rangle ijkl  - 4\Gamma 3(\mu Q1  - \mu Q2)ij \langle m1m2 \otimes m1m2\rangle ijkl ,
(\scrW Q1

)kl = 2\kappa ij (\langle (m1 \otimes m3)\otimes m1m3\rangle + e1\langle (m1 \otimes m2)\otimes m1m2\rangle 
 - e2\langle (m2 \otimes m1)\otimes m1m2\rangle )ijkl ,

(\scrW Q2
)kl = 2\kappa ij (\langle (m2 \otimes m3)\otimes m2m3\rangle  - e1\langle (m1 \otimes m2)\otimes m1m2\rangle 

+e2\langle (m2 \otimes m1)\otimes m1m2\rangle )ijkl ,

where \Gamma i =
m0

\zeta Iii
(i = 1,2,3) are the diffusion coefficients, m0 is the mass of a rigid

molecule, \zeta is the friction constant, ei (i = 1,2) are defined as e1 = 1 - e2 =
I22

I11+I22
,

and Iii(i= 1,2,3) are diagonal elements of the moment of inertia for a molecule.
In (3.9), the stress tensor \sigma consists of the viscous stress \sigma v and the elastic stress

\sigma e. The viscous stress \sigma v includes the contribution of the fluid itself with a viscous
coefficient \eta , and the fluid-molecule friction,

\sigma v = \eta (\kappa + \kappa T ) + \sigma vf .(3.11)

The second term \sigma vf is determined by the following equation:

(\sigma vf )ij = c\zeta \kappa kl

\biggl( 
I22\langle m4

1\rangle + I11\langle m4
2\rangle +

4I11I22
I11 + I22

\langle m1m2 \otimes m1m2\rangle 
\biggr) 

ijkl

.

The elastic stress \sigma e can be written as

(\sigma e)kl = 2ckBT
\Bigl[ 
(\mu Q2)ij \langle m2m3 \otimes (m2 \otimes m3)\rangle ijkl + (\mu Q1)ij \langle m1m3 \otimes (m1 \otimes m3)\rangle ijkl

+
1

I11 + I22

\Bigl( 
(\mu Q1  - \mu Q2)ij \langle m1m2 \otimes (I22m1 \otimes m2  - I11m2 \otimes m1)\rangle ijkl

\Bigr) \Bigr] 
.
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1475

The body force Fe is given by

Fe
i = ckBT\mu Q \cdot \partial iQ

def
= ckBT (\mu Q1 \cdot \partial iQ1 + \mu Q2 \cdot \partial iQ2).(3.12)

The system (3.8)--(3.10) obeys the following energy dissipation law (see [45]):

d

dt

\biggl( \int 
dx

\rho s| v| 2

2
+\scrF [Q,\nabla Q]

\biggr) 
=

\int 
dx

\Biggl\{ 
 - ckBT

\Bigl[ 
\Gamma 1

\bigl\langle 
(2\mu Q2

\cdot m2m3)
2
\bigr\rangle 
+\Gamma 2

\bigl\langle 
(2\mu Q1

\cdot m1m3)
2
\bigr\rangle 

+\Gamma 3

\Bigl\langle 
(2(\mu Q1

 - \mu Q2
) \cdot m1m2)

2
\Bigr\rangle \Bigr] 

 - 2\eta 
\kappa + \kappa T

2
\cdot \kappa + \kappa T

2

 - c\zeta 

\biggl[ 
I22
\bigl\langle 
(\kappa \cdot m2

1)
2
\bigr\rangle 
+ I11

\bigl\langle 
(\kappa \cdot m2

2)
2
\bigr\rangle 
+

I11I22
I11 + I22

\bigl\langle 
(2\kappa \cdot m1m2)

2
\bigr\rangle \biggr] \Biggr\} 

.(3.13)

Note that several fourth-order tensors appear in the dynamic model. In order to
close the system, it is necessary to find a certain way to express them by Q1 and Q2.
The closure approximation can be done by the entropy term, which will be introduced
below. Although there might be other ways of closure, one advantage of closure by the
entropy term is that it guarantees the nonpositiveness of the terms on the right-hand
side of (3.13).

3.3. Original entropy and quasi-entropy. We have mentioned that the en-
tropy term plays a significant role in both free energy and closure approximation. A
general approach is to deduce the entropy term by minimizing

\int 
SO(3)

\rho ln\rho dq with
the values of the tensors fixed, or finding the maximum entropy state. When the two
tensors Q1 and Q2 are involved, the maximum entropy state is given by

\rho (q) =
1

Z
exp(B1 \cdot m2

1 +B2 \cdot m2
2),(3.14)

where the normalizing constant Z and two second-order symmetric traceless tensors
B1 and B2 are Lagrange multipliers for the constraints,

Z =

\int 
SO(3)

exp(B1 \cdot m2
1 +B2 \cdot m2

2)dq,

Qi =
1

Z

\int 
SO(3)

\biggl( 
m2

i  - 
1

3
i

\biggr) 
exp(B1 \cdot m2

1 +B2 \cdot m2
2)dq.(3.15)

Taking (3.14) into
\int 
SO(3)

\rho ln\rho dq, we obtain that the entropy term Fentropy is given
by

Forig =B1 \cdot Q1 +B2 \cdot Q2  - lnZ,(3.16)

where we use the notation Forig to stand for the ``original entropy."" The maximum
entropy state (3.14) is uniquely determined by Q1 and Q2 [41]. Therefore, Forig can
be viewed as a function around Q1 and Q2. It is observed that Forig is invariant under
rotations on Q1 and Q2. Generally, a rotation of a tensor U can be understood as
follows: The coordinates Ui1...in in (2.1) are kept, while the basis (ei) is replaced with
another right-handed orthonormal frame (ei

\prime ). Specifically, a rotation on Q1 and Q2 is
done by choosing a particular t\in SO(3) and transforming Qi into tQit

 - 1. It is easy to
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1476 SIRUI LI AND JIE XU

verify that (3.16) is rotationally invariant under this transformation (see section SM2
of the supplementary materials).

The closure approximation can be done with the maximum entropy state, as the
high-order tensors can be calculated using the density function (3.14). An equivalent
viewpoint is that when Q1 and Q2 are given, the high-order tensors obtained in this
way minimize

\int 
SO(3)

\rho ln\rho dq.
The entropy term defined from the maximum entropy state that involves integrals

on SO(3), is given implicitly, which could bring difficulties in both analyses and nu-
merical studies. An alternative approach is proposed [38], where the original entropy
is substituted by the quasi-entropy. The quasi-entropy is defined by a log-determinant
covariance matrix, which is an elementary function of the order parameter tensors. To
write down the expression of the quasi-entropy, it is necessary to specify the highest
tensor order (that shall be even) to be involved. When only second-order tensors are
involved, the quasi-entropy for Q1 and Q2 is given by [38] (see also section SM2 of
the supplementary materials),

\Xi 2 (Q1,Q2) = \nu 

\biggl( 
 - lndet

\biggl( 
Q1 +

i

3

\biggr) 
 - lndet

\biggl( 
Q2 +

i

3

\biggr) 
 - lndet

\biggl( 
i

3
 - Q1  - Q2

\biggr) \biggr) 
.

(3.17)

Let us briefly explain how \Xi 2 is obtained (see [38] or section SM2 in the supplementary
materials for details). Notice that three log-determinants appear in \Xi 2. This is
because the covariance matrix can be reduced to a block diagonal one, with the
blocks given by the three matrices in log-determinants. Apparently, \Xi 2 does not have
a finite value if any of the three matrices is singular. We restrain its domain in those
(Q1,Q2) such that the three matrices are positive definite:

dom(\Xi 2) =

\biggl\{ 
Q :Q1 +

i

3
, Q2 +

i

3
,
i

3
 - Q1  - Q2 positive definite

\biggr\} 
.

Actually, in this domain \Xi 2 gives a barrier function: Consider a sequence dom(\Xi 2)\ni 
Qk \rightarrow Q0 such that Q0 makes any of the three matrices singular, then lim\Xi 2(Qk)\rightarrow 
+\infty .

A free parameter \nu is introduced above. It can be estimated as \nu = 5/9 from
special cases (see section 6 in [38]), which we adopt in the current work. Moreover,
analyses show that the quasi-entropy possesses similar properties to the original en-
tropy. In particular, the results from the quasi-entropy (3.17) are very similar to
those from the original entropy (3.16), provided that other terms in the free energy
are identical. These results have all been reported in [38].

The quasi-entropy is also suitable for closure approximation. To deduce high-order
tensors in the dynamic model, we shall use the log-determinant covariance matrix up
to fourth order, denoted by \Xi 4 which is provided in (SM2.5) of the supplementary
materials. Similarly to \Xi 2, the domain of \Xi 4 is specified by those tensors (including
Q1, Q2, and some tensors up to fourth-order) such that the covariance matrix is
positive definite. To carry out the closure approximation, the fourth-order tensors
shall minimize \Xi 4 with the given values of Q1 and Q2, so that they can be solved
as functions of Q. Thus, we can see that the closure approximation by the original
entropy and the quasi-entropy share the rationale, with the only difference lying in
the function to be minimized. In what follows, we shall see that these two approaches
of closure approximation lead to high-order tensors of the same form due to the same
symmetry arguments.
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1477

The properties of the quasi-entropy have been discussed previously [38]. Here, let
us state those to be utilized in this paper. The proof is also provided in section SM2
of the supplementary materials.

Proposition 3.1. The two functions \Xi 2 (see (3.17)) and \Xi 4 (see (B.5)) have the
following properties:

\bullet They are invariant under rotations on the tensors.
\bullet They act as barrier functions on the corresponding domains that have been
discussed above.

\bullet They are strictly convex with respect to the tensors.

As an example, it is straightfoward to see the rotational invariance for \Xi 2 by taking
the rotation Qi \rightarrow tQit

 - 1 into (3.17).
The properties stated above are all crucial in our derivation below. The rota-

tional invariance is a foundation for the frame model to be established. The positive-
definiteness of covariance matrices is essential for energy dissipation to hold. The
strict convexity guarantees that the closure approximation by minimization results in
a unique solution.

Remark 3.2. A problem of interest is whether the domains of Forig and \Xi 2 are
identical. Unfortunately, in general cases this problem is still open. However, if we
further require that Q1 and Q2 share an eigenframe, the two domains are indeed
identical, as we will discuss right away. This turns out to be sufficient for the current
work.

3.4. Stationary points of bulk energy. There are analyses on the stationary
points of the bulk energy Fb (given by (3.3)), but they are far from well-understood.
We summarize the main results up to date in the following proposition [38, 43]. To
simplify the presentation, the conditions on the coefficients are stricter than they need
to be.

Proposition 3.3. Assume that the matrix
\bigl( 
c02 c04
c04 c03

\bigr) 
is not negative definite, or

is negative but c204/c03  - c02 \leq 2. Consider the two cases of the entropy term:
1. Fentropy takes Forig (see (3.16));
2. Fentropy takes \Xi 2 (see (3.17)) with \nu = 5/9.

For both cases, at the stationary points, Q1 and Q2 have a shared eigenframe.

When Q1 and Q2 has the same eigenframe, they can be written as

Qi = si

\biggl( 
n2
1  - 

i

3

\biggr) 
+ bi(n

2
2  - n2

3), i= 1,2.(3.18)

Numerical studies indicate that the global energy minimum could be either uniaxial
(where bi = 0) or biaxial (where at least one bi \not = 0). For the original entropy, the
results can be found in [23, 30, 41, 42]; for the quasi-entropy \Xi 2, the results can be
found in section 6.3 in [38]. Here, we assume that under certain coefficients c02, c03,

and c04, we have a biaxial global minimum Q(0) = (Q
(0)
1 ,Q

(0)
2 ) of the form (3.18).

It shall be noticed that the bulk energy Fb is rotationally invariant, i.e. invariant
of p = (n1,n2,n3). This can be observed by combining Proposition 3.3 and the fact
that the three c0i terms are rotationally invariant. Thus, a rotation of an energy
minimum also results in an energy minimum.

At any energy minimum, we have \scrJ (Q(0)) = 0. Let us fix si and bi and let
p= (n1,n2,n3) vary, so that Q(0) =Q(0)(p) becomes a function of p. Since Q(0) is an
energy minimum whatever p is, it implies that \scrJ (Q(0)(p)) = 0. We then impose the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

3/
23

 to
 2

20
.1

97
.2

21
.1

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1478 SIRUI LI AND JIE XU

operators Li on it. By the chain rule, we obtain

Lm\scrJ (Q(0))ij =\scrJ \prime (Q(0))ijkl(LmQ(0))kl = 0, m= 1,2,3.(3.19)

This implies that the kernel of the Hessian \scrJ \prime (Q(0)) contains the space spanned by
LmQ(0).

With the form (3.18), the scalars si and bi shall satisfy

2

3
si +

1

3
> 0,

1

3
 - 1

3
si \pm bi > 0, i= 1,2,3,(3.20)

where we define s3 = - s1  - s2 and b3 = - b1  - b2. If we only consider the cases where
Q1 and Q2 share an eigenframe, this is exactly the range such that both Forig and \Xi 2

are well-defined: For the original entropy, the derivation can be found in [41]; for the
quasi-entropy \Xi 2, the condition (3.20) is equivalent to the requirement that Q1+ i/3,
Q2+ i/3, and  - Q1 - Q2+ i/3 are positive definite. Furthermore, when we fix Q1 and
Q2 that share an eigenframe with the scalars satisfying (3.20), the domain of \Xi 4 is
nonempty so that the closure approximation is indeed well-posed (see section SM2 in
the supplementary materials for details).

3.5. High-order tensors and their symmetry. We have mentioned that the
high-order tensors in the dynamic model are determined from closure approximation.
However, there are many linear relations between these high-order tensors. It is
necessary to specify their linearly independent components, which can be done with
the help of symmetric traceless tensors. The use of symmetric traceless tensors turn
out to be crucial to figuring out symmetry arguments for these high-order tensors.

For the high-order tensors appearing in the dynamic tensor model, it turns out
that only the tensors below are involved other than Q1 and Q2 :

\langle m1m2m3\rangle , \langle (m4
1)0\rangle , \langle (m4

2)0\rangle , \langle (m2
1m

2
2)0\rangle .(3.21)

Here, we recall the notation (U)0 in (2.2) for the symmetric traceless tensor generated
by U . The explicit expressions of these tensors, as well as the expressions of the fourth-
order tensors in the dynamic model by these tensors, are given in section SM1 of the
supplementary materials.

Therefore, in a closure approximation, our task is to determine the third-order
and fourth-order tensors in (3.21). In particular, when Q1 and Q2 have the form
(3.18), the tensors in (3.21) have the form indicated by the following theorem.

Theorem 3.4. If Q1 and Q2 are biaxial of the form (3.18), then the third- and
fourth-order symmetric traceless tensors, solved from closure approximation by the
original entropy or the quasi-entropy, take the form

\langle m1m2m3\rangle = zn1n2n3,

\langle (m4
1)0\rangle = a1(n

4
1)0 + a2(n

4
2)0 + a3(n

2
1n

2
2)0,

\langle (m4
2)0\rangle = \~a1(n

4
1)0 + \~a2(n

4
2)0 + \~a3(n

2
1n

2
2)0,

\langle (m2
1m

2
2)0\rangle = \=a1(n

4
1)0 + \=a2(n

4
2)0 + \=a3(n

2
1n

2
2)0.(3.22)

The scalars z, ai, \~ai, \=ai are solved as functions of si and bi. Furthermore, if si and
bi satisfy (3.20), these scalars can be uniquely solved.

Theorem 3.4 is actually a special case of Theorem 4.8 in [38]. The proof can
be also found in section SM2 of the supplementary materials. This result actually
determines the form of high-order tensors in the Hilbert expansion, which in turn
makes a great difference in determining the form of the frame hydrodynamics for the
biaxial nematic phase.
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1479

4. From tensor model to orthonormal frame model. We make the Hilbert
expansion (also called the Chapman--Enskog expansion) of solutions with respect to
the small parameter \varepsilon . The O(1) system results in the orthonormal frame model
for the biaxial nematic phase, with the energy dissipation maintained. The coefficients
in the frame model are derived from those in the tensor model. Since the coefficients
in the tensor model are derived from physical parameters, we finally build the relation
between the frame model and the physical parameters. We also point out that the
derivations afterwards are suitable for both the original entropy and the quasi-entropy.

For convenience, we denote seven fourth-order tensor moments as follows:

\left\{         
\scrR 1 = \langle (m2

1  - i
3 )\otimes (m2

1  - i
3 )\rangle , \scrR 2 = \langle (m2

2  - i
3 )\otimes (m2

2  - i
3 )\rangle ,

\scrR 3 = 4\langle m1m2 \otimes m1m2\rangle , \scrR 4 = 4\langle m1m3 \otimes m1m3\rangle , \scrR 5 = 4\langle m2m3 \otimes m2m3\rangle ,
\scrV Q1

= 2(\langle m1m3 \otimes (m1 \otimes m3)\rangle + e1\langle m1m2 \otimes (m1 \otimes m2)\rangle  - e2\langle m1m2 \otimes (m2 \otimes m1)\rangle ),
\scrV Q2

= 2(\langle m2m3 \otimes (m2 \otimes m3)\rangle  - e1\langle m1m2 \otimes (m1 \otimes m2)\rangle + e2\langle m1m2 \otimes (m2 \otimes m1)\rangle ).

(4.1)

We frequently deal with contractions between fourth-order tensors and second-
order tensors. We could regard a fourth-order tensor as a matrix, and a second-order
tensor as a vector, so that the contractions can be formulated as matrix-matrix and
matrix-vector multiplications, as we explain below. When a fourth-order tensor is
contracted with a second-order tensor, we could write it in short as a matrix-vector
product, say

(\scrV Q1
)ijkl\kappa kl = (\scrV Q1

\kappa )ij .(4.2)

When using this short notation, we always assume that the second to last index of the
fourth-order tensor is contracted with the first of the second-order tensor, and the last
of the fourth-order tensor is contracted with the last of the second-order tensor. By
the convention (4.2), we could define the transpose of a fourth-order tensor, such as

(\scrV T
Q1

)ijkl = (\scrV Q1)klij .

Let us define

\scrM =

\biggl( 
\scrM 11 \scrM 12

\scrM 12 \scrM 22

\biggr) 
def
=

\biggl( 
\Gamma 2\scrR 4 +\Gamma 3\scrR 3  - \Gamma 3\scrR 3

 - \Gamma 3\scrR 3 \Gamma 1\scrR 5 +\Gamma 3\scrR 3

\biggr) 
,(4.3)

\scrV def
=

\biggl( 
\scrV Q1

\scrV Q2

\biggr) 
, \scrN def

= (\scrN Q1
,\scrN Q2

) = (\scrV T
Q1

,\scrV T
Q2

),(4.4)

\scrP def
= c\zeta (I22\scrR 1 + I11\scrR 2 + e1I11\scrR 3) .(4.5)

The system (3.8)--(3.10) can then be rewritten as

\partial Q

\partial t
+ v \cdot \nabla Q= - \scrM \mu Q + \scrV \kappa ,(4.6)

\rho s

\biggl( 
\partial v

\partial t
+ v \cdot \nabla v

\biggr) 
i

= - \partial ip+ \eta \Delta vi + \partial j(\scrP \kappa )ij + ckBT\partial j(\scrN \mu Q)ij + ckBT\mu Q \cdot \partial iQ,

(4.7)

\nabla \cdot v= 0,(4.8)

where \scrM \mu Q is carried out by matrix-vector multiplication,

\scrM \mu Q =

\biggl( 
\scrM 11\mu Q1

+\scrM 12\mu Q2

\scrM 12\mu Q1
+\scrM 22\mu Q2

\biggr) 
.
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1480 SIRUI LI AND JIE XU

The terms involving \scrV and \scrN are interpreted similarly. In the above, we have incor-
porated some simple calculations for the viscous stress, such as

\langle m4
1\rangle \kappa = (\scrR 1 +Q1 \otimes i+ i\otimes Q1 + i\otimes i)\kappa =\scrR 1\kappa + (Q1 \cdot \kappa )i,(4.9)

because the incompressibility can also be written as i \cdot \kappa = 0. Furthermore, the second
term in (4.9) can be merged into the pressure p, so that only the term \scrR 1\kappa remains
in the operator \scrP .

The fourth-order tensors \scrR i(i= 1, . . . ,5) are positive definite in the sense that for
any second-order symmetric traceless tensor Y , we have Y \cdot \scrR iY \geq 0 and the equality
implies Y = 0. This result comes from the property of the entropy term, which is
shown in section SM2 of the supplementary materials. Consequently, we deduce that
for arbitrary second-order symmetric traceless tensors Y1 and Y2, it holds that

Y1 \cdot \scrP Y1 = c\zeta (I22Y1 \cdot \scrR 1Y1 + I11Y1 \cdot \scrR 2Y1 + e1I11Y1 \cdot \scrR 3Y1)\geq 0,(4.10)

(Y1, Y2)\scrM 
\biggl( 

Y1

Y2

\biggr) 
=\Gamma 1Y2 \cdot \scrR 3Y2 +\Gamma 2Y1 \cdot \scrR 4Y1 +\Gamma 1(Y1  - Y2) \cdot \scrR 3(Y1  - Y2)\geq 0.

(4.11)

The equality in (4.11) leads to Y1 = Y2 = 0, so that\scrM (Y1, Y2)
T = 0 implies Y1 = Y2 = 0.

4.1. The Hilbert expansion. Assume that (Q(t,x),v(t,x)) is a solution to
the molecular-theory-based two-tensor system (4.6)--(4.8). We perform the following
Hilbert expansion with respect to \varepsilon :

Q(t,x) =Q(0)(t,x) + \varepsilon Q(1)(t,x) + \varepsilon 2Q(2)(t,x) + \cdot \cdot \cdot ,(4.12)

v(t,x) = v(0)(t,x) + \varepsilon v(1)(t,x) + \varepsilon 2v(2)(t,x) + \cdot \cdot \cdot ,(4.13)

where Q(i) = (Q
(i)
1 ,Q

(i)
2 )T , and (Q(i),v(i))(i= 0,1,2, . . .) are independent of the small

parameter \varepsilon .
Based on the expansion (4.12)--(4.13), we could write down the expansion of other

terms in (4.6)--(4.8), frequently by Taylor expansion. Since we focus on the O(1)

system, we only write down the terms up to O(1). In \mu Q, the term \scrJ (Q) =P \partial Fb(Q)
\partial Q

is multiplied by \varepsilon  - 1, so we need to expand it to O(\varepsilon ),

\scrJ (Q) =\scrJ (Q(0)) + \varepsilon \scrJ \prime 
\Bigl( 
Q(0)

\Bigr) 
Q(1) +O(\varepsilon 2),

where \scrJ \prime (Q(0))
def
= \scrH (0) is a fourth-order tensor. By (3.5), we deduce that

\mu Q = \varepsilon  - 1\scrJ (Q) + \scrG (Q) = \varepsilon  - 1\scrJ (Q(0)) +\scrH (0)Q(1) + \scrG (Q(0)) +O(\varepsilon ).(4.14)

Since the tensors in (4.1) are solved from closure approximation, they are functions
of Q. Thus, \scrM , \scrV , \scrN , and \scrP are functions of Q. Let us use the notation \scrM (0) for
the \scrM when Q takes Q(0). Then we have

\scrM =\scrM (0) +O(\varepsilon ), \scrV = \scrV (0) +O(\varepsilon ),

\scrN =\scrN (0) +O(\varepsilon ) = \scrV (0)T +O(\varepsilon ), \scrP =\scrP (0) +O(\varepsilon ),

where \scrM (0), \scrV (0), \scrN (0), and \scrP (0) are given by adding superscripts (0) to the elements
in (4.3)--(4.5).
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1481

Substituting the above expansions (4.12) and (4.13) into the system (4.6)--(4.8)
and collecting the terms with the same order of \varepsilon , we can obtain a series of equations.
The O(\varepsilon  - 1) system requires that

\scrM (0)\scrJ (Q(0)) = 0.(4.15)

Recalling the positive-definiteness of \scrM (0) given by (4.11), (4.15) implies that

\scrJ (Q(0)) = 0.

It means that Q(0) is just the stationary point of Fb(Q). We shall consider the case
that Q(0) is the biaxial global minimum, which takes the form (3.18).

The terms of order O(1) give

\partial Q(0)

\partial t
+ v(0) \cdot \nabla Q(0) = - \scrM (0)

\Bigl( 
\scrH (0)Q(1) + \scrG (Q(0))

\Bigr) 
+ \scrV (0)\kappa (0),

(4.16)

\rho s

\biggl( 
\partial v(0)

\partial t
+ v(0) \cdot \nabla v(0)

\biggr) 
i

= - \partial ip
(0) + \eta \Delta v

(0)
i + \partial j(\scrP (0)\kappa (0))ij

+ ckBT\partial j

\Bigl( 
\scrN (0)

\bigl( 
\scrH (0)Q(1) + \scrG (Q(0))

\bigr) 
ij

\Bigr) 
+ ckBT

\Bigl( 
\scrH (0)Q(1) + \scrG (Q(0))

\Bigr) 
\cdot \partial iQ(0),

(4.17)

\nabla \cdot v(0) = 0.

(4.18)

In the O(1) system (4.16)--(4.18), Q(0) is a function of p = (n1,n2,n3) and \kappa (0) =
\nabla v(0). The high-order tensors with the superscript (0) are functions of Q(0), thus are
functions of p. Therefore, if we could eliminate Q(1) in the O(1) system, we would
arrive at a system of only p and v(0). Indeed, this can be done by examining the
kernel of \scrH (0).

Our task becomes expressing terms with the superscript (0) in terms of n1, n2,
n3. It turns out that the form (3.18) of Q(0) results in specific form of the following
terms.

\bullet The derivatives of Q(0), which are related to the kernel of \scrH (0).
\bullet The variational derivative of the elastic energy, \scrG (Q(0)).
\bullet The high-order tensors \scrM (0), \scrV (0), \scrN (0), and \scrP (0).

Up to now, all the equations are expressed by the components in the basis gen-
erated by the reference frame (e1,e2,e3). In order to facilitate the specific form of
the above terms, we shall first rewrite the O(1) system in the basis generated by
p= (n1,n2,n3).

4.2. Change to the local basis. In what follows, we denote by A0 and \Omega 0 the
symmetric and skew-symmetric parts of the velocity gradient \kappa 

(0)
ij = \partial jv

(0)
i , respec-

tively, i.e., A0 = (\kappa (0) + \kappa (0)T )/2,\Omega 0 = (\kappa (0)  - \kappa (0)T )/2.
We consider the basis for second-order tensors given by i, five symmetric traceless

tensors,

s1 = n2
1  - 

1

3
i, s2 = n2

2  - n2
3, s3 = n1n2, s4 = n1n3, s5 = n2n3,(4.19)

and three asymmetric traceless tensors,

a1 = n1 \otimes n2  - n2 \otimes n1, a2 = n3 \otimes n1  - n1 \otimes n3, a3 = n2 \otimes n3  - n3 \otimes n2.(4.20)
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1482 SIRUI LI AND JIE XU

Let us look into the fourth-order tensors \scrM (0)
11 , \scrM 

(0)
12 , \scrM 

(0)
22 . The first two com-

ponents of \scrM (0)
11 are symmetric, and the contraction of the first two components gives

a zero second-order tensor. So is the contraction of its last two components. Thus, it
can be expressed as

\scrM (0)
11 = (M11)ijsi \otimes sj .(4.21)

Similarly, M12 and M22 are also defined.
When the last two indices of \scrM (0)

11 are contracted with a second-order symmetric
traceless tensor Y = yisi, it gives

\scrM (0)
11 Y = ((M11)ijyk) (si \otimes sj)sk.(4.22)

By the convention of the a fourth-order tensor times a second-order tensor (4.2), the
product (si \otimes sj)sk gives a second-order tensor (sj \cdot sk)si. Let us define a matrix \Lambda 
by

\Lambda ij = si \cdot sj =diag

\biggl( 
2

3
,2,

1

2
,
1

2
,
1

2

\biggr) 
.(4.23)

So, \scrM (0)
11 Y is written as

\scrM (0)
11 Y = ((M11)ij\Lambda jkyk) si = (M11\Lambda y)isi.(4.24)

In other words, the coordinates of \scrM (0)
11 Y under the basis si are given by M11\Lambda y.

For a product involving\scrM (0), we just combine the coordinates into a single vector.
For instance, for the term \scrM (0)\scrG (Q(0)), let us denote

M =

\biggl( 
M11 M12

M12 M22

\biggr) 
, g=

\biggl( 
g1
g2

\biggr) 
, \widetilde \Lambda =

\biggl( 
\Lambda 

\Lambda 

\biggr) 
,(4.25)

where g1 is the vector of the coordinates of \scrG 1(Q
(0)), and g2 that of \scrG 2(Q

(0)), i.e.,
\scrG 1(Q

(0)) = (g1)isi, \scrG 2(Q
(0)) = (g2)isi. Then, the term \scrM (0)\scrG (Q(0)) has the coordi-

nates

M \widetilde \Lambda g=\biggl( M11\Lambda g1 +M12\Lambda g2
M12\Lambda g1 +M22\Lambda g2

\biggr) 
.

We turn to the tensors \scrN (0)
Q1

, \scrN (0)
Q2

. For \scrN (0)
Q1

, its first two components are no
longer symmetric, so that we can express it as

\scrN (0)
Q1

= (Nu
1 )ijsi \otimes sj + (N l

1)ijai \otimes sj .(4.26)

The matrices Nu
2 and N l

2 are defined in the same way. By \scrV (0) = \scrN (0)T , we can
further write

\scrV (0)
Q1

= (Nu
1 )ijsj \otimes si + (N l

1)ijsj \otimes ai.(4.27)

Denote

N =

\biggl( 
Nu

1 Nu
2

N l
1 N l

2

\biggr) 
, V =NT ,(4.28)
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1483

where the matrix N has the size 8\times 10, so that V is 10\times 8. We have

\scrV (0)\kappa (0) =

\biggl( \bigl( 
(Nu

1 )ijsj \otimes si + (N l
1)ijsj \otimes ai

\bigr) 
\kappa (0)\bigl( 

(Nu
2 )ijsj \otimes si + (N l

2)ijsj \otimes ai
\bigr) 
\kappa (0)

\biggr) 
.(4.29)

We define an 8 \times 1 vector \omega by the contraction of \kappa (0) and the vector u =
(s1, . . . , s5,a1,a2,a3)

T formed by eight tensors, which is given by \omega = (\omega T
s , \omega 

T
a )

T ,
where \omega s and \omega a are defined as

\omega s = (A0 \cdot s1, . . . ,A0 \cdot s5)T , \omega a = (\Omega 0 \cdot a1,\Omega 0 \cdot a2,\Omega 0 \cdot a3)T .

Then, the 10\times 1 vector V \omega gives the coordinates of \scrV (0)\kappa (0).
Similarly to the vector g, we denote by \=q the coordinates of \partial tQ

(0), by \~qi the
coordinates of \partial iQ

(0), and by h the coordinates of \scrH (0)Q(1). Then, the coordinates
of the material derivative \.Q(0) = \partial tQ

(0) + v(0) \cdot \nabla Q(0) are given by q = \=q + v
(0)
1 \~q1 +

v
(0)
2 \~q2 + v

(0)
3 \~q3. Therefore, we could write (4.16) in the coordinates

q - V \omega = - M \widetilde \Lambda (h+ g).(4.30)

For (4.17), the term \scrN (0)(\scrH (0)Q(1) + \scrG (Q(0))) can be expressed under the basis
si together with ai,

\sigma (0)
e = ckBT\scrN (0)

\Bigl( 
\scrH (0)Q(1) + \scrG (Q(0))

\Bigr) 
= ckBT (s1, . . . , s5,a1,a2,a3)N \widetilde \Lambda (h+ g).

(4.31)

The term \scrP (0)\kappa (0) is symmetric traceless, so that it can be written as

\scrP (0)\kappa (0) = (s1, . . . , s5)P\omega s.(4.32)

The dot product (\scrH (0)(Q(1))+\scrG (Q(0))) \cdot \partial iQ(0) is given by \~qTi
\widetilde \Lambda (h+ g). Thus, (4.17)

can be rewritten as

\rho s

\biggl( 
\partial v(0)

\partial t
+ v(0) \cdot \nabla v(0)

\biggr) 
i

= - \partial ip
(0) + \eta \Delta v

(0)
i + \partial j ((s1, . . . , s5)P\omega s)ij

+ ckBT\partial j

\Bigl( 
(s1, . . . , s5,a1,a2,a3)N \widetilde \Lambda (h+ g)

\Bigr) 
ij

+ ckBT \~qTi \widetilde \Lambda (h+ g).(4.33)

4.3. Expressions of matrices and vectors under the local basis. We begin
to write down the matrices and vectors in (4.30) and (4.33). Let us first discuss the
derivatives of Q(0), i.e., \=q and \~qi. Since Q(0) is a function of p, any derivative of
Q(0) can be expressed linearly by LiQ

(0). For this reason, let us first look into the
coordinates of LiQ

(0).
For any differential operator \scrD , we have

\scrD Q
(0)
1 = 2(s1  - b1)(\scrD n1 \cdot n2)s3  - 2(s1 + b1)(\scrD n3 \cdot n1)s4 + 4b1(\scrD n2 \cdot n3)s5.

\scrD Q
(0)
2 is calculated similarly. We denote by L the coordinates of (L3Q

(0),L2Q
(0),

L1Q
(0)), which is a 10\times 3 matrix. The calculation above gives

L=
\bigl( 
02\times 3, diag

\bigl( 
2(s1 - b1), - 2(s1+ b1),4b1

\bigr) 
,02\times 3, diag

\bigl( 
2(s2 - b2), - 2(s2+ b2),4b2

\bigr) \bigr) T
.

(4.34)
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1484 SIRUI LI AND JIE XU

Choose \scrD as \partial t, \partial i, and the material derivative \partial t + v
(0)
i \partial i, respectively. The corre-

sponding coordinates are given by

\=q=L

\left(  \partial tn1 \cdot n2

\partial tn3 \cdot n1

\partial tn2 \cdot n3

\right)  , \~qi =L

\left(  \partial in1 \cdot n2

\partial in3 \cdot n1

\partial in2 \cdot n3

\right)  , q=L

\left(  \.n1 \cdot n2

\.n3 \cdot n1

\.n2 \cdot n3

\right)  .(4.35)

Another important thing to be noticed is that (3.19) leads to\scrH (0)Q(1) \cdot Li(Q
(0)) =

0. Recall that the coordinates of \scrH (0)Q(1) is h. Thus, when writing this equation by
the coordinates, we deduce that

(4.36) LT \widetilde \Lambda h= 0.

The calculations of the matrices M,V,N, and P involve high-order tensors, which
are discussed in the supplementary materials (bif suppm.pdf [local/web 446KB]).
Here, we only present the result. To express these matrices, we introduce six constant
5\times 5 matrices Xi (i= 1, \cdot \cdot \cdot ,6),

X1 =diag

\biggl( \biggl( 
 - 9 0
0  - 3

\biggr) 
, - 12, - 12, - 12

\biggr) 
, X2 =diag

\biggl( \biggl( 
 - 3

2 0
0 1

2

\biggr) 
, - 1, - 1,2

\biggr) 
,

X3 =diag

\biggl( \biggl( 
0 3

2
3
2 0

\biggr) 
, - 3,3,0

\biggr) 
, X4 =diag

\biggl( \biggl( 
18
35 0
0 1

35

\biggr) 
, - 16

35
, - 16

35
,
4

35

\biggr) 
,

X5 =diag

\biggl( \biggl( 
27
140  - 3

28
 - 3

28
19
140

\biggr) 
, - 16

35
,
4

35
, - 16

35

\biggr) 
,

X6 =diag

\biggl( \biggl( 
 - 9

35
3
28

3
28  - 1

70

\biggr) 
,
18

35
, - 2

35
, - 2

35

\biggr) 
.

The blocks of the matrix M can be expressed as

M11 = - 1

15
(\Gamma 2 +\Gamma 3)X1 +

4

7
((\Gamma 2s2  - \Gamma 3(s1 + s2))X2 + (\Gamma 2b2  - \Gamma 3(b1 + b2))X3)

 - 4
\Bigl( 
(\Gamma 2(a1 + \=a1) - \Gamma 3\=a1)X4 + (\Gamma 2(a2 + \=a2) - \Gamma 3\=a2)X5

+ (\Gamma 2(a3 + \=a3) - \Gamma 3\=a3)X6

\Bigr) 
def
= diag

\biggl( \biggl( 
\alpha 11 \alpha 12

\alpha 12 \alpha 22

\biggr) 
, \alpha 33, \alpha 44, \alpha 55

\biggr) 
,(4.37)

M12 =
1

15
\Gamma 3X1 +

4

7
\Gamma 3 ((s1 + s2)X2 + (b1 + b2)X3) - 4\Gamma 3 (\=a1X4 + \=a2X5 + \=a3X6)

def
= diag

\biggl( \biggl( 
\beta 11 \beta 12

\beta 12 \beta 22

\biggr) 
, \beta 33, \beta 44, \beta 55

\biggr) 
,(4.38)

M22 = - 1

15
(\Gamma 1 +\Gamma 3)X1 +

4

7
((\Gamma 1s1  - \Gamma 3(s1 + s2))X2 + (\Gamma 1b1  - \Gamma 3(b1 + b2))X3)

 - 4
\Bigl( 
(\Gamma 1(\~a1 + \=a1) - \Gamma 3\=a1)X4 + (\Gamma 1(\~a2 + \=a2) - \Gamma 3\=a2)X5

+ (\Gamma 1(\~a3 + \=a3) - \Gamma 3\=a3)X6

\Bigr) 
def
= diag

\biggl( \biggl( 
\gamma 11 \gamma 12
\gamma 12 \gamma 22

\biggr) 
, \gamma 33, \gamma 44, \gamma 55

\biggr) 
,(4.39)
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where ai, \~ai, \=ai (i = 1,2,3) are those in (3.22). We shall keep in mind that these
scalars are functions of si, bi (i= 1,2). The blocks of the matrix V are expressed as

Nu
1 = - 1

15
e1X1  - 

2

7
(((e1  - e2)s1  - 2e2s2)X2 + ((e1  - e2)b1  - 2e2b2)X3)

 - 2 ((a1 + 2e2\=a1)X4 + (a2 + 2e2\=a2)X5 + (a3 + 2e2\=a3)X6)

def
= diag

\biggl( \biggl( 
\mu 11 \mu 12

\mu 12 \mu 22

\biggr) 
, \mu 33, \mu 44, \mu 55

\biggr) 
,(4.40)

Nu
2 = - 1

15
e2X1 +

2

7
((2e1s1  - (e2  - e1)s2)X2 + (2e1b1  - (e2  - e1)b2)X3)

 - 2 ((\~a1 + 2e1\=a1)X4 + (\~a2 + 2e1\=a2)X5 + (\~a3 + 2e1\=a3)X6)

def
= diag

\biggl( \biggl( 
\nu 11 \nu 12
\nu 12 \nu 22

\biggr) 
, \nu 33, \nu 44, \nu 55

\biggr) 
,(4.41)

and

V =

\biggl( 
Nu

1

Nu
2

1
2L

\biggr) 
,(4.42)

where L is given by (4.34). The matrix P can be expressed as

P = c\zeta 

\Biggl[ 
 - 1

45
(I22 + I11(1 + 3e1))X1  - 

4

21

\Bigl( 
((I22 + 3I11e1)s1 + I11(1 + 3e1)s2)X2

+ ((I22 + 3I11e1)b1 + I11(1 + 3e1)b2)X3

\Bigr) 
+ (I22a1 + I11\~a1 + 4I11e1\=a1)X4

+ (I22a2 + I11\~a2 + 4I11e1\=a2)X5 + (I22a3 + I11\~a3 + 4I11e1\=a3)X6

\Biggr] 

def
= diag

\biggl( \biggl( 
\vargamma 11 \vargamma 12

\vargamma 12 \vargamma 22

\biggr) 
, \vargamma 33, \vargamma 44, \vargamma 55

\biggr) 
.

(4.43)

In the above, we intentionally introduce notations for the components of M , V,
and P , to emphasize that these matrices have specific forms. These specific forms are
significant in the forthcoming derivations. We have claimed that\scrM and \scrP are positive
definite in (4.11) and (4.10). As a result, the corresponding coefficient matrices M
and P are also positive definite. We do not consider the expressions of the vectors h
and g, because the terms involving them will be expressed by variational derivatives
of the elastic energy.

4.4. Orthonormal frame model. We are now ready to derive the frame hy-
drodynamics for the biaxial nematic phase from the O(1) system (4.16)--(4.18).

To begin with, we write down the elastic energy for the biaxial nematic phase. In
the tensor model, the elastic energy is a functional of Q. When Q takes Q(0) that is
a function of p, the corresponding elastic energy becomes a functional of the frame p,
which we denote by \scrF Bi. Generally, the biaxial elastic energy consists of twelve bulk
terms [44], written as

\scrF Bi[p]

ckBT
=

\int 
d\bfitx 

1

2

\Bigl( 
K1111D

2
11 +K2222D

2
22 +K3333D

2
33

+K1212D
2
12 +K2121D

2
21 +K2323D

2
23 +K3232D

2
32 +K3131D

2
31 +K1313D

2
13

+K1221D12D21 +K2332D23D32 +K1331D13D31

\Bigr) 
,(4.44)
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1486 SIRUI LI AND JIE XU

where the nine invariants Dij(i, j = 1,2,3) are defined by (2.7). We take no account
here of three surface terms, such as

(4.45) \partial in2i\partial jn2j  - \partial in2j\partial jn2i = 2(D33D11  - D31D13).

The coefficients in (4.44) can be derived from the coefficients in the tensor model [44]
as \left\{         

K1111 = J2, K2222 = J1, K3333 = J1 + J2  - J3,

K1212 =K3232 = J1 + J4, K2121 =K3131 = J2 + J5,

K2323 =K1313 = J1 + J2  - J3 + J4 + J5  - J6,

K1221 = - J6, K2332 = J6  - 2J4, K1331 = J6  - 2J5,

(4.46)

where

\left\{                   

J1 = 2c
\bigl( 
c22(s1 + b1)

2 + c23(s2 + b2)
2 + 2c24(s1 + b1)(s2 + b2)

\bigr) 
,

J2 = 8c
\bigl( 
c22b

2
1 + c23b

2
2 + 2c24b1b2

\bigr) 
,

J3 = 8c (c22b1(s1 + b1) + c23b2(s2 + b2) + c24[b1(s2 + b2) + b2(s1 + b1)]) ,

J4 = c
\bigl( 
c28(s1 + b1)

2 + c29(s2 + b2)
2 + 2c2,10(s1 + b1)(s2 + b2)

\bigr) 
,

J5 = 4c
\bigl( 
c28b

2
1 + c29b

2
2 + 2c2,10b1b2

\bigr) 
,

J6 = 4c (c28b1(s1 + b1) + c29b2(s2 + b2) + c2,10[b1(s2 + b2) + b2(s1 + b1)]) .

(4.47)

Using the chain rule, we deduce that

L\scrF Bi =L\scrF Bi[Q
(0)(p)] =

\delta \scrF Bi

\delta Q(0)
\cdot LQ(0) = ckBT\scrG (Q(0)) \cdot LQ(0) = ckBTL

T \widetilde \Lambda g.(4.48)

Therefore, it is deduced from (4.30) and (4.36) that

LTM - 1(q - V \omega ) +
1

ckBT
L\scrF Bi = 0.(4.49)

In the above, we notice that M is positive definite, thus invertible.
To calculate (4.49), we rearrange the rows and columns of the matrices so that

they can be divided into blocks appropriately. To this end, we introduce a 10 \times 10
permutation matrix

C = (E1,E6,E2,E7,E3,E8,E4,E9,E5,E10),(4.50)

where Ej is the 10 \times 1 unit vector with the jth component equal to one. We have
CCT = I10, which is the 10\times 10 identity matrix. Then we have

CTMC =diag(M0,M1,M2,M3),(4.51)

where the blocks Mi (i= 0,1,2,3) are given by

M0 =

\left(    
\alpha 11 \beta 11 \alpha 12 \beta 12

\beta 11 \gamma 11 \beta 12 \gamma 12
\alpha 12 \beta 12 \alpha 22 \beta 22

\beta 12 \gamma 12 \beta 22 \gamma 22

\right)    ,

M1 =

\biggl( 
\alpha 33 \beta 33

\beta 33 \gamma 33

\biggr) 
, M2 =

\biggl( 
\alpha 44 \beta 44

\beta 44 \gamma 44

\biggr) 
, M3 =

\biggl( 
\alpha 55 \beta 55

\beta 55 \gamma 55

\biggr) 
.
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1487

These blocks are all positive definite because M is. For the matrix V , we have

CTV =

\left(    
V0

V1 0 0 V4 0 0
0 V2 0 0 V5 0
0 0 V3 0 0 V6

\right)    ,(4.52)

where the blocks Vi (i= 0,1, . . . ,6) are given by

V0 =

\left(    
\mu 11 \mu 12

\nu 11 \nu 12
\mu 12 \mu 22

\nu 12 \nu 22

\right)    , V1 =

\biggl( 
\mu 33

\nu 33

\biggr) 
, V2 =

\biggl( 
\mu 44

\nu 44

\biggr) 
, V3 =

\biggl( 
\mu 55

\nu 55

\biggr) 
,

V4 =

\biggl( 
s1  - b1
s2  - b2

\biggr) 
, V5 = - 

\biggl( 
s1 + b1
s2 + b2

\biggr) 
, V6 =

\biggl( 
2b1
2b2

\biggr) 
.

We also rearrange the indices of the vector q by C,

CT q= (04\times 1,2( \.n1 \cdot n2)V4,2( \.n3 \cdot n1)V5,2( \.n2 \cdot n3)V6)
T
,(4.53)

where we use 0N1\times N2
to represent an N1\times N2 zero matrix. The matrix L is rearranged

as

(CTL)T =LTC = (03\times 4,L
T
1 ),(4.54)

where LT
1 =diag(2V T

4 ,2V T
5 ,2V T

6 )T . Thus, from (4.51) and (4.54), we have

LTM - 1C = (CTL)TCTM - 1C =

\left(  2V T
4 M - 1

1

03\times 4 2V T
5 M - 1

2

2V T
6 M - 1

3

\right)  .

(4.55)

Together with (4.55), we deduce that

LTM - 1q= (LTC)(CTMC) - 1(CT q) = (\chi 3 \.n1 \cdot n2, \chi 2 \.n3 \cdot n1, \chi 1 \.n2 \cdot n3)
T
,(4.56)

where the coefficients \chi i (i= 1,2,3) are given by

\chi 3 = 4V T
4 M - 1

1 V4, \chi 2 = 4V T
5 M - 1

2 V5, \chi 1 = 4V T
6 M - 1

3 V6.

From (4.51), (4.52), and (4.54), we have

LTM - 1V \omega 

=

\biggl( 
\eta 3A0 \cdot s3 +

1

2
\chi 3\Omega 0 \cdot a1, \eta 2A0 \cdot s4 +

1

2
\chi 2\Omega 0 \cdot a2, \eta 1A0 \cdot s5 +

1

2
\chi 1\Omega 0 \cdot a3

\biggr) T

,

(4.57)

where the coefficients \eta i (i= 1,2,3) are expressed by

\eta 3 = 2V T
4 M - 1

1 V1, \eta 2 = 2V T
5 M - 1

2 V2, \eta 1 = 2V T
6 M - 1

3 V3.
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1488 SIRUI LI AND JIE XU

Therefore, using (4.56) and (4.57), (4.49) can be reformulated as

\chi 1 \.n2 \cdot n3  - 
1

2
\chi 1\Omega 0 \cdot a3  - \eta 1A0 \cdot s5 +

1

ckBT
L1\scrF Bi = 0,(4.58)

\chi 2 \.n3 \cdot n1  - 
1

2
\chi 2\Omega 0 \cdot a2  - \eta 2A0 \cdot s4 +

1

ckBT
L2\scrF Bi = 0,(4.59)

\chi 3 \.n1 \cdot n2  - 
1

2
\chi 3\Omega 0 \cdot a1  - \eta 3A0 \cdot s3 +

1

ckBT
L3\scrF Bi = 0.(4.60)

It remains to derive the equation of the fluid velocity v(0). From (4.35), (4.48),
and (4.36), we have

\~qTi
\widetilde \Lambda (h+ g) =

1

ckBT
(L3\scrF Bi\partial in1 \cdot n2 +L2\scrF Bi\partial in3 \cdot n1 +L1\scrF Bi\partial in2 \cdot n3)

def
= \frakF i.

(4.61)

Using this short notation \frakF for the body force, and taking (4.30) into (4.33), we deduce
that

\rho s

\biggl( 
\partial v(0)

\partial t
+ v(0) \cdot \nabla v(0)

\biggr) 
i

= - \partial ip
(0) + \eta \Delta v

(0)
i + \partial j ((s1, . . . , s5)P\omega s)ij

 - ckBT\partial j
\bigl( 
(s1, . . . , s5,a1,a2,a3)NM - 1(q - V \omega )

\bigr) 
ij

+ ckBT\frakF i.(4.62)

In the above, we recall that the matrix P is given by (4.43).
Noticing N = V T , and by direct matrix manipulation, we obtain that the elastic

stress \sigma 
(0)
e (4.31) can be expressed as

1

ckBT
\sigma (0)
e = - (s1, . . . , s5,a1,a2,a3)NM - 1(q - V \omega )

= \beta 1(A0 \cdot s1)s1 + \beta 0(A0 \cdot s2)s1 + \beta 0(A0 \cdot s1)s2 + \beta 2(A0 \cdot s2)s2

+ \beta 3(A0 \cdot s3)s3  - \eta 3

\biggl( 
\.n1 \cdot n2  - 

1

2
\Omega 0 \cdot a1

\biggr) 
s3

+ \beta 4(A0 \cdot s4)s4  - \eta 2

\biggl( 
\.n3 \cdot n1  - 

1

2
\Omega 0 \cdot a2

\biggr) 
s4

+ \beta 5(A0 \cdot s5)s5  - \eta 1

\biggl( 
\.n2 \cdot n3  - 

1

2
\Omega 0 \cdot a3

\biggr) 
s5

+
1

2
\eta 3(A0 \cdot s3)a1  - 

1

2
\chi 3

\biggl( 
\.n1 \cdot n2  - 

1

2
\Omega 0 \cdot a1

\biggr) 
a1

+
1

2
\eta 2(A0 \cdot s4)a2  - 

1

2
\chi 2

\biggl( 
\.n3 \cdot n1  - 

1

2
\Omega 0 \cdot a2

\biggr) 
a2

+
1

2
\eta 1(A0 \cdot s5)a3  - 

1

2
\chi 1

\biggl( 
\.n2 \cdot n3  - 

1

2
\Omega 0 \cdot a3

\biggr) 
a3,(4.63)

where the coefficients \beta i are given by

V T
0 M - 1

0 V0 =

\biggl( 
\beta 1 \beta 0

\beta 0 \beta 2

\biggr) 
, \beta 3 = V T

1 M - 1
1 V1, \beta 4 = V T

2 M - 1
2 V2, \beta 5 = V T

3 M - 1
3 V3.

(4.64)
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1489

Since M0 is positive definite, the matrix V T
0 M - 1

0 V0 is symmetric positive semidefinite,
yielding

\beta i \geq 0, i= 1,2, \beta 2
0 \leq \beta 1\beta 2.(4.65)

Therefore, from (4.62), the equation for v(0) reads

\rho s

\biggl( 
\partial v(0)

\partial t
+ v(0) \cdot \nabla v(0)

\biggr) 
i

= - \partial ip
(0) + \partial j

\Bigl( 
(\sigma (0)

v )ij + (\sigma (0)
e )ij

\Bigr) 
+ ckBT\frakF i,(4.66)

\nabla \cdot v(0) = 0.(4.67)

Here, the viscous stress \sigma 
(0)
v is denoted by

\sigma (0)
v = \eta A0 + (s1, . . . , s5)P\omega s = (s1, . . . , s5)(\eta \Lambda 

 - 1 + P )\omega s,(4.68)

where we have used the following fact,

A0 =

5\sum 
i=1

1

| si| 2
(A0 \cdot si)si = (s1, \cdot \cdot \cdot , s5)\Lambda  - 1\omega s.

To sum up, the frame hydrodynamics for the biaxial nematic phase is given by
(4.58)--(4.60), (4.66), and (4.67).

Remark 4.1. Similar to the Ericksen--Leslie model, where n and  - n stand for
the same nematic direction, in the frame model four different frames stand for the
same biaxial direction: (n1,n2,n3), (n1, - n2, - n3), ( - n1,n2, - n3), ( - n1, - n2,n3).
Therefore, in the frame model there will also be the problem of orientability, which
calls for discussion in the future.

4.5. Energy dissipation. Taking the derivative with respect to t of the biaxial
elastic energy (4.44), we deduce that

d\scrF Bi

dt
=

\int \biggl( 
\delta \scrF Bi

\delta n1
\cdot \partial n1

\partial t
+

\delta \scrF Bi

\delta n2
\cdot \partial n2

\partial t
+

\delta \scrF Bi

\delta n3
\cdot \partial n3

\partial t

\biggr) 
dx

=

\int \biggl( 
\delta \scrF Bi

\delta n1
\cdot (n2(n2 \cdot \partial tn1) + n3(n3 \cdot \partial tn1))

+
\delta \scrF Bi

\delta n2
\cdot (n1(n1 \cdot \partial tn2) + n3(n3 \cdot \partial tn2))

+
\delta \scrF Bi

\delta n3
\cdot (n1(n1 \cdot \partial tn3) + n2(n2 \cdot \partial tn3))

\biggr) 
dx

=

\int \Biggl[ 
n3k\partial tn2k

\biggl( 
n3 \cdot 

\delta \scrF Bi

\delta n2
 - n2 \cdot 

\delta \scrF Bi

\delta n3

\biggr) 
+ n1k\partial tn3k

\biggl( 
n1 \cdot 

\delta \scrF Bi

\delta n3
 - n3 \cdot 

\delta \scrF Bi

\delta n1

\biggr) 

+ n2k\partial tn1k

\biggl( 
n2 \cdot 

\delta \scrF Bi

\delta n1
 - n1 \cdot 

\delta \scrF Bi

\delta n2

\biggr) \Biggr] 
dx

=

\int 
(n3k\partial tn2kL1\scrF Bi + n1k\partial tn3kL2\scrF Bi + n2k\partial tn1kL3\scrF Bi)dx.

(4.69)

Taking the inner product on (4.66) with v(0) and using \nabla \cdot v(0) = 0, we derive that

\rho s
2

d

dt

\int 
| v(0)| 2dx= - \langle \sigma (0)

v ,A0\rangle  - \langle \sigma (0)
e ,\nabla v(0)\rangle + ckBT \langle \frakF ,v(0)\rangle ,(4.70)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

09
/1

3/
23

 to
 2

20
.1

97
.2

21
.1

8 
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1490 SIRUI LI AND JIE XU

where

ckBT \langle \frakF ,v(0)\rangle =
\int 

v
(0)
i (n3k\partial in2kL1\scrF Bi + n1k\partial in3kL2\scrF Bi + n2k\partial in1kL3\scrF Bi)dx.

Combining (4.69) with (4.70), and using (4.58)--(4.60), we obtain the energy dissipa-
tion law,

d

dt

\biggl( 
\rho s
2

\int 
| v(0)| 2dx+\scrF Bi(p)

\biggr) 
= - \langle \sigma (0)

v ,A0\rangle  - \langle \sigma (0)
e ,\nabla v(0)\rangle 

+

\int 
(( \.n2 \cdot n3)L1\scrF Bi + ( \.n3 \cdot n1)L2\scrF Bi + ( \.n1 \cdot n2)L3\scrF Bi)dx

= - 
\int 

\omega T
s (\eta \Lambda 

 - 1 + P )\omega sdx+ ckBT

\Biggl( 
 - \beta 1\| A0 \cdot s1\| 2L2  - 2\beta 0

\int 
(A0 \cdot s1)(A0 \cdot s2)dx

 - \beta 2\| A0 \cdot s2\| 2L2  - \beta 3\| A0 \cdot s3\| 2L2  - \beta 4\| A0 \cdot s4\| 2L2  - \beta 5\| A0 \cdot s5\| 2L2

+ 2\eta 3

\int \biggl( 
\.n1 \cdot n2  - 

1

2
\Omega 0 \cdot a1

\biggr) 
(A0 \cdot s3)dx

+ 2\eta 2

\int \biggl( 
\.n3 \cdot n1  - 

1

2
\Omega 0 \cdot a2

\biggr) 
(A0 \cdot s4)dx

+ 2\eta 1

\int \biggl( 
\.n2 \cdot n3  - 

1

2
\Omega 0 \cdot a3

\biggr) 
(A0 \cdot s5)dx - \chi 1

\bigm\| \bigm\| \bigm\| \bigm\| \.n2 \cdot n3  - 
1

2
\Omega 0 \cdot a3

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2

 - \chi 2

\bigm\| \bigm\| \bigm\| \bigm\| \.n3 \cdot n1  - 
1

2
\Omega 0 \cdot a2

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2

 - \chi 3

\bigm\| \bigm\| \bigm\| \bigm\| \.n1 \cdot n2  - 
1

2
\Omega 0 \cdot a1

\bigm\| \bigm\| \bigm\| \bigm\| 2
L2

\Biggr) 
.

(4.71)

The dissipation can be recognized by noticing the following facts:
\bullet \Lambda and P are positive definite.
\bullet \beta 1, \beta 2 \geq 0 and \beta 2

0 \leq \beta 1\beta 2. This comes from (4.65).
\bullet \beta 3, \chi 3 \geq 0 and \eta 23 \leq \beta 3\chi 3. To realize this, we use the expressions \beta 3 =

V T
1 M - 1

1 V1, \chi 3 = 4V T
4 M - 1

1 V4, and \eta 3 = 2V T
4 M - 1

1 V1, and the fact that M1 is
positive definite.

4.6. Comparison with previous formulations. In previous works, the dis-
cussion of biaxial hydrodynamics focused on the dissipation function, i.e., (4.71). If
the dissipation function is determined, the hydrodynamics can be established by de-
riving the forces from it and applying Newton's law. For this reason, we compare the
dissipation function in this work and those in previous works.

On the right-hand side of (4.71), the first integral can be merged into the six terms
given by \beta i, because of the special form of two matrices \Lambda and P . As a result, the dis-
sipation function can be written in twelve terms, which are exactly those given in [10].
Although the dissipation function had different expressions previously, they turn out
to be equivalent as claimed in [10]. While the form is identical, we manage to derive
the coefficients from the physical parameters, which was not attained previously.

5. Reduction to uniaxial dynamics. In the tensor model, the minimum of
the bulk energy (3.3) might be uniaxial in the form

Qi = si

\biggl( 
n2
1  - 

i

3

\biggr) 
, i= 1,2.(5.1)
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FRAME HYDRODYNAMICS OF BIAXIAL NEMATICS 1491

In this case, the local anisotropy is axisymmetric, and the corresponding hydrody-
namics is reduced to the Ericksen--Leslie theory, which we derive in the following.

The essential fact is that the form of tensors in Theorem 3.4 will be reduced (see
the supplementary materials (bif suppm.pdf [local/web 446KB]) for the proof).

Theorem 5.1. Assume that Q1 and Q2 have the uniaxial form (5.1). Then, the
high-order symmetric traceless tensors obtained from closure by the original entropy
or the quasi-entropy have the following form:

\langle m1m2m3\rangle = 0, \langle (m4
1)0\rangle = a1(n

4
1)0, \langle (m4

2)0\rangle = \~a1(n
4
1)0, \langle (m2

1m
2
2)0\rangle = \=a1(n

4
1)0.

When b1 = b2 = 0, the elastic energy only depends on n1, denoted by \scrF Un. We
immediately obtain

\delta \scrF Un

\delta n2
=

\delta \scrF Un

\delta n3
= 0,

which implies that

L1\scrF Bi = 0, L2\scrF Bi = - n3 \cdot 
\delta \scrF Un

\delta n1
, L3\scrF Bi = n2 \cdot 

\delta \scrF Un

\delta n1
.(5.2)

By b1, b2 = 0 and Theorem 5.1, in the matrices Mij , Nu
i , and P (see (4.37)--

(4.43)), the coefficients of X3,X5,X6 are all zero. The matrices X1,X2, and X4 are
all diagonal matrices with their elements satisfying the following relations:

(Xi)33 = (Xi)44, (Xi)55 = 4(Xi)22, i= 1,2,4.(5.3)

Thus, the blocks in (4.51) become

M0 =

\biggl( 
M01

M02

\biggr) 
, M01

def
=

\biggl( 
\alpha 11 \beta 11

\beta 11 \gamma 11

\biggr) 
, M02

def
=

\biggl( 
\alpha 22 \beta 22

\beta 22 \gamma 22

\biggr) 
,

M1 =M2 =

\biggl( 
\alpha 33 \beta 33

\beta 33 \gamma 33

\biggr) 
, M3 = 4M02.

Similarly, the blocks in (4.52) are reduced to

V0 =

\biggl( 
V01

V02

\biggr) 
, V01 =

\biggl( 
\mu 11

\nu 11

\biggr) 
, V02 =

\biggl( 
\mu 22

\nu 22

\biggr) 
, V1 = V2 =

\biggl( 
\mu 33

\nu 33

\biggr) 
,

V3 = 4

\biggl( 
\mu 22

\nu 22

\biggr) 
, V4 =

\biggl( 
s1
s2

\biggr) 
, V5 = - 

\biggl( 
s1
s2

\biggr) 
= - V4, V6 =

\biggl( 
0
0

\biggr) 
.

We know from (5.2) and that V6 is a zero vector that (4.58) disappears. Mean-
while, noting the following relations between coefficients,

\chi 3 = \chi 2 = 4V T
4 M - 1

1 V4 > 0, \eta 3 = - \eta 2 = 2V T
4 M - 1

1 V1,

we could simplify the equations (4.59) and (4.60) as\Biggl\{ 
\chi 2

\bigl( 
\.n3 \cdot n1  - 1

2\Omega 0 \cdot a2
\bigr) 
 - \eta 2A0 \cdot s4  - 1

ckBT n3 \cdot \delta \scrF Un

\delta n1
= 0,

\chi 2

\bigl( 
\.n1 \cdot n2  - 1

2\Omega 0 \cdot a1
\bigr) 
+ \eta 2A0 \cdot s3 + 1

ckBT n2 \cdot \delta \scrF Un

\delta n1
= 0.

(5.4)
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Denote the rotational derivative of the director and the molecular field as, respec-
tively,

N1 = \.n1  - \Omega 
(0)
ij n1j , h1 = - 1

ckBT

\delta \scrF Un

\delta n1
.

Then, (5.4) can be rewritten as

n1 \times (h1  - \chi 2N1  - \eta 2A0n1) = 0.(5.5)

It remains to reduce (4.66) to the unixial case. It follows from the derivations
above of the blocks in M and V that

\beta 0 = 0, \eta 1 = 0, \chi 1 = 0, \chi 2 = \chi 3, \eta 2 = - \eta 3, \beta 3 = \beta 4, \beta 5 = 4\beta 2,

and the coefficients \beta 1, \beta 2, \beta 3 are given by

\beta 1 = V T
01M

 - 1
01 V01, \beta 2 = V T

02M
 - 1
02 V02, \beta 3 = V T

1 M - 1
1 V1.

Then, by a direct calculation, we obtain

\sigma (0)
v + \sigma (0)

e = \alpha 1(A0 \cdot n2
1)n

2
1 + \alpha 2n1 \otimes N1 + \alpha 3N1 \otimes n1 + \alpha 4A0

+ \alpha 5n1in1kA
(0)
kj + \alpha 6A

(0)
ik n1kn1j ,(5.6)

where we have neglected the term (A0 \cdot n2
1)i, since it can be absorbed into the pressure.

The coefficients \alpha i (i= 1, . . . ,6) are given by

\alpha 1 = \vargamma 11 + \vargamma 22  - \vargamma 33 + ckBT (\beta 1 + \beta 2  - \beta 3),

\alpha 2 = - 1

2
ckBT (\chi 2 + \eta 2), \alpha 3 =

1

2
ckBT (\chi 2  - \eta 2), \alpha 4 = \eta + 2\vargamma 22 + 2ckBT\beta 2,

\alpha 5 =
1

2
(\vargamma 33 + ckBT (\beta 3  - \eta 2)) - 2(\vargamma 22 + ckBT\beta 2),

\alpha 6 =
1

2
(\vargamma 33 + ckBT (\beta 3 + \eta 2)) - 2(\vargamma 22 + ckBT\beta 2),

which satisfy the following relations:

\alpha 2 + \alpha 3 = \alpha 6  - \alpha 5, ckBT\chi 2 = \alpha 3  - \alpha 2, ckBT\eta 2 = \alpha 6  - \alpha 5.

Using \delta \scrF Un

\delta n2
= \delta \scrF Un

\delta n3
= 0, the body force can be simplified as

ckBT\frakF i = \partial in1k
\delta \scrF Un

\delta n1k
= \partial j\sigma 

E
ij ,(5.7)

where \sigma E
ij =  - \partial \scrF Un

\partial (\partial jn1k)
\partial in1k is called the Ericksen stress. Therefore, from (5.6) and

(5.7), the equation of the fluid velocity v(0) for the uniaxial case is given by

\rho s

\biggl( 
\partial v(0)

\partial t
+ v(0) \cdot \nabla v(0)

\biggr) 
i

= - \partial ip
(0) + \partial j(\sigma 

L
ij + \sigma E

ij),(5.8)

where the Leslie stress \sigma L = \sigma 
(0)
v + \sigma 

(0)
e .
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Equations (5.5) and (5.8) give the Ericksen--Leslie system, which also keep the
following energy dissipation:

d

dt

\biggl( 
\rho s
2

\int 
| v(0)| 2dx+\scrF Un(n1)

\biggr) 
=  - 

\int \biggl( 
\alpha \prime 
1| A0 \cdot n2

1| 2 + \alpha \prime 
2| A0| 2 + \alpha \prime 

3| A0n1| 2 + ckBT
1

\chi 2
| n1 \times h1| 2

\biggr) 
dx,(5.9)

where

\alpha \prime 
1 = \alpha 1 + ckBT

\eta 22
\chi 2

, \alpha \prime 
2 = \alpha 4, \alpha \prime 

3 = \alpha 5 + \alpha 6  - ckBT
\eta 22
\chi 2

.

It can be seen from Proposition 2.2 in [34] that the first three terms in (5.9) are
negative semidefinite if and only if

\alpha \prime 
2 \geq 0, 2\alpha \prime 

2 + \alpha \prime 
3 \geq 0,

3

2
\alpha \prime 
2 + \alpha \prime 

3 + \alpha \prime 
1 \geq 0.

It is easy to verify that (5.9) is indeed nonnegative, since we have \eta > 0, \vargamma 11, \vargamma 22, \vargamma 33 >
0 from the positive definiteness of P , and \beta 1, \beta 2, \beta 3 > 0, \beta 3\chi 2 - \eta 22 > 0 from the positive
definiteness of M .

6. Conclusion. Using the Hilbert expansion, we derive a frame hydrodynamics
for the biaxial nematic phase from a molecular-theory-based tensor model. Its coef-
ficients are all expressed as those in the tensor model, and the energy dissipation is
maintained. The model is further reduced to the Ericksen--Leslie model if the bulk
energy minimum becomes uniaxial.

The key ingredient is to recognize the form of the high-order tensors from the
properties of the original entropy or the quasi-entropy. This technique is also appli-
cable to other mesoscopic symmetries. It calls for expressions of tensors under other
symmetries [38, 39, 40], which we aim to investigate in future works.
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SUPPLEMENTARY MATERIALS: FRAME HYDRODYNAMICS OF
BIAXIAL NEMATICS FROM MOLECULAR-THEORY-BASED

TENSOR MODELS∗

SIRUI LI† AND JIE XU‡

SM1. Symmetric traceless tensors. As we have mentioned, any tensor can
be decomposed into symmetric traceless tensors. To carry out calculations of high-
order tensors, it is necessary to discuss some fundamental ingredients of symmetric
traceless tensors.

For a tensor U expressed in the basis generated by q = (m1,m2,m3), let us denote
it as a function of q, i.e. U(q), to allow q to vary. For example, let us consider a tensor
U(q) = 3m1 ⊗m3 −m3 ⊗m2. For another orthonormal frame q′ = (m′1,m

′
2,m

′
3),

we mean U(q′) = 3m′1 ⊗m′3 −m′3 ⊗m′2.

SM1.1. Basis of symmetric traceless tensors. Any symmetric tensor can
generate a symmetric traceless tensor in the form (2.2). To write down a basis of
symmetric traceless tensors of certain order, we could choose those generated by
monomials. Their expressions are derived previously [SM2]. Below, we list the third-
order and fourth-order tensors that we will make use of.

A basis of third-order symmetric traceless tensors can be given by

(m3
1)0, (m2

1m2)0, (m1m
2
2)0, (m3

2)0,

(m2
1m3)0, (m1m2m3)0, (m2

2m3)0.

Their expressions are given by

(m1m2m3)0 = m1m2m3,

(m3
1)0 = m3

1 −
3

5
m1i,

(m2
1m2)0 = m2

1m2 −
1

5
m2i.

The others can be written down by changing the indices. A basis of fourth-order
symmetric traceless tensors can be given by

(m4
1)0, (m3

1m2)0, (m2
1m

2
2)0, (m1m

3
2)0, (m4

2)0,

(m3
1m3)0, (m2

1m2m3)0, (m1m
2
2m3)0, (m3

2m3)0.

Their expressions are given by

(m4
1)0 = m4

1 −
6

7
m2

1i +
3

35
i2,

(m3
1m2)0 = m3

1m2 −
3

7
m1m2i,

∗Supplementary material for SIAP MS#M146579.
https://doi.org/10.1137/21M1465792
†School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China

(srli@gzu.edu.cn)
‡LSEC and NCMIS, Institute of Computational Mathematics and Scientific/Engineering Com-

puting (ICMSEC), Academy of Mathematics and Systems Science (AMSS), Chinese Academy of
Sciences, Beijing, China (xujie@lsec.cc.ac.cn)
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(m2
1m

2
2)0 = m2

1m
2
2 −

1

7
(m2

1 + m2
2)i +

1

35
i2,

(m2
1m2m3)0 = m2

1m2m3 −
1

7
m2m3i.

An additional note is that for a monomial with the power of m3 not less than two,
we could substitute it by m2

3 = i −m2
1 −m2

2 to obtain equations such as (cf. the
uniqueness of W in (2.2))

(m2
3)0 = (i−m2

1 −m2
2)0 = (−m2

1 −m2
2)0, (m4

3)0 =
(
(m2

1 + m2
2)2
)
0
.

For our discussion afterwards, we introduce the group D2 that has four elements,

i = diag(1, 1, 1), b1 = diag(1,−1,−1), b2 = diag(−1, 1,−1), b3 = diag(−1,−1, 1).

The tensor U is called invariant of D2 if U(qbi) = U(q) (recall the notation at the
beginning of Appendix). All the invariant tensors of the order n form a linear subspace
of nth-order symmetric traceless tensors, denoted by AD2,n. According to a short
discussion in [SM2], its orthogonal complement (AD2,n)⊥ consists of all the nth-order
symmetric traceless tensors U such that U(q) + U(qb1) + U(qb2) + U(qb3) = 0.

It is evident that qbi transforms two of m1, m2, m3 to their opposites. From the
expressions of symmetric traceless tensors written above, we can easily identify the
decomposition AD2,n and (AD2,n)⊥. For n = 1, 2, 3, 4, they are listed below,

AD2,1 = {0}, (AD2,1)⊥ = span{m1,m2,m3},(SM1.1)

AD2,2 = span{(m2
1)0, (m

2
2)0}, (AD2,2)⊥ = span{m1m2,m1m3,m2m3},

AD2,3 = span{m1m2m3},
(AD2,3)⊥ = span{(m3

1)0, (m
2
1m2)0, (m1m

2
2)0, (m

3
2)0, (m

2
1m3)0, (m

2
2m3)0},

AD2,4 = span{(m4
1)0, (m

2
1m

2
2)0, (m

4
2)0},

(AD2,4)⊥ = span{(m3
1m2)0, (m1m

3
2)0, (m

3
1m3)0,

(m2
1m2m3)0, (m1m

2
2m3)0, (m

3
2m3)0}.

Let us write down some equalities to be used later. Define

S1 = m2
1 − i/3, S2 = m2

2 −m2
3, S3 = m1m2, S4 = m1m3, S5 = m2m3.(SM1.2)

For third-order tensors, we have

m1m2m3 ·mi ⊗ Sj = 0, if (i, j) 6= {(1, 5), (2, 4), (3, 3)},
εils(m1m2m3)jks(Sν ⊗ Sν′)ijkl = 0, if i 6= j and {ν, ν′} 6= {1, 2}.(SM1.3)

If U ∈ (AD2,3)⊥, then

U ·mi ⊗ Sj = 0, if (i, j) = {(1, 5), (2, 4), (3, 3)},
εilsUjks(Sν ⊗ Sν)ijkl = εilsUjks(S1 ⊗ S2)ijkl = εilsUjks(S2 ⊗ S1)ijkl = 0.(SM1.4)

For fourth-order tensors, if U ∈ AD2,4, then

U · Si ⊗ Sj = 0, if i 6= j and {i, j} 6= {1, 2}.(SM1.5)
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If U ∈ (AD2,4)⊥, then

U · Si ⊗ Si = (m3
1m2)0 · S1 ⊗ S2 = 0.(SM1.6)

The equalities (SM1.3)–(SM1.6) can be recognized straightforwardly by expanding
the tensors into several terms of tensor products of mi. The Levi-Civita symbol can
be expanded as

εijk = (m1 ⊗m2 ⊗m3 + m2 ⊗m3 ⊗m1 + m3 ⊗m1 ⊗m2

−m1 ⊗m3 ⊗m2 −m3 ⊗m2 ⊗m1 −m2 ⊗m1 ⊗m3)ijk.

The equations above hold independent of the orthonormal frame we choose. In
particular, they are valid if we substitute mi with ni and correspondingly Si with si
(recall (4.19)).

SM1.2. Expressing tensors by symmetric traceless tensors. There are
complicated linear relations between high-order tensors. To figure out the linear
relations, we shall express them by symmetric traceless tensors that completely give
linearly independent components. These linear relations are inherited by averaged
high-order tensors. The special forms of averaged high-order tensors are also revealed
in this way.

To express a general tensor U by symmetric traceless tensors, we first decompose
it as U = Usym + (U − Usym). The anti-symmetric part U − Usym can be written as
the sum of several terms of the form

U...i...j... − U...j...i... = εijkWk...,

where W is an (n−1)th-order tensor (but notice that εijkWk... is an nth-order tensor).
Thus, U is expressed by a symmetric tensor of nth-order and some tensors of lower
order. Next, for each W occurring in the expression, we could do the similar decom-
position. Carry out this action repeatedly until we express U by symmetric tensors.
Then, each symmetric tensor can be expressed by a symmetric traceless tensor and
several symmetric tensors of lower order. Also do it repeatedly to finally express U
by symmetric traceless tensors. This procedure can be better understood shortly in
our calculations below.

In what follows, we use this procedure to deal with the tensors(
m2

1 −
i

3

)
⊗
(
m2

1 −
i

3

)
,
(
m2

1 −
i

3

)
⊗ (m2

2 −m2
3), (m2

2 −m2
3)⊗ (m2

2 −m2
3),

m1m2 ⊗m1m2, m1m3 ⊗m1m3, m2m3 ⊗m2m3.

From the expressions of symmetric traceless tensors, we can derive that

m4
1 = (m4

1)0 +
6

7
m2

1i−
3

35
i2

= (m4
1)0 +

6

7

(
m2

1 −
i

3

)
i +
(2

7
− 3

35

)
i2

= (m4
1)0 +

6

7
(m2

1)0i +
1

5
i2,(SM1.7)

m2
1m

2
2 = (m2

1m
2
2)0 +

1

7
(m2

1 + m2
2)i− 1

35
i2

= (m2
1m

2
2)0 +

1

7

( i

3
−m2

3

)
i +
( 2

21
− 1

35

)
i2

= (m2
1m

2
2)0 −

1

7
(m2

3)0i +
1

15
i2.(SM1.8)
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For a second-order tensor U , define

A(U)ijkl
def
= δklUij + δijUkl −

3

4

(
δikUjl + δjlUik + δilUjk + δjkUil

)
,

B(U)ijkl
def
= Ukiδjl − Ukjδil + Uliδjk − Uljδik.

Using the expressions of symmetric traceless tensors and (SM1.7), it follows that

(
m2

1 −
1

3
i
)
ij

(
m2

1 −
1

3
i
)
kl

(SM1.9)

=
(

(m4
1)0 +

6

7
(m2

1)0i +
1

5
i2
)
ijkl
− 1

3
δij(m

2
1)kl −

1

3
δkl(m

2
1)ij +

1

9
δijδkl

=
(

(m4
1)0 +

6

7
(m2

1)0i +
1

5
i2
)
ijkl
− 1

3
δij
(
(m2

1)0
)
kl
− 1

3
δkl
(
(m2

1)0
)
ij
− 1

9
δijδkl

=
(
(m4

1)0
)
ijkl
− 4

21
A
(
(m2

1)0
)
ijkl
− 1

45
(2δijδkl − 3δikδjl − 3δilδjk).

The symmetric tensor m2
1m

2
2 is expressed by

(m2
1m

2
2)ijkl =

1

6

(
m1im1jm2km2l +m2im2jm1km1l

+ (m1im2j +m2im1j)(m1km2l +m2km1l)
)
.(SM1.10)

Then we obtain from (SM1.10) that

(m1m2 ⊗m1m2)ijkl − (m2
1m

2
2)ijkl

= − 1

12

(
2m1im1jm2km2l + 2m2im2jm1km1l

− (m1im2j +m2im1j)(m1km2l +m2km1l)
)
.(SM1.11)

Using the equality

m1im2j −m2im1j = εijsm3s,(SM1.12)

the tensor in the big parenthesis of (SM1.11) can be calculated as

m1im2l(m1jm2k −m2jm1k) +m1im2k(m1jm2l −m2jm1l)

(SM1.13)

+m2im1l(m2jm1k −m1jm2k) +m2im1k(m2jm1l −m1jm2l)

= (m1im2l −m2im1l)(m1jm2k −m2jm1k) + (m1im2k −m2im1k)(m1jm2l −m2jm1l)

= (εilsεjkt + εiksεjlt)(m2
3)st

= 2δijδkl − δikδjl − δilδjk
− 2δij(m

2
3)kl − 2δkl(m

2
3)ij + δik(m2

3)jl + δil(m
2
3)jk + δjk(m2

3)il + δjl(m
2
3)ik

=
1

3

(
2δijδkl − δikδjl − δilδjk

)
− 2δij

(
(m2

3)0
)
kl
− 2δkl

(
(m2

3)0
)
ij

+ δik
(
(m2

3)0
)
jl

+ δil
(
(m2

3)0
)
jk

+ δjk
(
(m2

3)0
)
il

+ δjl
(
(m2

3)0
)
ik
.
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Thus, combining (SM1.8), (SM1.11) and (SM1.13) yields

(m1m2 ⊗m1m2)ijkl

=
(
(m2

1m
2
2)0
)
ijkl

+
1

7
A
(
(m2

3)0
)
ijkl
− 1

60
(2δijδkl − 3δikδjl − 3δilδjk).(SM1.14)

Similar to the calculation of (SM1.14), we obtain

(m1m3 ⊗m1m3)ijkl(SM1.15)

=
(
(m2

1m
2
3)0
)
ijkl

+
1

7
A
(
(m2

2)0
)
ijkl
− 1

60
(2δijδkl − 3δikδjl − 3δilδjk),(SM1.16)

(m2m3 ⊗m2m3)ijkl

=
(
(m2

2m
2
3)0
)
ijkl

+
1

7
A
(
(m2

1)0
)
ijkl
− 1

60
(2δijδkl − 3δikδjl − 3δilδjk).

In the same way, we have(
(m2

2 −m2
3)⊗ (m2

2 −m2
3)
)
ijkl
− (m4

2 − 2m2
2m

2
3 + m4

3)ijkl

= −1

3

(
2m2im2jm3km3l + 2m3im3jm2km2l

− (m2im3j +m3im2j)(m2km3l +m3km2l)
)
.(SM1.17)

Similar to the calculation of (SM1.13), we obtain

2m2im2jm3km3l + 2m3im3jm2km2l − (m2im3j +m3im2j)(m2km3l +m3km2l)

(SM1.18)

=m2im3l(m2jm3k −m3jm2k) +m2im3k(m2jm3l −m3jm2l)

+m3im2l(m3jm2k −m2jm3k) +m3im2k(m3jm2l −m2jm3l)

= (m2im3l −m3im2l)(m2jm3k −m3jm2k) + (m2im3k −m3im2k)(m2jm3l −m3jm2l)

= (εilsεjkt + εiksεjlt)(m2
1)st

= 2δijδkl − δikδjl − δilδjk − 2δij(m
2
1)kl − 2δkl(m

2
1)ij

+ δik(m2
1)jl + δil(m

2
1)jk + δjk(m2

1)il + δjl(m
2
1)ik

=
1

3

(
2δijδkl − δikδjl − δilδjk

)
− 2δij

(
(m2

1)0
)
kl
− 2δkl

(
(m2

1)0
)
ij

+ δik
(
(m2

1)0
)
jl

+ δil
(
(m2

1)0
)
jk

+ δjk
(
(m2

1)0
)
il

+ δjl
(
(m2

1)0
)
ik
.

Note that

m4
2 − 2m2

2m
2
3 + m4

3

= (m4
2 − 2m2

2m
2
3 + m4

3)0 +
6

7
(m2

2 + m2
3)0i +

2

7
(m2

1)0i +
4

15
i2

= (m4
2 − 2m2

2m
2
3 + m4

3)0 −
4

7
(m2

1)0i +
4

15
i2.

Then, from (SM1.17) and (SM1.18), we deduce(
(m2

2 −m2
3)⊗ (m2

2 −m2
3)
)
ijkl

=
(
(m4

2 − 2m2
2m

2
3 + m4

3)0
)
ijkl

+
4

7
A
(
(m2

1)0
)
ijkl

− 1

15
(2δijδkl − 3δikδjl − 3δilδjk).(SM1.19)
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The next task is to calculate the fourth-order tensor (m2
1)0⊗(m2

2−m2
3). A direct

calculation gives

m1im1jm2km2l −m2im2jm1km1l

= m1im2l(m1jm2k −m2jm1k) +m2jm1k(m1im2l −m2im1l)

= εjksm1im2lm3s + εilsm1km2jm3s.(SM1.20)

Furthermore, the asymmetric part of (SM1.20) can be calculated as follows:

εjksm1im2lm3s + εilsm1km2jm3s − εjks(m1m2m3)ils − εils(m1m2m3)kjs

(SM1.21)

=
1

6
εjks

(
m1im2lm3s −m2im3lm1s +m1im2lm3s −m3im1lm2s

+m1i(m2lm3s −m3lm2s) + (m1im2l −m2im1l)m3s + (m1im3s −m3im1s)m2l

)
+

1

6
εils
(
m1km2jm3s −m2km3jm1s +m1km2jm3s −m3km1jm2s

+m1k(m2jm3s −m3jm2s) + (m1km2j −m2km1j)m3s + (m1km3s −m3km1s)m2j

)
=

1

6
εjks

(
3εiltm3tm3s + εsltm2im2t + εistm1tm1l + εlstm1im1t + εsitm2tm2l

)
+

1

6
εils
(

3εkjtm3tm3s + εsjtm2km2t + εkstm1tm1j + εjstm1km1t + εsktm2tm2j

)
=

1

2
εjksεilt(m2

3)ts +
1

6

(
(δjlδkt − δjtδkl)m2im2t + (δjtδki − δjiδkt)m1tm1l

+ (δjtδkl − δjlδkt)m1im1t + (δjiδkt − δjtδki)m2tm2l

)
+

1

2
εilsεkjt(m2

3)ts +
1

6

(
(δijδlt − δitδlj)m2km2t + (δitδlk − δikδlt)m1tm1j

+ (δitδlj − δijδlt)m1km1t + (δikδlt − δitδlk)m2tm2j

)
=

1

2
(εjksεilt + εilsεkjt)(m2

3)ts +
1

3

(
δkl(m

2
1)ij − δij(m2

1)kl + δij(m
2
2)kl − δkl(m2

2)ij

)
=

1

3

(
δkl(m

2
1)ij − δij(m2

1)kl + δij(m
2
2)kl − δkl(m2

2)ij

)
,

where we have used the fact that

(εjksεilt + εilsεkjt)(m2
3)ts

=
(
δjiδklδst + δjlδktδsi + δjtδkiδsl − δjiδslδkt − δjlδkiδst − δjtδklδsi

+ δikδljδst + δijδltδsk + δitδlkδsj − δikδsjδlt − δijδlkδst − δitδljδsk
)

(m2
3)ts

= δjl(m
2
3)ik + δik(m2

3)jl − δij(m2
3)kl − δkl(m2

3)ij

+ δij(m
2
3)kl + δkl(m

2
3)ij − δik(m2

3)jl − δjl(m2
3)ik

= 0.

Then, using (SM1.10), (SM1.7)-(SM1.8), (SM1.14), (SM1.20)-(SM1.21) and the rela-
tion m2

1 + m2
2 + m2

3 = i, we obtain

(
m2

1 −
i

3

)
ij

(m2
2 −m2

3)kl =
(
m2

1 −
i

3

)
ij

(2m2
2 + m2

1 − i)kl

(SM1.22)
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= 2m1im1jm2km2l + (m4
1)ijkl − δkl(m2

1)ij −
2

3
δij(m

2
2)kl −

1

3
δij(m

2
1)kl +

1

3
δijδkl

= m1im1jm2km2l −m2im2jm1km1l + 6(m2
1m

2
2)ijkl − 4(m1m2 ⊗m1m2)ijkl

+ (m4
1)ijkl − δkl(m2

1)ij −
2

3
δij(m

2
2)kl −

1

3
δij(m

2
1)kl +

1

3
δijδkl

= εjks(m1m2m3)ils + εils(m1m2m3)kjs

+
1

3

(
δkl
(
(m2

1)0
)
ij
− δij

(
(m2

1)0
)
kl

+ δij
(
(m2

2)0
)
kl
− δkl

(
(m2

2)0
)
ij

)
+ 6
(
(m2

1m
2
2)0
)
ijkl
− 6

7

(
(m2

3)0i
)
ijkl

+
2

5
(i2)ijkl

− 4
(
(m2

1m
2
2)0
)
ijkl
− 4

7
A
(
(m2

3)0
)
ijkl

+
1

15
(2δijδkl − 3δikδjl − 3δilδjk)

+
(
(m4

1)0
)
ijkl

+
6

7

(
(m2

1)0i
)
ijkl

+
1

5
(i2)ijkl

− δkl
(
(m2

1)0
)
ij
− 2

3
δij
(
(m2

2)0
)
kl
− 1

3
δij
(
(m2

1)0
)
kl
− 1

3
δijδkl

= εjks(m1m2m3)ils + εils(m1m2m3)kjs + 2
(
(m2

1m
2
2)0
)
ijkl

+
(
(m4

1)0
)
ijkl

+
4

21
A
(
(m2

1)0
)
ijkl

+
8

21
A
(
(m2

2)0
)
ijkl

,

where we have also used the following fact

1

3

(
δkl
(
(m2

1)0
)
ij
− δij

(
(m2

1)0
)
kl

+ δij
(
(m2

2)0
)
kl
− δkl

(
(m2

2)0
)
ij

)
− δkl

(
(m2

1)0
)
ij
− 2

3
δij
(
(m2

2)0
)
kl
− 1

3
δij
(
(m2

1)0
)
kl
− 6

7

(
(m2

3)0i
)
ijkl

+
2

5
(i2)ijkl

+
6

7

(
(m2

1)0i
)
ijkl

+
1

5
(i2)ijkl −

1

3
δijδkl

= −1

3

(
2δkl

(
(m2

1)0
)
ij

+ 2δij
(
(m2

1)0
)
kl

+ δkl
(
(m2

2)0
)
ij

+ δij
(
(m2

2)0
)
kl

)
+

12

7

(
(m2

1)0i
)
ijkl

+
6

7

(
(m2

2)0i
)
ijkl
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk)

= − 8

21
A
(
(m2

1)0
)
ijkl
− 4

21
A
(
(m2

2)0
)
ijkl
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk).

Note that m2
2 −m2

3 = (2m2
2 + m2

1)0. It follows that

(m2
2)0 ⊗ (m2

2)0 =
1

4

(
m2

2 −m2
3 − (m2

1)0
)
⊗
(
m2

2 −m2
3 − (m2

2)0
)

=
1

4

(
(m2

2 −m2
3)⊗ (m2

2 −m2
3)− (m2

2 −m2
3)⊗ (m2

1)0

− (m2
1)0 ⊗ (m2

2 −m2
3) + (m2

1)0 ⊗ (m2
1)0

)
.(SM1.23)

Thus, combining (SM1.23) with (SM1.9), (SM1.19) and (SM1.22), we obtain

(
m2

2 −
1

3
i
)
ij

(
m2

2 −
1

3
i
)
kl

(SM1.24)

=
1

4

((
(m4

2 − 2m2
2m

2
3 + m4

3)0
)
ijkl
− 4

7
A
(
(m2

1)0
)
ijkl
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk)
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+
(
(m4

1)0
)
ijkl
− 4

21
A
(
(m2

1)0
)
ijkl
− 1

45
(2δijδkl − 3δikδjl − 3δilδjk)

− 4
(
(m2

1m
2
2)0
)
ijkl
− 2
(
(m4

1)0
)
ijkl
− 8

21
A
(
(m2

1)0
)
ijkl
− 16

21
A
(
(m2

2)0
)
ijkl

)
=
(
(m4

2)0
)
ijkl
− 4

21
A
(
(m2

2)0
)
ijkl
− 1

45
(2δijδkl − 3δikδjl − 3δilδjk),

where we have employed the cancellation relation

εjks(m1m2m3)ils + εils(m1m2m3)kjs

+ εlis(m1m2m3)kjs + εkjs(m1m2m3)ils = 0.

Next, we calculate the three tensors

m1 ⊗m2m3, m2 ⊗m1m3, m3 ⊗m1m2.

It turns out that
1

2
m1i(m2jm3k +m3jm2k)

= (m1m2m3)ijk +
1

6

(
(m1im2j −m2im1j)m3k + (m1im3j −m3im1j)m2k

+ (m1im2k −m2im1k)m3j + (m1im3k −m3im1k)m3j

)

= (m1m2m3)ijk +
1

6

(
εijs
(
(m2

3)0 − (m2
2)0
)
ks

+ εiks
(
(m2

3)0 − (m2
2)0
)
js

)
,

(SM1.25)

1

2
m2i(m1jm3k +m3jm1k)

= (m1m2m3)ijk +
1

6

(
εijs
(
(m2

1)0 − (m2
3)0
)
ks

+ εiks
(
(m2

1)0 − (m2
3)0
)
js

)
,

(SM1.26)

1

2
m3i(m1jm2k +m2jm1k)

= (m1m2m3)ijk +
1

6

(
εijs
(
(m2

2)0 − (m2
1)0
)
ks

+ εiks
(
(m2

2)0 − (m2
1)0
)
js

)
.

(SM1.27)

The equations (SM1.25)–(SM1.27) also hold if we replace mi with ni, which we also
need to use later.

To deal with V(0) in the subsection 4.1, we need to calculate

(m1 ⊗m2)⊗m1m2, (m2 ⊗m1)⊗m1m2,

(m1 ⊗m3)⊗m1m3, (m2 ⊗m3)⊗m2m3.

Using the definition of R(0)
i (i = 3, 4, 5), it follows that

2〈m1im2j(m1m2)kl〉 =
1

2
R(0)

3 +
〈
(m1im2j −m2im1j)(m1m2)kl

〉
,

2〈m2im1j(m1m2)kl〉 =
1

2
R(0)

3 −
〈
(m1im2j −m2im1j)(m1m2)kl

〉
,

2〈m1im3j(m1m3)kl〉 =
1

2
R(0)

4 +
〈
(m1im3j −m3im1j)(m1m3)kl

〉
,

2〈m2im3j(m2m3)kl〉 =
1

2
R(0)

5 +
〈
(m2im3j −m3im2j)(m2m3)kl

〉
.
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In order to calculate the above tensor moments, it is desirable to utilize the following
relation:

εijkεist = δjsδkt − δjtδks.(SM1.28)

Then, using (SM1.12) and (SM1.28), we derive that

(m1im2j −m2im1j)(m1m2)kl

(SM1.29)

=
1

2
εijsm3s(m1km2l +m2km1l)

= εijs
(

(m1m2m3)kls +
1

6
m1k(m2lm3s −m3lm2s) +

1

6
m2l(m1km3s −m3km1s)

+
1

6
m2k(m1lm3s −m3lm1s) +

1

6
m1l(m2km3s −m3km2s)

)
= εijs

(
(m1m2m3)kls +

1

6

(
m1km1tε

lst +m2lm2tε
skt +m2km2tε

slt +m1lm1tε
kst
))

= εijs(m1m2m3)kls +
1

6

(
m1km1t(δitδjl − δilδjt) +m2lm2t(δikδjt − δitδjk)

+m2km2t(δilδjt − δitδjl) +m1lm1t(δitδjk − δikδjt)
)

= εijs(m1m2m3)kls +
1

6

(
B
(
(m2

1)0
)
ijkl

+ B
(
(m2

2)0
)
ijkl

)
.

In the above, we have encountered several symmetric traceless tensors. They have
the following relations.

(m2
3)0 = −(m2

1)0 − (m2
2)0,

(m2
1m

2
3)0 = −(m4

1)0 − (m2
1m

2
2)0,

(m2
2m

2
3)0 = −(m4

2)0 − (m2
1m

2
2)0.

When averaged tensors are considered, the linear relations obtained above still hold.
Therefore, we only need to focus on the following tensors that are the linearly inde-
pendent:

〈(m2
1m

2
2)0〉, 〈(m2

1m
2
3)0〉, 〈(m2

2m
2
3)0〉, 〈(m2

i )0〉, i = 1, 2, 3.

SM1.3. Expression involving low-order tensors. When Qi = Q
(0)
i , we will

encounter a few terms only involving second-order tensors, which we provide alter-
native expressions below. They will be useful for matrix manipulations in the main
text, and the discussion afterwards.

Let us look into the last tensor in (SM3.2). Using the relation i = n2
1 + n2

2 + n2
3,

we deduce that

2δijδkl − 3δikδjl − 3δilδjk

= 2(n2
1 + n2

2 + n2
3)ij(n

2
1 + n2

2 + n2
3)kl − 3(n2

1 + n2
2 + n2

3)ik(n2
1 + n2

2 + n2
3)jl

− 3(n2
1 + n2

2 + n2
3)il(n

2
1 + n2

2 + n2
3)jk

= 2
∑
α6=β

n2
α ⊗ n2

β − 4

3∑
α=1

n4
α

− 12(n1n2 ⊗ n1n2 + n1n3 ⊗ n1n3 + n2n3 ⊗ n2n3),
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where we have used the fact that n1n2 = 1
2 (n1 ⊗ n2 + n2 ⊗ n1). The terms in the

second line are expressed linearly by si ⊗ sj We would also like to express the first
line in this form. Note that

n2
1 −

i

3
=

1

3
(2n2

1 − n2
2 − n2

3).(SM1.30)

Thus, fitting with a term n2 − i/3 in (SM1.30) yields

−9s1 ⊗ s1 = − 9(n2
1 −

i

3
)⊗ (n2

1 −
i

3
)

= − (2n2
1 − n2

2 − n2
3)⊗ (2n2

1 − n2
2 − n2

3)

= − 4n4
1 + 2

(
n2
1 ⊗ (n2

2 + n2
3) + (n2

2 + n2
3)⊗ n2

1

)
− (n2

2 + n2
3)⊗ (n2

2 + n2
3).(SM1.31)

Then the remaining terms are given by

− 4n4
2 − 4n4

3 + 2(n2
2 ⊗ n2

3 + n2
3 ⊗ n2

2) + (n2
2 + n2

3)⊗ (n2
2 + n2

3)

= −3(n2
2 − n2

3)⊗ (n2
2 − n2

3) = −3s2 ⊗ s2.

Therefore, we arrive at

2δijδkl − 3δikδjl − 3δilδjk = −9s1 ⊗ s1 − 3s2 ⊗ s2 − 12(s3 ⊗ s3 + s4 ⊗ s4 + s5 ⊗ s5),
(SM1.32)

where the corresponding coordinate X1 is given by

X1 =


−9 0

0 −3

−12

−12

−12

 .

We note that

s2 ⊗ s2 = (n2
2 − n2

3)⊗ (n2
2 − n2

3)

=n4
2 + n4

3 − (n2
2 ⊗ n2

3 + n2
3 ⊗ n2

2).(SM1.33)

Then A
(
(n2

1)0
)
ijkl

can be calculated as follows:

A
(
(n2

1)0
)
ijkl

= (n2
1 + n2

2 + n2
3)kl

(
n2
1 −

i

3

)
ij

+ (n2
1 + n2

2 + n2
3)ij

(
n2
1 −

i

3

)
kl

− 3

4
(n2

1 + n2
2 + n2

3)ik

(
n2
1 −

i

3

)
jl
− 3

4
(n2

1 + n2
2 + n2

3)jl

(
n2
1 −

i

3

)
ik

− 3

4
(n2

1 + n2
2 + n2

3)il

(
n2
1 −

i

3

)
jk
− 3

4
(n2

1 + n2
2 + n2

3)jk

(
n2
1 −

i

3

)
il

=
1

3

(
(2n2

1 − n2
2 − n2

3)⊗ (n2
1 + n2

2 + n2
3)

+ (n2
1 + n2

2 + n2
3)⊗ (2n2

1 − n2
2 − n2

3)
)

− (2n4
1 − n4

2 − n4
3)− (n1n2 ⊗ n1n2 + n1n3 ⊗ n1n3 − 2n2n3 ⊗ n2n3),
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where we have used the relation i = n2
1 + n2

2 + n2
3. Using (SM1.31) and (SM1.33), we

get

1

3

(
(2n2

1 − n2
2 − n2

3)⊗ (n2
1 + n2

2 + n2
3) + (n2

1 + n2
2 + n2

3)⊗ (2n2
1 − n2

2 − n2
3)
)

− (2n4
1 − n4

2 − n4
3)

= n4
2 + n4

3 +
1

3

(
− 2n4

1 + n2
1 ⊗ (n2

2 + n2
3) + (n2

2 + n2
3)⊗ n2

1 − 2(n2
2 + n2

3)⊗ (n2
2 + n2

3)
)

= −3

2
(n2

1 −
i

3
)⊗ (n2

1 −
i

3
) +

1

2
(n2

2 − n2
3)⊗ (n2

2 − n2
3)

= −3

2
s1 ⊗ s1 +

1

2
s2 ⊗ s2.

Consequently, we obtain

A
(
(n2

1)0
)
ijkl

= −3

2
s1 ⊗ s1 +

1

2
s2 ⊗ s2 − (s3 ⊗ s3 + s4 ⊗ s4 − 2s5 ⊗ s5),(SM1.34)

where the corresponding coordinate X2 is written by

X2 =



− 3
2 0

0 1
2

−1

−1

2


.

Next we deal with the term A
(
n2
2 − n2

3

)
ijkl

. Note that

3

2
(s1 ⊗ s2 + s2 ⊗ s1) =

3

2

(
(n2

1 −
i

3
)⊗ (n2

2 − n2
3) + (n2

2 − n2
3)⊗ (n2

1 −
i

3
)
)

= − (n4
2 − n4

3) + (n2
1 ⊗ n2

2 + n2
2 ⊗ n2

1)− (n2
1 ⊗ n2

3 + n2
3 ⊗ n2

1).

Then, A
(
n2
2 − n2

3

)
ijkl

can be calculated as

A
(
n2
2 − n2

3

)
ijkl

= (n2
1 + n2

2 + n2
3)kl(n

2
2 − n2

3)ij + (n2
1 + n2

2 + n2
3)ij(n

2
2 − n2

3)kl

− 3

4
(n2

1 + n2
2 + n2

3)ik(n2
2 − n2

3)jl −
3

4
(n2

1 + n2
2 + n2

3)jl(n
2
2 − n2

3)ik

− 3

4
(n2

1 + n2
2 + n2

3)il(n
2
2 − n2

3)jk −
3

4
(n2

1 + n2
2 + n2

3)jk(n2
2 − n2

3)il

= 2(n4
2 − n4

3) + (n2
1 ⊗ n2

2 + n2
2 ⊗ n2

1)− (n2
1 ⊗ n2

3 + n2
3 ⊗ n2

1)

− 3
(
n4
2 − n4

3 + n1n2 ⊗ n1n2 − n1n3 ⊗ n1n3

)
=

3

2

((
n2
1 −

i

3

)
⊗ (n2

2 − n2
3) + (n2

2 − n2
3)⊗

(
n2
1 −

i

3

))
− 3(n1n2 ⊗ n1n2 − n1n3 ⊗ n1n3)

=
3

2
(s1 ⊗ s2 + s2 ⊗ s1)− 3(s3 ⊗ s3 − s4 ⊗ s4),(SM1.35)
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where the corresponding coordinate X3 is written by

X3 =



0 3
2

3
2 0

−3

3

0


.

SM2. Closure approximation: Theorem 3.3. We discuss Theorem 3.3 that
recognizes the form of high-order tensors. Theorem 3.3 is stated for the original
entropy and the quasi-entropy. So we need to consider them separately.

Theorem 3.3 is actually a special case in previous works: for the original entropy,
it is a special case of Theorem 5.2 in [SM2]; for quasi-entropy, it is a special case
of Theorem 4.8 in [SM3]. Nevertheless, both of them were shown for general cases
of symmetry and the explicit form (3.22) is not provided. For this reason, we shall
explain how those theorems are applied to the current work to obtain Theorem 3.3,
and at places show some results.

SM2.1. Original entropy. We first discuss the closure by the original entropy.
The following result has been shown in Appendix in [SM4].

Lemma SM2.1. If si, bi satisfy (3.20), then there exists a unique density function

ρ(q) =
1

Z
exp

 ∑
i,j=1,2

λij(mi · nj)2
 ,

such that 〈(m2
i )0〉 = si(n

2
1)0 + bi(n

2
2 − n2

3). It minimizes
∫
SO(3)

ρ ln ρdq when Qi is

fixed.

Recall that q = (m1,m2,m3) and p = (n1,n2,n3). The density function satisfies
ρ(pbkp

T q) = ρ(q) for k = 1, 2, 3. This can be seen by noticing that mi · nj is the
(j, i) element of pT q. Thus, when q is replaced by pbkp

T q, the dot product mi · nj
becomes the (j, i) element of pT (pbkp

T q) = bkp
T q = (pbTk )T q. It suffices to notice the

equalities like pbT1 = (n1,−n2,−n3).
By Theorem 5.2 in [SM2] and the related discussions before the theorem, when

an nth-order symmetric traceless tensor is calculated from the density function above,
it could be expressed as W (p) for some W ∈ AD2,n. Using the decomposition written
down in (SM1.1), we arrive at the expression in Theorem 3.3.

The positive-definiteness of the averaged tensors Ri in (4.1) is obvious because
they are calculated from a positive density function.

SM2.2. Quasi-entropy. To illustrate some ideas, let us start from the second-
order quasi-entropy Ξ2. Denote by r1 the vector formed by 1 and mi ·nj , 1 ≤ i, j ≤ 3,
which is a 10× 1 vector. For a first-order tensor U , we define a row vector as

Φ1(U)j = (U · nj).

For a second-order tensor U , we define a matrix as

Ψ2(U)ij = (U · ni ⊗ nj).(SM2.1)
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The general second-order quasi-entropy, denoted by Ξ̃2, is defined as the minus log-
determinant of the second moment of r1 (hereafter we omit the free parameter ν
introduced in (3.17)),

Ξ̃2 = − ln det〈r1rT1 〉
(SM2.2)

= − ln det


1 Φ1(〈m1〉) Φ1(〈m2〉) Φ1(〈m3〉)

Φ1(〈m1〉)T Ψ2(〈m2
1〉) Ψ2(〈m1 ⊗m2〉) Ψ2(〈m1 ⊗m3〉)

Φ1(〈m2〉)T Ψ2(〈m2 ⊗m1〉) Ψ2(〈m2
2〉) Ψ2(〈m2 ⊗m3〉)

Φ1(〈m3〉)T Ψ2(〈m3 ⊗m1〉) Ψ2(〈m3 ⊗m2〉) Ψ2(〈m2
3〉)

.
In [SM3], the second moment of r1 is replaced by the covariance matrix of the 9× 1
vector formed by the last nine components of r1. It can be seen that these two
formulations are equivalent.

Here, we need to emphasize that the notation 〈·〉 does not assume that they are
averaged by certain positive density function, but only implies that the tensors obey
linear relations such as what we have obtained in Appendix SM1.2. For second-order
tensors not symmetric, we express them using symmetric traceless tensors, such as
〈m1 ⊗m2〉ij = 〈m1m2〉ij + εijk〈m3〉k. Thus, Ξ̃2 is a function of symmetric traceless
tensors up to second order. If we choose a basis of symmetric traceless tensors, their
‘average’ are independent variables in Ξ̃2.

Now, for our problem, the tensors specified are Q1 and Q2, which determine
〈m2

1〉 = Q1 + i/3, 〈m2
2〉 = Q2 + i/3, 〈m2

3〉 = −Q1 − Q2 + i/3. To obtain the quasi-

entropy Ξ2 about Q1 and Q2 only, we shall minimize Ξ̃2 with Q1 and Q2 fixed. At
the minimizer many tensors vanish, because we have the following lemma.

Lemma SM2.2. For a symmetric positive-definite matrix K, suppose that it is
given in blocks as

K =

(
K1 A

AT K2

)
.(SM2.3)

Then we have

detK ≤ detK1 detK2.(SM2.4)

The equality holds if and only if A = 0.

Notice that off-diagonal blocks are functions of 〈mi〉 and 〈mimj〉 for i 6= j, which
are independent of Q1 and Q2. Using this lemma, we immediately deduce that the
minimizer is attained when all the off-diagonal blocks are zero. In this way, we obtain
the quasi-entropy Ξ2 in (3.17).

It is worthy noting that for Q1 and Q2, m2
1 − i/3 and m2

2 − i/3 are invariant
under D2. On the other hand, the off-diagonal blocks vanish when averaged over D2,
since in these blocks the times of m1, m2, m3 appearing are not all odd or not all
even. This result actually holds for quasi-entropy up to arbitrary order, as indicated
by Theorem 4.8 in [SM3].

The ideas above are also useful when discussing the fourth-order quasi-entropy
Ξ4. Denote by r2 the vector formed by 1, mi ·nj , 1 ≤ i, j ≤ 3 and Si · sj 1 ≤ i, j ≤ 5,
which has the size 35 × 1. The fourth-order quasi-entropy is defined as the minus
log-determinant of 〈r2rT2 〉. It is a function of symmetric traceless tensors up to fourth
order.
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The closure approximation minimizes the quasi-entropy with Q1 and Q2 fixed.
Still, if the times of m1, m2, m3 are not all odd or not all even, then the tensor
vanishes when averaged over D2. Theorem 4.8 in [SM3] guarantees that when seeking
the minimizer with Q1 and Q2 fixed, these tensors are zero. After setting these tensors
as zero in the quasi-entropy, we could get a reduced expression, which we write down
below.

For a second-order tensor U , we define a 1× 5 row vector as

Φ2(U)j = (U · sj).

For a third-order tensor U , we define a 3× 5 matrix,

Ψ3(U)ij = (U · ni ⊗ sj).

For a fourth order tensor U , we define a 5× 5 matrix,

Ψ4(U)ij = (U · si ⊗ sj).

The reduced quasi-entropy is given by

Ξ4 =

(SM2.5)

− ln det


1 Φ2(〈m2

1 −
i
3
〉) Φ2(〈m2

2 −m2
3〉)

Φ2(〈m2
1 −

i
3
〉)T Ψ4

(
〈(m2

1 −
i
3

)⊗ (m2
1 −

i
3

)〉
)

Ψ4

(
〈(m2

2 −m2
3)⊗ (m2

1 −
i
3

)〉
)

Φ2(〈m2
2 −m2

3〉)T Ψ4

(
〈(m2

2 −m2
3)⊗ (m2

1 −
i
3

)〉
)T

Ψ4

(
〈(m2

2 −m2
3)⊗ (m2

2 −m2
3)〉
)


− ln det

(
Ψ2(〈m2

1〉) Ψ3(〈m1 ⊗m2m3〉)
Ψ3(〈m1 ⊗m2m3〉)T Ψ4(〈m2m3 ⊗m2m3〉)

)

− ln det

(
Ψ2(〈m2

2〉) Ψ3(〈m2 ⊗m1m3〉)
Ψ3(〈m2 ⊗m1m3〉)T Ψ4(〈m1m3 ⊗m1m3〉)

)

− ln det

(
Ψ2(〈m2

3〉) Ψ3(〈m3 ⊗m1m2〉)
Ψ3(〈m3 ⊗m1m2〉)T Ψ4(〈m1m2 ⊗m1m2〉)

)
.

The first matrix is 11 × 11, while the other three are 8 × 8. The blocks can be
expressed by symmetric traceless tensors as we have calculated in Appendix SM1.2.

The quasi-entropy Ξ4 is defined on the domain such that the four matrices in Ξ4

are positive definite. Thus, we conclude that if the high-order tensors are calculated
from the constrained minimization of Ξ4, the tensors Ri in (4.4) are positive definite
in the sense of (4.10). This is because that many ofR1,R3,R4,R5 are diagonal blocks
of Ξ4, and for R2 we use (SM1.23).

Now, let us assume that Qi has the biaxial form (3.18). First, we claim that
the domain of quasi-entropy Ξ4 is not empty when si, bi are fixed with the conditions
(3.20). This is because that the high-order tensors calculated from any positive density
function must make the covariance matrix positive definite. Such a density function
exists because of Lemma SM2.1.

We are now ready to show Theorem 3.3. By (SM1.25)–(SM1.27), (SM1.32),
(SM1.34) and (SM1.35), the zeroth- and second-order tensors could fill the following
entries in the quasi-entropy. In the 11× 11 matrix, they are labelled as
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1 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗
∗ ∗


.(SM2.6)

In the three 8× 8 matrices, they are labelled as

∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

∗ ∗
∗ ∗

∗ ∗


.(SM2.7)

The third-order and fourth-order symmetric traceless tensors are expressed by the
bases,

〈m1m2m3〉 = zn1n2n3 + z′1(n3
1)0 + z′2(n2

1n2)0 + z′3(n1n
2
2)0

+ z′4(n3
2)0 + z′5(n2

1n3)0 + z′6(n2
2n3)0,

〈(m4
1)0〉 = a1(n4

1)0 + a2(n4
2)0 + a3(n2

1n
2
2)0

+ a4(n3
1n2)0 + a5(n3

1n3)0 + a6(n2
1n2n3)0

+ a7(n1n
3
2)0 + a8(n1n

2
2n3)0 + a9(n3

2n3)0,

〈(m4
2)0〉 = ã1(n4

1)0 + ã2(n4
2)0 + ã3(n2

1n
2
2)0

+ ã4(n3
1n2)0 + ã5(n3

1n3)0 + ã6(n2
1n2n3)0

+ ã7(n1n
3
2)0 + ã8(n1n

2
2n3)0 + ã9(n3

2n3)0,

〈(m2
1m

2
2)0〉 = ā1(n4

1)0 + ā2(n4
2)0 + ā3(n2

1n
2
2)0

+ ā4(n3
1n2)0 + ā5(n3

1n3)0 + ā6(n2
1n2n3)0

+ ā7(n1n
3
2)0 + ā8(n1n

2
2n3)0 + ā9(n3

2n3)0.(SM2.8)

Using (SM1.3)–(SM1.6), the terms ai, ãi, āi for i = 1, 2, 3 and z contribute only to
the starred entries, while the terms z′i and aj , ãj , āj for 4 ≤ j ≤ 9 contribute only
to the non-starred entries. Meanwhile, as long as the starred entries form a positive
definite matrix, the determinant reaches its unique maximum when the non-starred
entries are zero. This can be observed by rearranging the rows and columns of the
four matrices in Ξ4. In the 11×11 matrix, we group the indices as {1, 2, 3, 7, 8}, {4, 9},
{5, 10} and {6, 11}. In the three 8× 8 matrices, we group the indices as {1, 8}, {2, 7},
{3, 6}, {4, 5}. After rearrangement, these matrices become block diagonal. Thus, the
determinant must be no less than that the off-diagonal blocks are zero. Therefore, at
the minimizer of Ξ4 we must have z′i = 0 and ai = ãi = āi = 0, i = 4, · · · , 9.
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SM3. Explicit expression with biaxial Q i . Next, we calculate the blocks in
(SM2.2) when the tensors take (3.22). They also give the matrices in Section 4.3.

Using (3.22) and the average of (SM1.14) with respect to the density function,
we derive that

〈m1m2 ⊗m1m2〉ijkl

=
(
ā1(n4

1)0 + ā2(n4
2)0 + ā3(n2

1n
2
2)0
)
ijkl
− 1

7
A
(
Q

(0)
1 +Q

(0)
2

)
ijkl

− 1

60
(2δijδkl − 3δikδjl − 3δilδjk)

=
(
ā1(n4

1)0 + ā2(n4
2)0 + ā3(n2

1n
2
2)0
)
ijkl
− 1

7

(
(s1 + s2)A

(
(n2

1)0
)
ijkl

+ (b1 + b2)A
(
n2
2 − n2

3

)
ijkl

)
− 1

60
(2δijδkl − 3δikδjl − 3δilδjk).(SM3.1)

From here, we can see that we shall need to express the six tensors below in the basis
of si ⊗ sj ,

2δijδkl − 3δikδjl − 3δilδjk, A
(
(n2

1)0
)
ijkl

, A
(
n2
2 − n2

3

)
ijkl

, (n4
1)0, (n4

2)0, (n2
1n

2
2)0.

(SM3.2)

Actually, we will see that they only have the following terms:

s1 ⊗ s1, s1 ⊗ s2, s2 ⊗ s1, s2 ⊗ s2, s3 ⊗ s3, s4 ⊗ s4, s5 ⊗ s5.

The first three tensors in (SM3.2) have been discussed in Appendix SM1.3. In what
follows, we calculate the other three tensors.

For the calculation of the term (n4
1)0, employing (SM1.33) and the following

equality

2
∑
α6=β

n2
α ⊗ n2

β − 4

3∑
α=1

n4
α = −9s1 ⊗ s1 − 3s2 ⊗ s2,(SM3.3)

we deduce that

(n4
1)0 =n4

1 −
6

7
n2
1i +

3

35
i2

(SM3.4)

=n4
1 −

1

7

(
n1in1jδkl + n1in1kδjl + n1in1lδjk + n1jn1kδil + n1jn1lδik + n1kn1lδij

)
+

1

35

(
δijδkl + δikδjl + δilδjk

)
=

1

7

(
n4
1 − (n2

1 ⊗ n2
2 + n2

2 ⊗ n2
1 + n2

1 ⊗ n2
3 + n2

3 ⊗ n2
1)

− 4(n1n2 ⊗ n1n2 + n1n3 ⊗ n1n3)
)

+
1

35

(∑
α6=β

n2
α ⊗ n2

β + 3

3∑
α=1

n4
α + 4(n1n2 ⊗ n1n2

+ n1n3 ⊗ n1n3 + n2n3 ⊗ n2n3)

)

=
18

35
s1 ⊗ s1 +

1

35
s2 ⊗ s2 −

16

35
(s3 ⊗ s3 + s4 ⊗ s4) +

4

35
s5 ⊗ s5,
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where the corresponding matrix X4 is given by

X4 =



18
35 0

0 1
35

− 16
35

− 16
35

4
35


.

Similarly, from (SM3.3) and (SM1.33), we derive that

(n4
2)0 =n4

2 −
6

7
n2
2i +

3

35
i2

(SM3.5)

=n4
2 −

1

7

(
n2in2jδkl + n2in2kδjl + n2in2lδjk + n2jn2kδil + n2jn2lδik + n2kn2lδij

)
+

1

35

(
δijδkl + δikδjl + δilδjk

)
=

1

7

(
n4
2 − (n2

1 ⊗ n2
2 + n2

2 ⊗ n2
1 + n2

2 ⊗ n2
3 + n2

3 ⊗ n2
2)

− 4(n1n2 ⊗ n1n2 + n2n3 ⊗ n2n3)
)

+
1

35

(∑
α6=β

n2
α ⊗ n2

β + 3

3∑
α=1

n4
α

+ 4(n1n2 ⊗ n1n2 + n1n3 ⊗ n1n3 + n2n3 ⊗ n2n3)

)

=
27

140
s1 ⊗ s1 +

19

140
s2 ⊗ s2 −

3

28
(s1 ⊗ s2 + s2 ⊗ s1)

− 16

35
(s3 ⊗ s3 + s5 ⊗ s5) +

4

35
s4 ⊗ s4,

where the corresponding matrix X5 is given by

X5 =



27
140 − 3

28

− 3
28

19
140

− 16
35

4
35

− 16
35


.

We may now proceed to deal with the term (n2
1n

2
2)0. Analogously, we have

(n2
1n

2
2)0 =n2

1n
2
2 −

1

7
(n2

1 + n2
2)i +

1

35
i2

=
1

6

(
n1in1jn2kn2l + n1in2jn1kn2l + n1in2jn2kn1l

+ n2in1jn1kn2l + n2in1jn2kn1l + n2in2jn1kn1l

)
− 1

42

(
n1in1jδkl + n1in1kδjl
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+ n1in1lδjk + n1jn1kδil + n1jn1lδik + n1kn1lδij

)
− 1

42

(
n2in2jδkl + n2in2kδjl

+ n2in2lδjk + n2jn2kδil + n2jn2lδik + n2kn2lδij

)
+

1

105

(
δijδkl + δikδjl + δilδjk

)
=

1

6

(
n2
1 ⊗ n2

2 + n2
2 ⊗ n2

1 + 4n1n2 ⊗ n1n2

)
− 1

42

(
6n4

1 +
∑
α6=β

n2
α ⊗ n2

β − (n2
2 ⊗ n2

3 + n2
3 ⊗ n2

2)

+ 4(n1n2 ⊗ n1n2 + n1n3 ⊗ n1n3)

)

− 1

42

(
6n4

2 +
∑
α6=β

n2
α ⊗ n2

β − (n2
1 ⊗ n2

3 + n2
3 ⊗ n2

1)

+ 4(n1n2 ⊗ n1n2 + n2n3 ⊗ n2n3)

)

+
1

105

(∑
α 6=β

n2
α ⊗ n2

β + 3

3∑
α=1

n4
α

+ 4(n1n2 ⊗ n1n2 + n1n3 ⊗ n1n3 + n2n3 ⊗ n2n3)

)

= − 9

35
s1 ⊗ s1 −

1

70
s2 ⊗ s2 +

3

28
(s1 ⊗ s2 + s2 ⊗ s1)

+
18

35
s3 ⊗ s3 −

2

35
(s4 ⊗ s4 + s5 ⊗ s5),(SM3.6)

where the corresponding matrix X6 is given by

X6 =



− 9
35

3
28

3
28 − 1

70

18
35

− 2
35

− 2
35


.

A direct calculation leads to

εilt(n1n2n3)jkt + εjkt(n1n2n3)ilt =
3

2
(s1 ⊗ s2 − s2 ⊗ s1),(SM3.7)

where the associated coefficient matrix Π is given by

Π =


0 3

2

− 3
2 0

0

0

0

 .(SM3.8)
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Based on the above calculations, we immediately give the expressions of R(0)
i (i =

1, · · · , 6) under the basis si⊗sj . Using (3.22) and the averages of (SM1.9) with respect
to the density function, we deduce that

R(0)
1 =

〈(
m2

1 −
1

3
i
)
⊗
(
m2

1 −
1

3
i
)〉

ijkl

=
〈
(m4

1)0
〉
ijkl
− 4

21
A
(
Q

(0)
1

)
ijkl
− 1

45
(2δijδkl − 3δikδjl − 3δilδjk).

In the light of Theorem 3.3, and from (SM1.32), (SM3.4)-(SM3.6), we deduce that

R(0)
1 = a1(n4

1)0 + a2(n4
2)0 + a3(n2

1n
2
2)0 −

4

21

(
s1A

(
(n2

1)0
)
ijkl

+ b1A
(
n2
2 − n2

3

)
ijkl

)
− 1

45
(2δijδkl − 3δikδjl − 3δilδjk),(SM3.9)

for which the matrix R1 is written as

R1 = − 1

45
X1 −

4

21
(s1X2 + b1X3) + a1X4 + a2X5 + a3X6.(SM3.10)

Similarly, for R(0)
2 , it follows that

R(0)
2 =

〈(
m2

2 −
1

3
i
)
⊗
(
m2

2 −
1

3
i
)〉

=
〈
(m4

2)0
〉
− 4

21
A
(
Q

(0)
2

)
− 1

45
(2δijδkl − 3δikδjl − 3δilδjk)

= ã1(n4
1)0 + ã2(n4

2)0 + ã3(n2
1n

2
2)0 −

4

21

(
s2A

(
(n2

1)0
)
ijkl

+ b2A
(
n2
2 − n2

3

)
ijkl

)

− 1

45
(2δijδkl − 3δikδjl − 3δilδjk),

(SM3.11)

for which the matrix R2 is written as

R2 = − 1

45
X1 −

4

21
(s2X2 + b2X3) + ã1X4 + ã2X5 + ã3X6.(SM3.12)

Combining (SM3.1) with (SM3.4)-(SM3.6), the tensor R(0)
3 is expressed by

R(0)
3 = 4

(
ā1(n4

1)0 + ā2(n4
2)0 + ā3(n2

1n
2
2)0
)
ijkl
− 4

7

(
(s1 + s2)A

(
(n2

1)0
)
ijkl

+ (b1 + b2)A
(
n2
2 − n2

3

)
ijkl

)
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk),(SM3.13)

for which the matrix R3 is denoted by

R3 = − 1

15
X1 −

4

7

(
(s1 + s2)X2 + (b1 + b2)X3

)
+ 4
(
ā1X4 + ā2X5 + ā3X6

)
.

(SM3.14)

Analogously, the tensor moment R(0)
4 can be expressed by

R(0)
4 = − 4

(
(a1 + ā1)(n4

1)0 + (a2 + ā2)(n4
2)0 + (a3 + ā3)(n2

1n
2
2)0

)
ijkl

+
4

7

(
s2A

(
(n2

1)0
)
ijkl

+ b2A
(
n2
2 − n2

3

)
ijkl

)
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk),

(SM3.15)
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for which the matrix R4 is denoted by

R4 = − 1

15
X1 +

4

7
(s2X2 + b2X3)− 4

(
(a1 + ā1)X4 + (a2 + ā2)X5 + (a3 + ā3)X6

)
.

(SM3.16)

In the same way, we obtain

R(0)
5 = − 4

(
(ã1 + ā1)(n4

1)0 + (ã2 + ā2)(n4
2)0 + (ã3 + ā3)(n2

1n
2
2)0

)
ijkl

+
4

7

(
s1A

(
(n2

1)0
)
ijkl

+ b1A
(
n2
2 − n2

3

)
ijkl

)
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk),

(SM3.17)

for which the matrix R5 is denoted as

R5 = − 1

15
X1 +

4

7
(s1X2 + b1X3)− 4

(
(ã1 + ā1)X4 + (ã2 + ā2)X5 + (ã3 + ā3)X6

)
.

(SM3.18)

By

(m4
3)0 = (m4

1)0 + (m4
2)0 + 2(m2

1m
2
2)0, (m2

2m
2
3)0 = −(m4

2)0 − (m2
1m

2
2)0,

we derive from (SM1.19) that

R6 = 〈(m2
2 −m2

3)⊗ (m2
2 −m2

3)〉

= 〈(m4
1)0〉+ 4〈(m4

2)0〉+ 4〈(m2
1m

2
2)0〉+

4

7
A
(
Q

(0)
1

)
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk)

= (a1 + 4ã1 + 4ā1)(n4
1)0 + (a2 + 4ã2 + 4ā2)(n4

2)0 + (a3 + 4ã3 + 4ā3)(n2
1n

2
2)0

+
4

7

(
s1A

(
(n2

1)0
)
ijkl

+ b1A
(
n2
2 − n2

3

)
ijkl

)
− 1

15
(2δijδkl − 3δikδjl − 3δilδjk),

(SM3.19)

for which the matrix R6 is given by

R6 = − 1

15
X1 +

4

7
(s1X2 + b1X3) + (a1 + 4ã1 + 4ā1)X4

+ (a2 + 4ã2 + 4ā2)X5 + (a3 + 4ã3 + 4ā3)X6.(SM3.20)

We turn to the term 〈(m2
1)0 ⊗ (m2

2 −m2
3)〉. By (SM1.22), we have

S = 〈(m2
1)0 ⊗ (m2

2 −m2
3)〉

= εjks〈m1m2m3〉ils + εils〈m1m2m3〉kjs + 2〈(m2
1m

2
2)0〉+ 〈(m4

1)0〉

+
4

21
A
(
Q

(0)
1

)
+

8

21
A
(
Q

(0)
2

)
= zεjks(n1n2n3)ils + zεils(n1n2n3)kjs

+ (a1 + 2ā1)(n4
1)0 + (a2 + 2ā2)(n4

2)0 + (a3 + 2ā3)(n2
1n

2
2)0

+
4

21

(
(s1 + 2s2)A

(
(n2

1)0
)
ijkl

+ (b1 + 2b2)A
(
n2
2 − n2

3

)
ijkl

)
,(SM3.21)
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where the coefficient matrix S is given by

S =zΠ +
4

21

(
(s1 + 2s2)X2 + (b1 + 2b2)X3

)
+ (a1 + 2ā1)X4 + (a2 + 2ā2)X5 + (a3 + 2ā3)X6.

We are now able to give the matrices M and P . By (4.3) and (4.5), the corre-
sponding coordinates M11,M12 and M22 are

M11 = Γ2R4 + Γ3R3, M12 = −Γ3R3, M22 = Γ1R5 + Γ3R3,(SM3.22)

P = cζ(I22R1 + I11R2 + I11e1R3).(SM3.23)

Using the expressions of Ri, we arrive at (4.37)–(4.39) and (4.43).
The remaining part is to express averages of fourth-order antisymmetric traceless

tensors and third-order tensors. From (SM1.29), we deduce that

〈
(m1im2j −m2im1j)(m1m2)kl

〉(SM3.24)

= zεijs(n1n2n3)kls +
1

6

(
B
(
Q

(0)
1

)
ijkl

+ B
(
Q

(0)
2

)
ijkl

)
= zεijs(n1n2n3)kls +

1

6

(
(s1 − s2)B

(
(n2

1)0
)
ijkl

+ (b1 − b2)B
(
n2
2 − n2

3

)
ijkl

)
.

We would like to express the above tensors linearly by the three tensors below,

a1 ⊗ s3 = (n1 ⊗ n2 − n2 ⊗ n1)⊗ n1n2,

a2 ⊗ s4 = (n3 ⊗ n1 − n1 ⊗ n3)⊗ n1n3,

a3 ⊗ s5 = (n2 ⊗ n3 − n3 ⊗ n2)⊗ n2n3.

Direct calculations lead to

B
(
(n2

1)0
)
ijkl

=
1

3

(
(2n2

1 − n2
2 − n2

3)ki(n
2
1 + n2

2 + n2
3)jl

− (2n2
1 − n2

2 − n2
3)kj(n

2
1 + n2

2 + n2
3)il

+ (2n2
1 − n2

2 − n2
3)li(n

2
1 + n2

2 + n2
3)jk

− (2n2
1 − n2

2 − n2
3)lj(n

2
1 + n2

2 + n2
3)ik

)
= 2(n1 ⊗ n2 − n2 ⊗ n1)⊗ n1n2 + 2(n1 ⊗ n3 − n3 ⊗ n1)⊗ n1n3

= 2(a1 ⊗ s3 − a2 ⊗ s4),(SM3.25)

B
(
n2
2 − n2

3

)
ijkl

=
(
n2
2 − n2

3

)
ki

(n2
1 + n2

2 + n2
3)jl −

(
n2
2 − n2

3

)
kj

(n2
1 + n2

2 + n2
3)il

+
(
n2
2 − n2

3

)
li

(n2
1 + n2

2 + n2
3)jk −

(
n2
2 − n2

3

)
lj

(n2
1 + n2

2 + n2
3)ik

= − 2(n1 ⊗ n2 − n2 ⊗ n1)⊗ n1n2 + 2(n1 ⊗ n3 − n3 ⊗ n1)⊗ n1n3

+ 4(n2 ⊗ n3 − n3 ⊗ n2)⊗ n2n3

= − 2(a1 ⊗ s3 + a2 ⊗ s4) + 4a3 ⊗ s5.(SM3.26)

By virtue of the definition of symmetric tensors and (SM1.12), it follows that
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εijs(n1n2n3)kls

(SM3.27)

=
1

6
εijs
(
n1kn2ln3s + n2kn3ln1s + n3kn1ln2s + n1kn3ln2s + n2kn1ln3s + n3kn2ln1s

)
=

1

6

(
(n1in2j − n2in1j)n1kn2l + (n2in3j − n3in2j)n2kn3l + (n3in1j − n1in3j)n3kn1l

+ (n3in1j − n1in3j)n1kn3l + (n1in2j − n2in1j)n2kn1l + (n2in3j − n3in2j)n3kn2l
)

=
1

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5).

Rotation of the indices leads to

εjis(n1n2n3)ksl = − 1

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5),(SM3.28)

εijs(n1n2n3)skl =
1

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5).(SM3.29)

Analogous to the derivation of (SM3.24), it holds

〈(m1im3j −m3im1j)(m1m3)kl〉

(SM3.30)

= zεjis(n1n2n3)ksl +
1

6

(
2B
(
Q

(0)
1

)
ijkl
− B

(
Q

(0)
2

)
ijkl

)
= zεjis(n1n2n3)ksl +

1

6

(
(2s1 + s2)B

(
(n2

1)0
)
ijkl

+ (2b1 + b2)B
(
n2
2 − n2

3

)
ijkl

)
,

〈(m2im3j −m3im2j)(m2m3)kl〉
(SM3.31)

= zεijs(n1n2n3)skl +
1

6

(
B
(
Q

(0)
1

)
ijkl
− 2B

(
Q

(0)
2

)
ijkl

)
= zεijs(n1n2n3)skl +

1

6

(
(s1 + 2s2)B

(
(n2

1)0
)
ijkl

+ (b1 + 2b2)B
(
n2
2 − n2

3

)
ijkl

)
.

Therefore, taking advantage of the definition of N (0)
Q1

and combining (SM3.13)
and (SM3.15) with (SM3.24)–(SM3.28) and (SM3.31), and using 1− e1 − e2 = 0, we
deduce that

N (0)
Q1

=
1

2
R(0)

4 +
1

2
(e1 − e2)R(0)

3 −
z

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5)

(SM3.32)

+ (e1 + e2)
z

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5)

+
1

6

(
(2s1 + s2)B

(
(n2

1)0
)
ijkl

+ (2b1 + b2)B
(
n2
2 − n2

3

)
ijkl

)
+ (e1 + e2)

1

6

(
(s1 − s2)B

(
(n2

1)0
)
ijkl

+ (b1 − b2)B
(
n2
2 − n2

3

)
ijkl

)
=

1

2
R(0)

4 +
1

2
(e1 − e2)R(0)

3 + (s1 − b1)a1 ⊗ s3 − (s1 + b1)a2 ⊗ s4 + 2b1a3 ⊗ s5.

Similarly, combining (SM3.13) and (SM3.17) with (SM3.24)-(SM3.27), (SM3.29) and
(SM3), then we have
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N (0)
Q2

=
1

2
R(0)

5 +
1

2
(e2 − e1)R(0)

3 +
z

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5)

(SM3.33)

− (e1 + e2)
z

3
(a1 ⊗ s3 + a2 ⊗ s4 + a3 ⊗ s5)

+
1

6

(
(s1 + 2s2)B

(
(n2

1)0
)
ijkl

+ (b1 + 2b2)B
(
n2
2 − n2

3

)
ijkl

)
− (e1 + e2)

1

6

(
(s1 − s2)B

(
(n2

1)0
)
ijkl

+ (b1 − b2)B
(
n2
2 − n2

3

)
ijkl

)
=

1

2
R(0)

5 +
1

2
(e2 − e1)R(0)

3 + (s2 − b2)a1 ⊗ s3 − (s2 + b2)a2 ⊗ s4 + 2b2a3 ⊗ s5.

The equations (4.40)–(4.42) then come from (SM3.32) and (SM3.33).
Finally, we deal with the third-order tensors. By a direct calculation, we get

(n1n2n3)ijk =
1

6

(
n1i(n2jn3k + n3jn2k) + n2i(n1jn3k + n3jn1k)

+ n3i(n1jn2k + n2jn1k)
)

=
1

3

(
n1 ⊗ s5 + n2 ⊗ s4 + n3 ⊗ s3

)
.

Meanwhile, we also easily deduce that

εijs
(
(n2

1)0
)
ks

+ εiks
(
(n2

1)0
)
js

= (n2in3j − n3in2j)n1k + (n2in3k − n3in2k)n1j

= 2(n2 ⊗ s4 − n3 ⊗ s3),

εijs(n2
2 − n2

3)ks + εiks(n2
2 − n2

3)js =n2k(n3in1j − n1in3j)− n3k(n1in2j − n2in1j)
+ n2j(n3in1k − n1in3k)− n3j(n1in2k − n2in1k)

= 2
(
n3 ⊗ s3 − 2n1 ⊗ s5 + n2 ⊗ s4

)
.

Hence, by using (SM1.25), we derive from Theorem 3.3 that

〈m1 ⊗m2m3〉ijk = 〈m1m2m3〉ijk +
1

6

(
εijs
(
〈(m2

3)0〉 − 〈(m2
2)0〉

)
ks

+ εiks
(
〈(m2

3)0〉 − 〈(m2
2)0〉

)
js

)
= z(n1n2n3)ijk −

1

6

(
εijs
(
Q

(0)
1 + 2Q

(0)
2

)
ks

+ εiks
(
Q

(0)
1 + 2Q

(0)
2

)
js

)
= z(n1n2n3)ijk −

1

6
(s1 + 2s2)

(
εijs
(
(n2

1)0
)
ks

+ εiks
(
(n2

1)0
)
js

)
− 1

6
(b1 + 2b2)

(
εijs(n2

2 − n2
3)ks + εiks(n2

2 − n2
3)js

)
=

1

3
(z + 2b1 + 4b2)n1 ⊗ s5 +

1

3
(z − s1 − 2s2 − b1 − 2b2)n2 ⊗ s4

+
1

3
(z + s1 + 2s2 − b1 − 2b2)n3 ⊗ s3,(SM3.34)
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for which the coefficient matrix T1 under the basis ni ⊗ sj is given by

T1 =



0 0 0 0 1
3 (z + 2b1 + 4b2)

0 0 0 1
3 (z − s1 − 2s2 0
−b1 − 2b2)

0 0 1
3 (z + s1 + 2s2 0 0
−b1 − 2b2)

 .(SM3.35)

Following the same procedure, we obtain

〈m2 ⊗m1m3〉ijk = 〈m1m2m3〉ijk +
1

6

(
εijs
(
〈(m2

1)0〉 − 〈(m2
3)0〉

)
ks

+ εiks
(
〈(m2

1)0〉 − 〈(m2
3)0〉

)
js

)
= z(n1n2n3)ijk +

1

6
(2s1 + s2)

(
εijs
(
(n2

1)0
)
ks

+ εiks
(
(n2

1)0
)
js

)
+

1

6
(2b1 + b2)

(
εijs(n2

2 − n2
3)ks + εiks(n2

2 − n2
3)js

)
=

1

3
(z − 4b1 − 2b2)n1 ⊗ s5 +

1

3
(z + 2s1 + s2 + 2b1 + b2)n2 ⊗ s4

+
1

3
(z − 2s1 − s2 + 2b1 + b2)n3 ⊗ s3,(SM3.36)

〈m3 ⊗m1m2〉ijk = 〈m1m2m3〉ijk +
1

6

(
εijs
(
〈(m2

2)0〉 − 〈(m2
1)0〉

)
ks

+ εiks
(
〈(m2

2)0〉 − 〈(m2
1)0〉

)
js

)
= z(n1n2n3)ijk −

1

6
(s1 − s2)

(
εijs
(
(n2

1)0
)
ks

+ εiks
(
(n2

1)0
)
js

)
− 1

6
(b1 − b2)

(
εijs(n2

2 − n2
3)ks + εiks(n2

2 − n2
3)js

)
=

1

3
(z + 2b1 − 2b2)n1 ⊗ s5 +

1

3
(z − s1 + s2 − b1 + b2)n2 ⊗ s4

+
1

3
(z + s1 − s2 − b1 + b2)n3 ⊗ s3,(SM3.37)

where the associated coefficient matrices T2, T3 in (SM3.36) and (SM3.37) can be
written as

T2 =



0 0 0 0 1
3 (z − 4b1 − 2b2)

0 0 0 1
3 (z + 2s1 + s2 0

+2b1 + b2)

0 0 1
3 (z − 2s1 − s2 0 0

+2b1 + b2)

 ,(SM3.38)

T3 =



0 0 0 0 1
3 (z + 2b1 − 2b2)

0 0 0 1
3 (z − s1 + s2 0
−b1 + b2)

0 0 1
3 (z + s1 − s2 0 0
−b1 + b2)

 .(SM3.39)
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Define

wTi = (si, bi, 0, 0, 0), i = 1, 2,

(SM3.40)

W1 = diag

(
1

3
(2s1 + 1),

1

3
(1− s1) + b1,

1

3
(1− s1)− b1

)
,

W2 = diag

(
1

3
(2s2 + 1),

1

3
(1− s2) + b2,

1

3
(1− s2)− b2

)
,

W3 = diag

(
1

3
(1− 2s1 − 2s2),

1

3
(1 + s1 + s2)− b1 − b2,

1

3
(1 + s1 + s2) + b1 + b2

)
.

Then, the quasi-entropy Ξ4 can be reduced to

Ξ4,Bi = − ln det

 1
Λ

Λ


 1 wT1 (2w2 + w1)T

w1 R1 S

2w2 + w1 ST R6


 1

Λ
Λ


− ln det

(
1

Λ

)(
W1 T1

TT1 R3

)(
1

Λ

)

− ln det

(
1

Λ

)(
W2 T2

TT2 R4

)(
1

Λ

)

− ln det

(
1

Λ

)(
W3 T3

TT3 R5

)(
1

Λ

)

= − ln det

 1 wT1 (2w2 + w1)T

w1 R1 S

2w2 + w1 ST R6

− ln det

(
W1 T1

TT1 R3

)

− ln det

(
W2 T2

TT2 R4

)
− ln det

(
W3 T3

TT3 R5

)
− 10 ln det Λ.

(SM3.41)

The expressions of Ri, S, Ti can all be found above.

SM4. The uniaxial case: Theorem 5.1. Assume that Qi are uniaxial, i.e.
bi = 0 so that

Qi = si

(
n2
1 −

i

3

)
, i = 1, 2.

By (3.20), we require that the two scalars si satisfy

(SM4.1) − 1

2
< s1, s2, − s1 − s2 < 1.

For the original entropy, the discussion is similar to the biaxial case.
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Lemma SM4.1. If si satisfy (SM4.1), then there exists a unique density function

ρ =
1

Z
exp

∑
i=1,2

λi(mi · n1)2


such that 〈(m2

i )0〉 = si(n
2
1)0.

We omit the rest of the derivation since it is the same as the biaxial case.
We turn to the quasi-entropy. Here, we need to notice that

2X6 +X4 =


0 3

14
3
14 0

4
7

− 4
7

0

 def
= X ′6,(SM4.2)

8X6 + 8X5 +X4 =


0 0

0 1

0

0

−4

 def
= X ′5.(SM4.3)

Let us define

a′1 = a1 −
1

2
a3 +

3

8
a2, a′2 =

1

8
a2, a3 =

1

2
(a3 − a2),

ã′1 = ã1 −
1

2
ã3 +

3

8
ã2, ã′2 =

1

8
ã2, ã3 =

1

2
(ã3 − ã2),

ā′1 = ā1 −
1

2
ā3 +

3

8
ā2, ā′2 =

1

8
ā2, ā3 =

1

2
(ā3 − ā2).

It can be verified that

a1X4 + a2X5 + a3X6 = a′1X4 + a′2X
′
5 + a′3X

′
6.

In what follows, we show that when Qi are uniaxial, Ξ4,Bi reaches its minimum
only when a′2 = a′3 = ã′2 = ã′3 = ā′2 = ā′3 = z = 0.

Let us discuss each of the log-determinant in (SM3.41). We could rearrange the
indices to arriave at

− ln det

 1 wT1 (2w2 + w1)T

w1 R1 S

2w2 + w1 ST R6



= − ln det

 1 (s1, 2s1 + s2) 01×2

(s1, 2s1 + s2)T Υ1
3
14Θ3 − zΠ1

02×1
3
14Θ3 + zΠ1 Υ2 + Θ2


− ln det(Υ3 +

4

7
Θ3)− ln det(Υ3 −

4

7
Θ3)− ln det(4Υ2 − 4Θ2),(SM4.4)
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where the blocks Υi, Θi and Π1 are given by

Υ1 =

(
1
5 + 2

7s1 + 18
35a
′
1 − 2

7 (s1 + 2s2) + 18
35 (a′1 + 2ā′1)

− 2
7 (s1 + 2s2) + 18

35 (a′1 + 2ā′1) 3
5 −

6
7s1 + 18

35 (a′1 + 4ã′1 + 4ā′1)

)
,

Υ2 =

(
1
15 −

2
21s1 + 1

35a
′
1

2
21 (s1 + 2s2) + 1

35 (a′1 + 2ā′1)
2
21 (s1 + 2s2) + 1

35 (a′1 + 2ā′1) 1
5 + 2

7s1 + 1
35 (a′1 + 4ã′1 + 4ā′1)

)
,

Υ3 =

(
4
15 + 4

21s1 −
16
35a
′
1 − 4

21 (s1 + 2s2)− 16
35 (a′1 + 2ā′1)

− 4
21 (s1 + 2s2)− 16

35 (a′1 + 2ā′1) 4
5 −

4
7s1 −

16
35 (a′1 + 4ã′1 + 4ā′1)

)
,

Θ2 =

(
a′2 a′2 + 2ā′2

a′2 + 2ā′2 a′2 + 4ã′2 + 4ā′2

)
,

Θ3 =

(
a′3 a′3 + 2ā′3

a′3 + 2ā′3 a′3 + 4ã′3 + 4ā′3

)
,

Π1 =

(
0 3

2

− 3
2 0

)
.

Notice that Υi does not depend on a′i, ã
′
i, ā
′
i for i = 2, 3, and Θ2, Θ3 only depend on

them.
By Lemma SM2.2, we deduce that

− ln det

 1 (s1, 2s1 + s2) 01×2

(s1, 2s1 + s2)T Υ1
3
14Θ3 − zΠ1

02×1
3
14Θ3 + zΠ1 Υ2 + Θ2


≥ − ln det

(
1 (s1, 2s1 + s2)

(s1, 2s1 + s2)T Υ1

)
− ln det(Υ2 + Θ2).(SM4.5)

The equality holds if and only if z = 0 and Θ3 = 0. In addition, it shall be noticed
that − ln detA is strictly convex about A (see, for example, Lemma 4.5 in [SM3] for
a proof). Therefore, we obtain

− ln det(Υ2 + Θ2)− ln det(4Υ2 − 4Θ2) ≥ −2 ln det Υ2 − 2 ln 4,

− ln det(Υ3 +
4

7
Θ3)− ln det(Υ3 −

4

7
Θ3) ≥ −2 ln det Υ3.(SM4.6)

The equalities hold if and only if Θ2 = Θ3 = 0.
Let us look into another log-determinant in (SM3.41). It follows that

− ln det

(
W1 T1

TT1 R3

)
=

− ln det



ξ1
1
3z

ξ2 −ξ3 + 1
3z

ξ2 ξ3 + 1
3z

ξ4
3
14 ā
′
2

3
14 ā
′
2 ξ5 + ā′3

ξ3 + 1
3z ξ6 + 4

7 ā
′
2

−ξ3 + 1
3z ξ6 − 4

7 ā
′
2

1
3z 4ξ5 − 4ā′3


.
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In the above, those ξi are given by

ξ1 =
1

3
(2s1 + 1), ξ2 =

1

3
(1− s1), ξ3 =

1

3
(s1 + 2s2),

ξ4 =
3

5
+

6

7
(s1 + s2) +

72

35
ā′1,

ξ5 =
1

5
− 2

7
(s1 + s2) +

4

35
ā′1,

ξ6 =
4

5
+

4

7
(s1 + s2)− 64

35
ā′1.

Since the function − lnx is monotonely decreasing and strictly convex, we have the
inequality

− ln

(
ξ1 (4ξ5 − 4ā′3)− 1

9
z2
)
− ln

(
ξ2

(
ξ6 −

4

7
ā′2

)
−
(
ξ3 −

1

3
z

)2
)

− ln

(
ξ2

(
ξ6 +

4

7
ā′2

)
−
(
ξ3 +

1

3
z

)2
)
− ln

(
ξ4 (ξ5 + ā′3)−

(
3

14
ā′2

)2
)

≥ − ln (ξ1 (4ξ5 − 4ā′3))− ln

(
ξ2

(
ξ6 −

4

7
ā′2

)
− ξ23 +

2

3
ξ3z

)
− ln

(
ξ2

(
ξ6 +

4

7
ā′2

)
− ξ23 −

2

3
ξ3z

)
− ln (ξ1 (ξ5 + ā′3))

= − ln ξ1 − ln ξ4 − ln 4

− ln (ξ5 − ā′3)− ln (ξ5 + ā′3)

− ln

(
ξ2

(
ξ6 −

4

7
ā′2

)
− ξ23 +

2

3
ξ3z

)
− ln

(
ξ2

(
ξ6 +

4

7
ā′2

))
≥ − ln ξ1 − ln ξ4 − ln 4− 2 ln ξ5 − 2 ln

(
ξ2ξ6 − ξ23

)
.(SM4.7)

The equalities hold if and only if ā′2 = ā′3 = z = 0.
Similarly, we could deal with the other two log-determinants in (SM3.41). Sum-

marizing (SM4.5), (SM4.6) and (SM4.7), we conclude that when Qi are uniaxial, at
the minimizer we must have a′2 = a′3 = ã′2 = ã′3 = ā′2 = ā′3 = z = 0.

SM5. The orientational elasticity. For the readers’ convenience, we present
the orientational elasticity for the biaxial nematic phases that can be found in [SM5],
where the elasitic constants expressed the coefficients in the molecular-theory-based
static Q-tensor model. In addition, the variational derivatives with respect to the
orthonomal frame p = (n1,n2,n3) are derived.

We first write down an equivalent formulation of (4.44). Using the following
relations

∇ · n2 = −D31 +D13, n2 · ∇ × n2 = D33 +D11,

n3 · ∇ × n2 = −D23, n1 · ∇ × n2 = −D21,

|n2 ×∇× n2|2 = (n1 · ∇ × n2)2 + (n3 · ∇ × n2)2,

together with (4.44) yields that the equivalent expression analogous to the Oseen-
Frank energy can be given by

FBi(p)

ckBT
=

∫
dx

1

2

(
K1(∇ · n1)2 +K2(n1 · ∇ × n1)2 +K3(n1 ×∇× n1)2
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+K4(∇ · n2)2 +K5(n2 · ∇ × n2)2 +K6(n2 ×∇× n2)2

+K7(∇ · n3)2 +K8(n3 · ∇ × n3)2 +K9(n3 ×∇× n3)2

+K10(n1 · ∇ × n3)2 +K11(n2 · ∇ × n1)2 +K12(n3 · ∇ × n2)2
)
,(SM5.1)

where the elastic coefficients Ki(i = 1, · · · , 12) can be expressed by Kijkl(i, j, k, l =
1, 2, 3) (see [SM1] for details). In the above, we also neglect the surface terms (4.45).

The next task is to provide the biaxial elastic energy with the form (4.44) de-
rived from the molecular-theory-based static tensor model (3.2), where the elastic
coefficients Kijkl are expressed by molecular parameters. We refer to [SM5] for more
detailed discussion.

Assume that the minimizers of the bulk energy in (3.2) has the following biaxial
form:

Qα = (sα + bα)n2
1 + 2bαn

2
2 −

(1

3
sα + bα

)
i, α = 1, 2.

Then the corresponding derivative terms are calculated as

|∇Qα|2 = 2(sα + bα)2(∂kn1i)
2 + 8b2α(∂kn2i)

2 + 8bα(sα + bα)n1in2j∂kn1j∂kn2i,

∂iQ1jk∂iQ2jk = 2(s1 + b1)(s2 + b2)(∂in1j)
2 + 8b1b2(∂in2j)

2

+ 4[b1(s2 + b2) + b2(s1 + b1)]n1jn2k∂in1k∂in2j ,

∂iQαik∂jQβjk = (sα + bα)(sβ + bβ)
(
|∇ · n1|2 + n1in1j∂in1k∂jn1k

)
+ 2
[
bα(sβ + bβ) + bβ(sα + bα)

](
(∇ · n1)n1kn2j∂jn2k

+ (∇ · n2)n1in2k∂in1k + n1in2j∂in1k∂jn2k
)

+ 4bαbβ
(
|∇ · n2|2 + n2in2j∂in2k∂jn2k

)
.

From which and the elastic energy in (3.2) implies that

FBi(p)

ckBT
=

∫
dx

1

2

[
J1(∂in1j)

2 + J2(∂in2j)
2 + J3n1in2j∂kn1j∂kn2i

+ J4
(
|∇ · n1|2 + n1in1j∂in1k∂jn1k

)
+ J5

(
|∇ · n2|2 + n2in2j∂in2k∂jn2k

)
+ J6

(
(∇ · n1)n1kn2j∂jn2k + (∇ · n2)n1in2k∂in1k + n1in2j∂in1k∂jn2k

)]
,(SM5.2)

where the coefficients Ji(i = 1, · · · , 6) are given by (4.47).
We need to express the derivative terms in (SM5.2) by the nine invariantDλδ(λ, δ =

1, 2, 3). For example, the following four terms can be respectively expressed as

(∂in1j)
2 = δjlδik∂kn1l∂in1j

= (n2jn2l + n3jn3l)(n1in1k + n2in2k + n3in3k)∂kn1l∂in1j

=
(
n1in2jn1kn2l + n2in2jn2kn2l + n3in2jn3kn2l + n1in3jn1kn3l

+ n2in3jn2kn3l + n3in3jn3kn3l
)
∂kn1l∂in1j

=D2
13 +D2

23 +D2
33 +D2

12 +D2
22 +D2

32,

∂jn1j = δij∂in1j = (n2in2j + n3in3j)∂in1j

=D32 −D23,

n1in2j∂kn1j∂kn2i = δjlδksn1in2l∂kn1j∂sn2i

=n2jn2l(n1kn1s + n2kn2s + n3kn3s)n1in2l∂kn1j∂sn2i



SM30 SIRUI LI AND JIE XU

= (n1kn2jn1sn1i + n2kn2jn2sn1i + n3kn2jn3sn1i)∂kn1j∂sn2i

= − (D2
13 +D2

23 +D2
33),

n1in1j∂in1k∂jn1k = δkln1in1j∂in1l∂jn1k

= (n2kn2l + n3kn3l)n1in1j∂in1l∂jn1k

=D2
12 +D2

13.

While the remaining four terms can be similarly expressed as follows:

(∂in2j)
2 =D2

13 +D2
23 +D2

33 +D2
11 +D2

21 +D2
31,

∂jn2j =D13 −D31,

n2in2j∂in2k∂jn2k =D2
21 +D2

23,

n1in2j∂in1k∂jn2k = −D12D21.

Plugging the above eight relations into (SM5.2), we immediately obtain the biaxial
elastic energy (4.44), where the elastic coefficients Kijkl(i, j, k, l = 1, 2, 3), completely
determined by the molecular parameters, are given by (4.46).

Then, we calculate the variational derivative about the frame p, and derive the
variational derivative along the infinitesimal rotation round ni(i = 1, 2, 3). For in-
stance, the variational derivative along the infinitesimal rotation round n1 is given
by

n2α
δ

δn3α
− n3α

δ

δn2α
,

where the operator δ
δn3α

represents the variational derivative about n3 assuming that
n3 is an independent vector (ignoring the constraints that n3 · n3 = 1 and n3 · n1 =
n3 · n2 = 0).

Therefore, the variational derivatives of the elastic energy (4.44) with respect to
the frame p can be respectively calculated as follows:

δFBi
δn1α

=K1111D11n2k∂αn3k −K2222∂k(D22n2kn3α) +K3333D33n3k∂kn2α

(SM5.3)

+K1212

(
D12n3k∂αn1k − ∂k(D12n1kn3α)

)
+K2323D23n2k∂kn2α

−K3232∂k(D32n3kn3α) +K1313D13n1k(∂kn2α + ∂αn2k)

+
1

2
K1221

(
D21n3k∂αn1k − ∂k(D21n1kn3α)

)
+

1

2
K2332

(
D32n2k∂kn2α − ∂k(D23n3kn3α)

)
+

1

2
K1331D31n1k(∂kn2α + ∂αn2k),

δFBi
δn2α

=K1111D11n1k∂kn3α +K2222D22n3k∂αn1k −K3333∂k(D33n3kn1α)

(SM5.4)

+K2121D21n2k(∂kn3α + ∂αn3k) +K2323

(
D23n1k∂αn2k − ∂k(D23n2kn1α)

)
+K3131D31n3k∂kn3α −K1313∂k(D13n1kn1α)

+
1

2
K1221D12n2k(∂kn3α + ∂αn3k)
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+
1

2
K2332

(
D32n1k∂αn2k − ∂k(D32n2kn1α)

)
+

1

2
K1331

(
D13n3k∂kn3α − ∂k(D31n1kn1α)

)
,

δFBi
δn3α

= −K1111∂k(D11n1kn2α) +K2222D22n2k∂kn1α +K3333D33n1k∂αn2k

(SM5.5)

+K1212D12n1k∂kn1α−K2121∂k(D21n2kn2α) +K3232D32n3k(∂kn1α + ∂αn1k)

+K3131

(
D31n2k∂αn3k − ∂k(D31n3kn2α)

)
+

1

2
K1221

(
D21n1k∂kn1α − ∂k(D12n2kn2α)

)
+

1

2
K2332D23n3k(∂kn1α + ∂αn1k)

+
1

2
K1331

(
D13n2k∂αn3k − ∂k(D13n3kn2α)

)
.

Using the variational derivatives (SM5.5) and (SM5), we have

n2α
δFBi
δn3α

− n3α
δFBi
δn2α

= −K1111n2α∂k(D11n1kn2α)−K2222D22(D23 +D32)

+K3333

(
D33D23 + n3α∂k(D33n3kn1α)

)
−K1212D12D13

−K2121

(
D21D31 + n2α∂k(D21n2kn2α)

)
+K3232D32(D22 −D33)

−K2323

(
D33D23 − n3α∂k(D23n2kn1α)

)
+K3131

(
D31D21 − n2α∂k(D31n3kn2α)

)
+K1313n3α∂k(D13n1kn1α)

− 1

2
K1221

(
D21D13 +D12D31 + n2α∂k(D12n2kn2α)

)
+

1

2
K2332

(
D23(D22 −D33)−D33D32 + n3α∂k(D32n2kn1α)

)
+

1

2
K1331

(
D13D21 − n2α∂k(D13n3kn2α) + n3α∂k(D31n1kn1α)

)
.(SM5.6)

Similarly, we have

n3α
δFBi
δn1α

− n1α
δFBi
δn3α

= K1111D11(D13 +D31)−K2222∂k(n2kD22)−K3333D33(D13 +D31)

+K1212

(
D12D32 − ∂k(n1kD12)

)
+ (K2121 −K2323)D23D21

−K3232

(
D12D32 + ∂k(n3kD32)

)
+K1313D13(D33 −D11)

−K3131D31(D11 −D33) +
1

2
K1221

(
D21D32 +D12D23 − ∂k(n1kD21)

)
− 1

2
K2332

(
D32D21 +D23D12 + ∂k(n3kD23)

)
+

1

2
K1331(D31 +D13)(D33 −D11),(SM5.7)

and

n1α
δFBi
δn2α

− n2α
δFBi
δn1α
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= −K1111D11(D12 +D21) +K2222D22(D12 +D21)−K3333∂k(n3kD33)

+K2121D21(D11 −D22) +K2323

(
D23D13 − ∂k(n2kD23)

)
+ (K3232 −K3131)D31D32 −K1313

(
D13D23 + ∂k(n1kD13)

)
−K1212D12(D22 −D11) +

1

2
K1221(D12 +D21)(D11 −D22)

+
1

2
K2332

(
D32D13 +D23D31 − ∂k(n2kD32)

)
− 1

2
K1331

(
D32D13 +D23D31 + ∂k(n1kD31)

)
.(SM5.8)
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