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1. Introduction

Steklov eigenvalue problems, in which the eigenvalue parameter appears in the boundary condition, arise in a number
of applications. For instance, they are found in the study of surface waves (see [8]), in the analysis of stability of mechanical
oscillators immersed in a viscous fluid (see [14] and the references therein), in the study of the vibration modes of a
structure in contact with an incompressible fluid (see, for example [9]) and in the analysis of the antiplane shearing on a
system of collinear faults under slip-dependent friction law (see [11]). There are many interesting problems for the one-
dimensional case, like those of vibrations of a pendulum (see [1] and the references therein), those of eigen oscillations of
mechanical systems with boundary conditions containing the frequency (see [19]), and many others (see [12], [22] et al.).

Bramble and Osborn [10] studied the Galerkin method for the approximation of Steklov eigenvalues of non-selfadjoint
second order elliptic operators. Andreev and Todorov [3] studied the isoparametric variant of finite element method for
an approximation of Steklov eigenvalue problems for second-order selfadjoint elliptic differential operators. Armentano and
Padra [6] proposed and analyzed an a posteriori error estimator, of the residual type, for the linear finite element approxi-
mation of the Steklov eigenvalue problem. Han and Guan [17], Han, Guan and He [18], Huang and Lii [20], and Tang, Guan
and Han [24] studied the boundary element method for Steklov eigenvalue problems. However, a few papers deal with
nonconforming finite elements.
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It is well known that nonconforming finite element methods play an important role in the numerical approximation of
elliptic partial differential equations when conforming methods and others seem too costly or unstable. So it is natural and
meaningful for us to study nonconforming finite element approximations of Steklov eigenvalue problems.

In this paper, we consider the following model problem

ou

—Au+u=0 in £, ﬁzxu on 052, (1)
where 2 ¢ R? is a bounded convex polygonal domain and % is the outward normal derivative on 952.
The variational problem associated with (1) is given by: find » € R and u € H!(£2) with |u||, =1 satisfying
a(u,v)=Abu,v), VYveHY(R), (2)
where

a(u,v):/Vqu + uvdx,
Q

b(u,v)= / uvds, |lullp =b(u,u)%.
02
Evidently, the bilinear form a(-, -) is symmetric, continuous and coercive over the product space H!(£2) x H'(£2).

From [10], the problem (2) has a countable infinite set of eigenvalues, all having finite multiplicity and being strictly
positive, without finite accumulation point. We arrange them as 0 < A1 <Az <--- < Aj <--- — 400 (here each eigenvalue
occurs as many times as given by its multiplicity). The associated eigenfunctions u; € H?(2).

Let 77, be a regular mesh of £2 (see [13], pp. 131), and K € 7, be affine-equivalent to a reference element K. Let F and
F be edges of K and K respectively.

We introduce three nonconforming finite elements: the nonconforming Crouzeix-Raviart element, the Q{Ot element and
the EQﬁOt element. Their corresponding spaces are defined as follows.

The nonconforming Crouzeix-Raviart element space, proposed by Crouzeix and Raviart [15], is defined by S" = {v €
L2(£2): v|g € span{1,x, y} is continuous at the midpoints of the edges of elements}.

The Q{Ot element space, proposed by Rannacher and Turek [23] and Arbogast and Chen [4], is defined by

sh= {v € Ly(2): v|g espan{1,x,y, x* —yz},/vh(1 ds:/v|,<2 ds if K1 NKy = F}.
F F
The EQE‘Jt element space, provided by Lin, Tobiska and Zhou (see [21]), is defined by

Shz{veLz(Q): v|1<espan{l,x,y,x2,yz},/vh(1 ds:fv|K2ds if KlszzF}.
F F

Note that the Q{Ut element and EQ§°t element in the paper are defined on rectangular meshes.
All the above nonconforming elements have the following common characters:

1) The space of shape functions contains the complete polynomials of degree 1;
2) v e S" is integrally continuous at the common edge F between the neighboring elements K; and Kj, i.e.,

/V|1(] dS:/V“(Z ds if Ky N Ky =F;
F F
3) sh ¢ H'(22), S" c L2(2), and 8S" c L2(952), where §S" denotes the space of restrictions to 852 of functions in S".
Note that the results of Sections 2 and 3 hold true for the nonconforming elements with the above three characters.

The nonconforming finite element approximation of (2) is the following:
Find Ay € R and up, € S" with |Jupl, =1 such that

an(un, v) = rpb(up, v), ¥veSs", (3)
where
ap(up, v) = Z /Vuth + upvdx.
Kemp i
Define || - ||, = (ZKem. Il - ”%,K)%' Evidently, | - || is the norm on S" and ay(-, ) is uniformly S"-elliptic. In fact,

an(v,v)=|v|}. Vvest
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We arrange the eigenvalues of problem (3) as 0 < Ay p <Azp <--- <Ajp <--- < Anp, where N =dim sh and each eigen-
value occurs as many times as given by its multiplicity.

The rest of the paper is organized as follows. In Section 2 we analyze the nonconforming element approximations of the
corresponding source problem. The error estimates are derived. In Section 3 we study nonconforming element approxima-
tions of the Steklov eigenvalue problem. We prove that the j-th approximate eigenpair converges to the j-th exact eigenpair
and error estimates for eigenvalues and eigenfunctions are obtained. In Section 4 we discuss lower bounds of the exact
eigenvalue of the Steklov eigenvalue problem using the Crouzeix-Raviart element, the Q{Ot element and the EQﬁOt element.
We prove that the j-th eigenvalue derived by the EQqOt element gives lower bound of the j-th exact eigenvalue, whereas
the nonconforming Crouzeix-Raviart element and the Q{"t element provide lower bounds of the large eigenvalues. Finally,
numerical experiments in Section 5 are carried out to verify our theoretical analysis.

Throughout this paper, C denotes a generic positive constant independent of h, which may not be the same at each
occurrence.

2. Nonconforming element approximations of the corresponding source problem

Consider the source problem (4) associated with (1), and the approximate source problem (5) associated with (3):

ue Hl(Q),

a(u,v)=b(f,v), VveHY (). (4)

up € Sh,

ay(up, v) =b(f,v), VveSsh (5)
Having in mind that H(£2) denotes the Sobolev space with real order s on £2, || - ||s is the norm on H*(£2) and H%(2) =
Ly(£2).

Lemma 2.1. Assume f € L,(352), thenu € H3? (£2) and
lfulls < Cpllfllb- (6)

Further, assume that f € H? 02)(j=1,2,...,])and 92 = Ujj-=1 082, where 92; are straight segments. Then u € H2(£2) and

J
lullz <Cp Y 1fll 40, (7)

j=1
Proof. See (4.10) in [10] and Proposition 4.4 in [9] for details. O
From Lemma 7.1.1 in [25], the following lemma likewise holds.
Lemma 2.2. For any w € H" (K),

_ _ 1
/|w|2ds<C{h,<1||w||5,K+hf{ Hwif i) <5<r<1>,
K

where the positive constant C is independent of w and the diameter hi of K.

Proof. Using the trace theorem over the reference element K, we have

250 [ 12 210K] P~ ~2
/IWI dS—/IWI |3f<|dsgChK”W”o,ak<Ch’<”W”r,f<
oK ok

= Chi{lIlwl? .

ok T |\7v|qu} <Clnwlig g +hy wizg), YweH (K). O

Let F be an edge of K, define:

1
P5f=m/fds, REf=f—PLf. (8)
F

Ke_ 1 Ke_ ¢ pk
Pof_|1<|/fdx’ Ryf=f—-Pyf. (9)
K
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Lemma 2.3. Let w € H5(K). Then
IRGwlox <CHIWlsk (O<s<T). (10)

Proof. From the interpolation theory, we easily see that (10) is valid. O

Lemma 2.4. For any f € Ly(F),

||POfH0F I fllo,E-
[R5 Flo e <IF=Vlor. VvePo(K). o

Proof. It is not difficult to prove that Pg : Lo(F) — Po(F) is an orthogonal projection operator. Thus the above inequalities
hold. O

Let E(u, v) =ap(u, v) —b(f, v) be the consistency error term of nonconforming finite element.

Theorem 2.1. Let u is a solution of (4) and u € H%(£2), then Ej(u, v) can be estimated by

2
Eh(u,v)<Ch|u|2<Z|v|{K> , VveH'(£2)+sh (12)
K

Let u be the solution of (4) and u € H% (£2), then the following estimate holds.

2
Eh(u,v)<Ch%|u|%<Z|v|%’K) . WveH' (2)+S", (13)
K

where the positive constant C is independent of u and h.

Proof. Here we use the standard method (see, for example [25], §7.2.1).
By Green’s formula, we have

En(u,v)=ap(u,v) —b(f,v)= Z [Vqu+uvdx—/fvds

Kemp i
/( Au+u)vdx + Z /—vd —/—vvds
Kemy gk a0

Since u is a solution of (4), we have f_Q (—Au+u)vdx =0. Thus,

Ep(u,v) = Z/au vds —/—vds

kemp 5

= Z /Zaiuvvids—/zaluvv,ds
Kemp gy i=1 a0 =1
2

=y > /(8,uv|,<+—81uv|,< ywitds
i=1 FgaR

Il
™M~

Z /Ei,'u[v]vl?L ds, (14)

1Fgo

where [v] denotes the jump of v on F and [v] = (V|g+ — V|k-)IF.
Since v € H1(£2) + S" and functions in S" is integrally continuous at F, fF[v]ds =0.
Now we estimate fF 8,~u[v]v;r ds, F ¢ 02 on the right-hand side of (14).
From (9), we have
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/81u[v]vi+ds=vﬁ/a,u[v]ds_v /Rg(a w)[vlds + v;" ng(aiu)[v]ds
F

F F F

= fRO (8,u)[v]ds+v+P (8lu)/[v]ds_v /R (0ju)[v]ds

F F
:vf/Rg(aiu)Rg([v]) ds+u;r/R§(a,~u)Pg([v])ds. (15)
F F

Note that
1
PE(Iv]) = i /[v]ds =0.
F
After we take it in (15) and make use of Schwarz’s inequality, we get

‘/aiu[v]vfds =
F

vt / R ()R ([v1)ds
F

< { / (R (aiu))zds};{ / (RE ([v]))zds};. (16)

By Lemma 2.2 with r =1 and (10) with s =1, we obtain

[ (RS Gw)?as < c{ni RS G [ + e R @0 )
F
< Chgluld . (17)

From (11), Lemma 2.2 with r =1 and (10) with s =1, we derive

JRE@)as= [ {1- pf (v as

F F

- /{(v+ —PEwh) = (vT = PEw))) ds
— PE(v)) ds+/( - —Pg(v‘))zds}
F

<ffe
F
{f — PE" (v h)) ds+/ P(’f’(v*))zds}
F F
i IRET M)l e+ [RET @O o) + (L RE 0o - + i [RE 0O]] )}
Clhge VT s +h- VI3 -} (18)

where v = v|g+, VT = v|g-. Substituting (17) and (18) into (16), we get

‘/Bfu[v]vi*ds
F

< Chylul, g |V, k+uk-- (19)

Thus, substituting (19) into (14), we have

1

2
En(u,v) <Ch Y " Jula klvhk < Chlulzfz(ZIVhK>-

K

In other words, (12) holds. And in a similar way, we obtain (13). O
For Crouzeix-Raviart element and Q“)t element, define interpolation operator I : H'(£2) — S" by

/Ihuds:/uds VF,Vu e H ().
F F
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For EQﬁOt element, define interpolation operator Iy, : H!(£2) — S" by the above equality and

/lhudx:fudx VK €y, Yu e H'(2).
K K

According to the interpolation theory (see [13]), we have
lluj = Tntjllo < Ch™*ujlisr,

luj = Inujlln < Ch'[ujlier, O<r<1.

Theorem 2.2. Let u € H?(82). Then
lup — ulln < Chlulz. (20)
Further, assume that (6) be valid, then

3
lup —ully < Ch2ul. (21)
Proof. From the Strang lemma, we have

. Ep(u, wy)
Hu—uhllnéc(msfh lu—vip+ sup ——-—|. (22)
ve

Whgsh, Wh;&() ”Wh”l’l
According to the interpolation error estimate, we get
inf Jlu —vilp < [lu = Inulln < Chlulz.
vesh

By (12) we obtain

En(u,w
M < Chluls.

wheSh, w0 lwhllp

Substituting the above two inequalities into (22), we get (20).
According to Nitsche (1974), Lascaux and Lesaint (1975) (see [13]), we have

lu—uplly < sup —— inf {Cllu —upllnll¢ — vin+ En(u, @ — v) + En(@. u — up)}, (23)
gelr,(3R2) lgllp vesh

where for each g € L(982), ¢ € H3 (£2) is the unique solution of the following variational problem
av,)=(g,v), YveH'(2).
Using the interpolation error estimate, we derive
1 1
g —Inglln < Chzll@ls < Chz|glls,

and thus, by (12), we get

3
En(u, ¢ — Ing) < Chlul2llg — In@lln < Ch2 [ul2]Ig]lb-
Combining (13) and (20), we have

3
En(@,u—up) < ChZul2ligllp-
Taking v = I in (23), and using (20) and the above three inequalities, we obtain (21). O
Theorem 2.3. Let u € H? (£2). Then
lun = ully < Ch2Jul. (24)
Further, assume that (6) be valid, then

”uh_u||b<Ch|u|%- (25)

Proof. The proof is exactly the same as that given for Theorem 2.2 except that we use (13) instead of (12). O
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3. Nonconforming element approximations of the Steklov eigenvalue problem

At first, we transform (2) and (3) into the operator forms.

Note that a(-,-) is coercive. Using the source problem (4) associated with (2), we define the operator A:L,(0§2) —
H2(£2) c H'(2) by a(Af,v) =b(f,v), ¥v € H'(£2). Define T: L»(352) — H'(9£2) by Tf = (Af)’, where the prime denotes
the restriction to d42.

Bramble and Osborn [10] proved that (2) has the operator form:

Tw=puw. (26)

Namely, if (i, w) € R x L»(942) is an eigenpair of (26), then (A, Aw) is an eigenpair of (2), A = /ll: conversely, if (A, u) is an

eigenpair of (2), then (w, u’) is an eigenpair of (26), u = %
Since ay(+, -) is uniformly elliptic with respect to h, the approximate source problem (5) associated with (3) is uniquely
solvable. Thus, define Ap:L2(32) — S" by an(Anf,v) =b(f,v), ¥v € S". Define Ty :L2(352) — 8S" C [,(382) by T f =

(Apf). Let (Ap, wy) be an eigenpair of (3). According to the definition of A, and (3), we derive
1
ah(AnW. v) = b(Wh, v) =b(Wh, v) = —an(wy, v), Vv eSs".
h

Using the fact that v € S" is arbitrary, we infer that Aj wy = ;—hwh. And using the definition of T, we obtain An(Apw}) =
AnTpwy. Then,

1
Thwy, = —wj; (27)
Ah

ie. (Up, wjl) is an eigenpair of (27), up = ;—h Conversely, suppose that (4, wy) is an eigenpair of (27), then
1
ap(Apwp, v) =b(wp, v) = Eb(ThWh, 2]

1 1
= —b((Aywp), v) = —b(Apwp, v) Vv eSh
2 M

h

i.e. (A, Apwy) is an eigenpair of (3), up = lh Consequently, (3) has the operator form (27).
Next, we prove that T and Ty : L2(082) — Ly(92) are self-adjoint operators and ||T, — T||y — 0 as h — 0.

Since Vf, g € L,(0£2),
b(Tf.g)=b(g. Tf) =a(Ag, Af) =a(Af, Ag) =b(f, Ag) =b(f,Tg),

T:L2(082) — L2(352) is a self-adjoint operator. In a similar way, we can also prove that Tp:L,(0§2) — L2(062) is a self-
adjoint operator.
Moreover, because of (25) we have

IThg — Tgllp lAng — Agllb
ITh =Tlp= sup ———= —_—
gel2(382) lglly 2elr(82) llgll
ChIIAgII%

< sup ————=<Ch—->0 (h—0). (28)
gel,02) 1&llb

This shows that T, — T in norm as h — 0. Notice that T} is a finite rank operator. Thus T is a compact operator.

We are now in a position to prove the main results of this section.

Let A ; denote the j-th eigenvalue of T, and M(%;) be the space spanned by eigenfunctions of T corresponding to A; and
8M(2;) denote the space of restrictions to 942 of functions in M(2 ;).

The following properties of the order-preserving convergence and error estimates were discussed in [7], [16] and [27].

Lemma 3.1. Suppose that T and Ty are self-adjoint and completely continuous, and ||T — Ty|lp — 0 (h — 0). Let A; be the j-th
eigenvalue of T with algebraic multiplicity q and X, be the j-th eigenvalue of Tp,. Then

Ajp—>Xj (h—0). (29)
Let uj , be an eigenfunction of Ty, corresponding to Aj p with ||u; pllp = 1, then there exists uj € M(X;) with ||u;|lp = 1, such that

IIUj,h—Ujllb<C}|(T—Th)|M(Aj)Hb- (30)

Proof. See, for example, [27]. O
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Theorem 3.1. Let 1 j be the j-th eigenvalue of (2), and Aj  be the j-th eigenvalue of (3). Let u;  be an eigenfunction corresponding
to A j p with |[uj pllp = 1. Then there exists uj € M(A;) with ||lujllp = 1, such that

Ajh—hj= Mh((T_Th)uj’uf)""R]’ (31)
b(uj,ujp)

lujn = ujlly < CAZ|(T = Touj |, (32)

lujn—ujlln =AjllAuj — Apujlin + Rz, (33)

where |R1| < CI[(T — Tp)uj12, [R2| < CI(T = Tp)ujlp.

Proof. Combining the above Lemma 3.1 and Lemma 1 in [26], we have
lujn = ujlly < CAS (T = T)ujn,-

A simple calculation shows that

lujn —ujlly < CAG|(T = To)(ujp —uj+upl,
CA3 (T = Twyuj |, + 1T = Tallpllujn — ujlls),

which, together with ||T — Ty||p — 0(h — 0), yields (32). Since

NN

b(Tujp —Thujp,uj) =b(Tujp, uj) — b()»;]].luj,h, uj)

=bujn, Tuj) —b(Ajaujn uj) = (7" =27 4)bWjn,uj,

we have
Ap—Aj= %b((r — T, )
= %(b((r — T, uj) +b((T = Tw)Wjp — uj), uj))
= %b(ﬂ — Tp)uj,uj) + Ry

Moreover, using the facts that T and Ty, are symmetric, A, — Aj, and (32) is valid, we can infer that
[Ry| = m—j’hb((T —Tp)jn—uj),uj)| <Clb(ujp—uj, (T — Tp)u;j)|
b(uj,ujp) ’ ’
2
< Cllujn = ujllp [ (T = Twuj, < C[(T = Tuj],.

Therefore, we get (31) immediately.
From (3) and the definitions of Ty and Ap, we get

ljn—AjARUjIZ =an(ujp — AjARUj, ujp — AjARU;)
=b\jpujp—Ajuj, ujp—AjApuj) < |IAjptjp — Ajujlipliugn —AjApujllp
< (IAjnujn—Ajujlly +llujn— )»jAhujllb)z,
which, together with (31) and (32), yields
llujp— xjAntjlin < C| (T = Trujl,-
Let Ry = |lujp — ujlln — A jApuj — AjAujllp. Then, using the triangle inequality and the above inequality, we deduce that
[Ra| < [lujn —uj— (AjApuj — AjAup|,
= llujn = 2jAnuj |y < CJ(T = Toyu .

In other words, we obtain (33). O

Remark 3.1. Theorem 3.1 estimates the errors in nonconforming finite element method approximation of eigenpairs in terms
of error estimates for the corresponding source problems.
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Remark 3.2. The proof of Theorem 3.1 shows that: for spectral approximation T, of selfadjoint completely continuous
operator T in Hilbert space, if |T, — T|y — 0 as h — 0, then (31) and (32) hold; for second or fourth order eigenvalue
problems of selfadjoint elliptic differential operators, if T, converges to T in norm as h — 0, then (31)-(33) are valid.

Theorem 3.2. Under the assumptions of Theorem 3.1, the following error estimates hold:

Ain— A <CAZR?uj)? |, 34

|],h _]l\ j I ]”%’ag ( )
3

luj = ujnlls < CAhZ [lujlly 0. (35)

IIUj—uj,hllh<C?~jhlluj||%,m, (36)

where Cis a constant independent of h and A.;.

Proof. From (20), (21) and (7), we have
A — Anujlin < Chllujlls 50, (37)
3
IITuj—ThujllbSChZIIUjII%,m~ (38)
By an easy calculation, we get
b(Tuj; — Thuj,uj) =b(Tuj,uj) —b(Thuj, uj)
=ap(Auj, Auj) — ap(Apuj, Apuj)
=ap(Auj — Apuj, Auj) +ap(Apuj, Auj — Apuj)
=2ap(Auj — Apuj, Auj) — ap(Auj — Apuj, Auj — Aplj).
And we have
ap(Auj — Apuj, Auj) = ap(Auj — Apuj, Auj) — b(Auj — Apuj, uj) +b(Tuj — Thuj, uj)
= Ep(Auj — Apuj, Auj) +b(Tuj — Thuj, uj).
Then we have
b(Tuj; — Thuj,uj) = —2Ey(Auj — Apuj, Auj) +ap(Auj — Apuj, Auj — Apuj),
which, together with (12), (20) and (7), yields

b(Tuj — Thuj, uj) < Ch*|lu; (39)

2
”%,a(z'
Therefore, substituting (38) and (39) into (31), we obtain (34). Similarly, substituting (38) into (32), and (37) and (38)
into (33), we obtain (35) and (36), respectively. O

4. Lower bounds of eigenvalues

Armentano and Duran [5], Lin and Lin [21], Yang [26] and Zhang et al. [28] analyzed the lower bounds for eigenvalues
of the vibrating membrane problem and the vibrating plate problem by nonconforming finite element methods. Whereas,
in this section, we study the lower bounds of eigenvalues of the Steklov eigenvalue problem using nonconforming finite
element methods.

Consider eigenvalue problem (1).

From Armentano and Duran [5] and Zhang et al. [28], the following lemma holds.

Lemma4.1. Let (Aj,uj) € R x H'(£2) be an eigenpair of (2) and (Ajn ujp) €eRx S" be an eigenpair of (3). Then

Aj—Ajn =l —ujnllE = Ajelv = winl2 +aa(IVIE = lujli2) +2ap ) — voujp), Vvesh (40)
Proof. Note that llujllp = ||Llj,th =1, ap(uj,uj) =21; and ah(ujyh, Llj,h) =Xjh- Then
Aj+Ajp=ap(uj—ujp, uj—ujp)+2ap(Uj, ujp)
=luj —ujpll} +2an(v,ujp) +2ap(uj — v, ujp)
= lluj — ujnllf + 225 pb (v, ujp) +2ap(uj — v, ujp)
= lluj —ujnllf = 2jalv —ujnlf +2jallujnld + 2 alvIE + 2ap @ — v,ujp)

2 2 2 2
=lluj—ujnly — Ajnllv —ujnly + 2050 + 20 (IVIE — Nujlly) +2an wj — v, ujp),
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subtracting 21, by parts, we obtain (40). O

Lemma 4.2. Let u € H%(£2). Then

< Chlulaflvllg, Vv eSh,

lan@ — Ihu, v)| = ‘/(u — Ihu)vdx
2

where s =2, d = 0 for Crouzeix-Raviart element and Q °" element, and s = 3, d = h for EQ'*" element.

Proof. Using Green’s formula, we obtain (see [5], [21], pp. 88-89)

Z/V(u—]w)Vvdx:O, vv e Sh.
K
Thus,

ah(u—Ihu,v)=Z/V(u—Ihu)Vvdx+f(u—1hu)vdx
Kk 2

=/(u—lhu)vdx Vv e st
Q

For Crouzeix-Raviart element and Q{Ot element, we have

‘/(u — Ihu)vdx
2

This shows that (41) holds with s =2 and d =0.
On the other hand, for EQqOt element, we introduce a piecewise constant interpolation operator Ip. Then

‘/(u — Ihu)vdx
2

2
< Ch7ul2livilo.

= ’f(u — Ihu)Iochx+/(u — Ihu)(v — Igv)dx
2 2

< CR3Julz | v]Ih.

= ’/(u — Iqu)(v — Igv)dx
2

This shows that (41) holds with s=3 and d=h. O
Lemma4.3. Let u; € H2(£2) be an eigenfunction of (1). Then the following estimate holds:
3
lluj — Iqujllp < Chzlujll.

Proof. For simplicity, one can assume that f =X ;u;.
Thus, Vg € L,(082),
b(g, uj—Inhuj) =a(Ag, uj) — an(Ang, Inti)
=an(Ag, uj — Inuj) + an(Ag — Ang, Inuj)
= —ap(Ag — Apg,uj — Iquj) +ap(Ag, uj — Ihuj) + an(Ag — Ang, uj)
= —ap(Ag — Ang, uj — Iquj) +an(Ag, uj — Ipuj)
+an(Ag — Ang.uj) —b(Tg —Thg. f) +b(Tg —Thg. f)
=—an(Ag — Apg, uj — Ipuj) +ap(Ag, uj — Ipuj) + En(Ag — Apg, uj) +b(Tg — Tpg, f).

Further, we obtain
b(g,uj —Ipuj) = —an(Ag — Apg, uj — Ipu;j) + En(Ag, uj — Ipuj) + b(g, uj — Ipuj)

+ En(Ag — Apg. uj) +b(Tg — Tyg, f).

Consequently,

2397

(41)

(42)

(43)

(44)
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|b(Tg — Thg, f)| =|—En(Ag — Ang.uj) — En(Ag.uj — Inu;j) + an(Ag — Apg. uj — Inu;j)|
3
< Ch2||ujli2llgllp-
From (24), (42) and (41), we get
|an(Ag, uj — Ihuj)| = |ap(Ag — Apg, uj — Inuj) + an(Apg. uj — Inuj)|
3
< Ch2lujliz2llgll-

After we substitute the above two inequalities into (44), and estimate the first term and the third term on the right-hand
side of (44) using (12), (24) and (42), we obtain

3
b(g,uj—Ihuj) < Chz|ujli2liglls, Ve € L200£2).

Then, we easily see that (43) holds. O

Theorem 4.1. Under the assumptions of Theorem 3.1, if h is sufficiently small, then

5
Aj—Aj,h:||uj—uj,h||ﬁ+2/(uj—Ihuj)uj,hdx—kR, |[R| < Chz. (45)
7]

Proof. Taking v = Inu; in (40), we estimate the second, the third and the fourth terms on the right-hand side of (40). From
(43) and (35), we have

2,3
IMhuj —ujnlle < IHauj—ujllp + lluj —ujnlly < CAh2 Huj”%,ggy

In addition, we introduce the piecewise constant interpolation operator Iy on 952.
Then, from (43), we have

[Ihujl2 = lujli?] = ' f(uj — Inuj)((uj + Iquj) — Io(uj + Ipuj)) ds + f(uj — Inuj)lo(uj+ Inuj)ds
82 982

= ' /(Uj — Ihuj)((uj + Ihuj) — Io(u;j +1hu]‘))d5
082

<y — Inujllp | uj + Tnuj) — To(uj + Inup)|,
3

< Ch2 |lujllzhlluj + Inujl 50
5

< Ch3 luj3.

Thus, from the previous estimates and (42), we obtain (45). O

Corollary 4.1. For EQEOt element, if |luj —ujpllp > Ch?, then, for h small enough, we have that

Ajh S A (46)

Proof. From (41) and |R| < Ch%, we know that the second and the third terms on the right-hand side of (45) are infinites-
imals of higher order than the order of the first term. So the sign of the right-hand side of (45) is determined by the first
term. Thus, (46) holds. O

Corollary 4.2. For Crouzeix-Raviart element and Q{Ot element, we assume that there exists a positive constant Cq independent of h
and Xj such that ||uj — uj pllp > C1)\?h2. Then, for the large eigenvalues X j and h small enough, we have that

Ajh S A . (47)

Proof. From the assumption and (36), we have

2,2 2 212 2
Ciash” <lluj —ujnlly < CAsh IIUjH%,m-
According to the interpolation error estimate and (7), we have

< CR?|ujla < CR2Ajllujlly 5

‘/(u — Ihw)ujpdx
Q
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Table 1
The result for the Crouzeix-Raviart element.
h Ah A2h A3.n A4 h
% 0.2401790890 1.482482005 1.484090572 2.058113927
% 0.2401040676 1.489779325 1.489999113 2.075646883
g 0.2400853285 1.491663183 1.491691799 2.080782122
g 0.2400806459 1.492141960 1.492145608 2.082166026
% 0.2400794755 1.492262687 1.492263147 2.082524916
ﬁ‘/% 0.2400791829 1.492293003 1.492293061 2.082616282
Table 2
The result for the Q!°" element.
h Ak X2 A3h Aah
% 0.2402292155 1490291098 1490291098 2.058707332
% 0.2401165859 1491625241 1491625241 2.075731971
g 0.2400884571 1492109485 1.492109485 2.080793868
g 0.2400814280 1492251517 1492251517 2.082167669
% 0.2400796710 1492289816 1492289816 2.082525158
% 0.2400792318 1.492299752 1.492299752 2.082616321
1
Fig. 1.

Now, we consider the terms on the right-hand side of (45). Clearly, the third term is an infinitesimal of higher order than
the order of the first term. As a general rule, the second term is an infinitesimal of the same order as that of the first
term. Then, we can conclude that the sign of A —A;j is determined by the coefficients of the first and the second terms.
However, the coefficient of the first term can be larger for the large eigenvalues than that of the second term. So, we can
obtain the lower bounds of the large eigenvalues. Note that if the second term and the third one are infinitesimals of higher

order than the order of the first term, it is easy to see that the sign of A; — A; is determined by the first term. Then we
also get the desired result. O

5. Numerical tests

Consider the problem (1), where £2 C R? is a unit square domain.

In Fig. 1, we show the initial triangulation of the domain $2 for the Crouzeix-Raviart element. We refine the initial
triangulation in a uniform way (each triangle is divided into four similar triangle). For the EQ§°t element and the Q{Ot
element. We set a uniformly square mesh of §2. Then we compute the first four eigenvalues with Matlab 7.1. Tables 1-3
show the numerical results.

Note that the exact eigenvalues of the problem have not been known yet. Motivated by Armentano and Padra [6], we

program using conforming P1 element method with h = W\/g to solve the problem, and obtain the upper bounds of the

first four eigenvalues. Similarly, using EQ'®" element method with h = % and Q°" element method with h = % we
obtain the lower bounds of the first eigenvalue and the other three eigenvalues respectively. Therefore, the first exact
eigenvalue Aq € [0.2400790855, 0.2400791144]; the second exact eigenvalue A, € [1.492302282, 1.492305003]; the third
exact eigenvalue A3 € [1.492302282, 1.492305388]; the fourth exact eigenvalue A4 € [2.082639338, 2.082659329].
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Table 3

The result for the EQT™* element.

h A1 h A2, A3 h Agh

% 0.2400789992 1490217735 1.490217735 2.058655383

% 0.2400790443 1491606733 1.491606733 2.075718729

g 0.2400790725 1492104846 1.492104846 2.080790540

g 0.2400790819 1492250357 1.492250357 2.082166835

% 0.2400790845 1492289526 1.492289526 2.082524950

% 0.2400790852 1.492299680 1.492299680 2.082616268
[Ajh—Aj

Now we use the formula lg(m)/lgz where A; are the midpoints of the above intervals, and obtain from Tables 1-3
iz

that the orders of A, — Aj (h — 0) are about 0(h?) for the nonconforming Crouzeix-Raviart element, the Q{Ot element,
and the EQQOt element. It is also shown that the EQ§°t element gives lower bounds for the exact eigenvalues, whereas the
nonconforming Crouzeix-Raviart element and the Q{Ot element provide lower bounds for the exact eigenvalues except the
smallest eigenvalue. The numerical results coincide with Theorem 3.2, Corollary 4.1, and Corollary 4.2.

Remark 5.1. Alonso and Russo [2] discussed nonconforming Crouzeix-Raviart element approximation of Steklov eigenvalue
problems and obtained some important results. However, special features of our work are: firstly, the Q]rOt element and
EQll"’t element are also discussed. Secondly, our results in Section 3 are derived by a different path of [2]. And the optimal

. 3 . . . . .

order error estimate |uj — ujpllp < CA?hz llujllz 5o is obtained when §2 is a bounded convex polygonal domain. Thirdly,
3

our results in Section 4 seem to be new.
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