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This paper discusses the extrapolation of numerical eigenvalues by finite elements for
differential operators and obtains the following new results: (a) By extending a theorem of
eigenvalue error estimate, which was established by Osborn, a new expansion of eigenvalue
error is obtained. Many achievements, which are about the asymptotic expansions of
finite element methods of differential operator eigenvalue problems, are brought into the
framework of functional analysis. (b) The Richardson extrapolation of nonconforming finite
elements for multiple eigenvalues and splitting extrapolation of finite elements based on
domain decomposition of non-selfadjoint differential operators for multiple eigenvalues are
achieved. In addition, numerical examples are provided to support the theoretical analysis.

© 2013 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Richardson extrapolation is a well-known technique to construct high-order methods in numerical analysis. It is
applicable to many problems, including ordinary or partial differential equations. All these applications are based on the
existence of an error expansion for the discrete approximations in a single mesh parameter (see [16]). To produce more
accurate approximations for partial differential equations, in the last 30 years, many scholars studied the Richardson extrap-
olation of finite element methods, e.g. see [1,2,4,9,10,13,24,25,28,33] and the references therein.

As for multidimensional problems, the Richardson extrapolation is costly since it considers just a single parameter. So,
the splitting extrapolation, which is based on multivariate expansions with several mesh parameters, appears. Since 1980s,
the splitting extrapolation has been developed widely in the numerical analysis community. The splitting extrapolation is a
better technique to deal with the so-called curse of dimensionality and is also a highly parallel algorithm (see [20] and the
book review [31]). It is especially important that the splitting extrapolation is also applied to the finite element methods,
see [7,14,19,27,28], etc.

During the development of the extrapolation of finite element methods, the extrapolation for eigenvalue problems is an
attractive issue, e.g. see [5,15,18,19,21,22,24,25,27,28,34]. Especially, [5] studied successfully the extrapolation of conforming
finite elements for multiple eigenvalues of selfadjoint differential operator. However, to the best of our knowledge, there has
no research on nonconforming finite elements extrapolations for multiple eigenvalues and the finite element extrapolations
for multiple eigenvalues of non-selfadjoint differential operator. [22,24] discussed the extrapolation of nonconforming finite
element eigenvalues, e.g., the asymptotic expansion of the EQrot

1 element
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λh − λ = −h2
1 + h2

2

3

∫
Ω

(∂1∂2u)2 + ϑ
(
h4) (1.1)

was proved where u is the limit of uh , the eigenfunction corresponding to λh (see Theorem 3.1 in [22]). It is an important
work. By using this expansion one can extrapolate the simple eigenvalue to obtain high-precision eigenvalues. However,
in the case of multiple eigenvalues, from the spectral approximation theory we know that when h changes, the exact
eigenfunction u which the finite element eigenfunction uh approximates to also changes (e.g., see Theorem 7.4 in [3]), thus,
u is related to h in the expansion. So it cannot be guaranteed that we use this expansion directly to extrapolate and get
high-precision eigenvalues. As for the extrapolation of finite elements for non-selfadjoint differential operator eigenvalue
problems, including the splitting extrapolation, [27] and [28] proved the asymptotic expansion for simple eigenvalues (see
Theorem 2 in [27])

λh − λ =
l∑

i=1

βi(u)h2
i + ϑ

(
h4

0

)
, (1.2)

where βi(u) is independent of h. By this expansion the splitting extrapolation for simple eigenvalues can be achieved. But
for multiple eigenvalues, βi(u) is related to h in (1.2). When the ascent of λ is larger than 1, not only is βi(u) related to h
but also the accuracy of λh relates to the ascent which was pointed out in [28]. So we cannot use this expansion directly to
get high-precision eigenvalues. The simple eigenvalue is a strong condition since the eigenvalue of non-selfadjoint problems
is not simple in general and its ascent is probably larger than 1. This paper aims to study the extrapolation of finite elements
for multiple eigenvalues including the case that the ascent is equal to or larger than 1.

We develop the previous corresponding investigations and obtain the main results which are in Sections 3 and 4 in this
paper. Special works of this paper are as follows:

(a) In Section 3, we provide an eigenvalue error expansion (see (3.1)). This expansion is a simple extension of the estimate
which was established by Osborn (see (2.4) in this paper). In many applications the first term on the right hand side of
(3.1)/(2.4) is the dominant term and the second term is of higher order than the first one. The error is determined by
the first term. Compared with (2.4), the advantage of (3.1) is that it indicates that the dominant term is effectively the
size of the error. It is this feature that leads to the asymptotic formula for the error. Thus we bring the extrapolation of
finite elements for differential operator eigenvalue problems into the framework of functional analysis.

(b) In Section 4, the asymptotic expansion of finite elements for differential operator eigenvalue problems is discussed by
using Theorem 3.1. In Section 4.1 we give and prove the asymptotic expansions of EQrot

1 element for multiple eigenval-
ues. In Section 4.2, for second-order non-selfadjoint differential operator eigenvalue problems, the splitting extrapolation
based on domain decomposition is discussed. We throw off the assumption that λ is a simple eigenvalue in Theorem 2
in [27] and realize the splitting extrapolation of finite elements for multiple eigenvalues.

Besides, in Section 5, some numerical experiments are reported to support our theory.
In this paper, C denotes a positive constant independent of h, which may stand for different values at its different

occurrences.

2. Preliminaries

Let X be a separable complex Banach space with norm ‖ · ‖ and conjugate pairs 〈·,·〉, respectively. In this section, let
T : X → X be a nonzero compact linear operator, Th : X → X and {Th}h>0 be a family of compact operators, and ‖Th −
T ‖ → 0 (h → 0). Consider the following eigenvalue problem:

T u = μu, (2.1)

and its approximation

Thuh = μhuh. (2.2)

We use the eigenpairs of (2.2) to approximate to those of (2.1).
[12] has proved the following Lemma 2.1.

Lemma 2.1. Let {μ j} be an enumeration of the nonzero eigenvalues of T , each multiple according to its multiplicity. Then there exists
an enumeration {μ j,h} of the nonzero eigenvalues of Th, with repetitions according to its multiplicity, such that

μ j,h → μ j (h → 0), j = 1,2, . . . . (2.3)

Set λ j = 1
μ j

, λ j,h = 1
μ j,h

. In some papers μ j and μ j,h are called eigenvalues, and λ j and λ j,h are called characteristic

values. In our paper all of these are called eigenvalues.
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Let μk be the k-th eigenvalue of (2.1) with algebraic multiplicity q, μk = μk+1 = · · · = μk+q−1. Then μk is also the
eigenvalue of T ′ with algebraic multiplicity q, where T ′ is the Banach adjoint of T . Let μk,h be the k-th eigenvalue of (2.2)

and set μ̂k,h = 1
q

∑k+q−1
j=k μ j,h . Denote by ρ(T ) the resolvent set of T , and σ(T ) the spectrum of T .

Let Γ be a closed Jordan curve enclosing μk and 
 be a domain enclosed by Γ , 
\μk ⊂ ρ(T ). Let h be sufficiently
small, then Γ ⊂ ρ(Th). The definitions of spectral projection and the ascent are as follows (see [3,8,29]):

Spectral projection. Denote Rz(T ) = (z − T )−1, Rz(Th) = (z − Th)−1, define

E = E(μk) = −1

2iπ

∫
Γ

Rz(T )dz,

Eh = Eh(μk) = −1

2iπ

∫
Γ

Rz(Th)dz.

We call E the spectral projection associated with T and μk , and Eh the spectral projection associated with Th and the
eigenvalues of Th which converge to μk . Let T ′

h be the Banach adjoint of Th . Similarly, we can define the spectral projection
E ′ associated with T ′ and μk , and E ′

h associated with T ′
h and the eigenvalues of T ′

h which converge to μk .

Ascent, generalized eigenvector. There exists the smallest integer α, called the ascent of μk − T , such that the null space
ker((μk − T )α) = ker((μk − T )α+1). The vectors in ker((μk − T )α) are called generalized eigenvectors of T corresponding
to μk . Likewise, the ascent and generalized eigenvectors of μk,h − Th , μk − T ′ and μk,h − T ′

h can be defined.
We denote R(E), R(Eh), R(E ′) and R(E ′

h) as the image spaces of E , Eh , E ′ and E ′
h , respectively. Then R(E) = ker((μk −

T )α), R(Eh) = ∑
μh∈σ(μk)

ker((μh − Th)lμh ), where σ(μk) is the set of eigenvalues of Th which converge to μk and lμh is
the ascent of μh − Th .

Let (T − Th)|R(E) and (T ′ − T ′
h)|R(E ′) denote the restriction of T − Th to R(E) and T ′ − T ′

h to R(E ′), respectively.

[3,29] have proved the following error estimate:

Lemma 2.2. Let ϕk,ϕk+1, . . . , ϕk+q−1 be a basis of R(E) and ϕ′
k,ϕ

′
k+1, . . . , ϕ

′
k+q−1 be the dual basis in R(E ′), then

|μk − μ̂k,h|� 1

q

k+q−1∑
j=k

∣∣〈(T − Th)ϕ j,ϕ
′
j

〉∣∣ + C
∥∥(T − Th)|R(E)

∥∥∥∥(
T ′ − T ′

h

)∣∣
R(E ′)

∥∥. (2.4)

Lemma 2.2 is a classical result of spectral approximation. Most results about the convergence and the error estimates of
finite element methods for differential operator eigenvalue problems were established on the basis of it. One of our main
works is to extend (2.4), and improve ‘�’ to be ‘=’.

3. An error expansion on spectral approximation

By the argument used in Theorem 7.2 of [3], we obtain the following error expansion.

Theorem 3.1. Suppose that T , Th : X → X are compact linear operators, ‖Th − T ‖ → 0 (h → 0). Let μk be a nonzero eigenvalue of T
with algebraic multiplicity q. Let ϕk,ϕk+1, . . . , ϕk+q−1 be a basis of R(E), and let ϕ′

k,ϕ
′
k+1, . . . , ϕ

′
k+q−1 be the dual basis in R(E ′), as

defined in the proof to follow. Then there exists a constant C , independent of h, such that

μk − μ̂k,h = 1

q

k+q−1∑
j=k

〈
(T − Th)ϕ j,ϕ

′
j

〉 + R, (3.1)

|R|� C
∥∥(T − Th)|R(E)

∥∥∥∥(
T ′ − T ′

h

)∣∣
R(E ′)

∥∥. (3.2)

Proof. By the definitions of E and Eh , we have for any f ∈ R(E)

‖Eh f − E f ‖ =
∥∥∥∥ −1

2iπ

∫
Γ

(
Rz(Th) − Rz(T )

)
dz f

∥∥∥∥
=

∥∥∥∥ −1

2iπ

∫
Rz(Th)(T − Th)Rz(T )dz f

∥∥∥∥

Γ
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=
∥∥∥∥∥ −1

2iπ
lim

d(π)→0

m∑
k=1

Rξk (Th)(T − Th)Rξk (T )
zk f

∥∥∥∥∥
� 1

2π
length(Γ ) sup

z∈Γ

∥∥Rz(Th)
∥∥∥∥(T − Th)|R(E)

∥∥ sup
z∈Γ

∥∥Rz(T )
∥∥‖ f ‖

� C
∥∥(T − Th)|R(E)

∥∥‖ f ‖.
Thus we get

∥∥(Eh − E)|R(E)

∥∥� C
∥∥(T − Th)|R(E)

∥∥ → 0 (h → 0). (3.3)

For any f ∈ R(E), Eh f = 0 implies

‖ f ‖ = ‖E f − Eh f ‖� ∥∥(Eh − E)|R(E)

∥∥‖ f ‖ → 0 (h → 0),

i.e., f = 0. So Eh|R(E) : R(E) → R(Eh) is one-to-one. Since dim R(Eh) = dim R(E) = q, Eh|R(E) is onto. Hence (Eh|R(E))
−1 exists

and is defined on R(Eh), and we write E−1
h for (Eh|R(E))

−1 for simplicity. For sufficiently small h and f ∈ R(E) with ‖ f ‖ = 1,
from (3.3) we have

1 − ‖Eh f ‖ = ‖E f ‖ − ‖Eh f ‖� ∥∥(E − Eh)|R(E)

∥∥� 1

2
.

Hence ‖Eh f ‖ � 1
2 ‖ f ‖. This implies E−1

h is bounded, and for sufficiently small h, E−1
h is uniformly bounded in h. Define

T̂h = E−1
h Th Eh|R(E). (3.4)

Clearly,

T̂h : R(E) → R(E).

Since R(Eh) is the invariant subspace of Th , Eh E−1
h is the identical operator on R(Eh) and E−1

h Eh is the identical operator

on R(E), thus we have σ(T̂h) = {μk,h, . . . ,μk+q−1,h}. And we can see that the algebraic and geometric multiplicity of any
μi,h as an eigenvalue of T̂h is equal to its algebraic and geometric multiplicity as an eigenvalue of Th . Write T̂ = T |R(E) ,
by the spectral decomposition theorem we have σ(T̂ ) = {μk, . . . ,μk+q−1}. Thus the traces of T̂ and T̂h can be obtained as
follows, respectively,

trace T̂ = qμk, trace T̂h = qμ̂k,h.

Since T̂ and T̂h are defined on the same space R(E), we have

μk − μ̂k,h = 1

q
trace(T̂ − T̂h) = 1

q

k+q−1∑
j=k

〈
(T̂ − T̂h)ϕ j,ϕ

′
j

〉
. (3.5)

Here, each ϕ′
j is an element of R(E)′ , the dual space of R(E), and {ϕ′

j} is the dual basis of {ϕ j}. We extend each ϕ′
j to X

as follows. By the decomposition X = R(E) ⊕ ker(E), for any f ∈ X we can write f = g + w with g ∈ R(E) and w ∈ ker(E).
Define

〈
f ,ϕ′

j

〉 = 〈
g,ϕ′

j

〉
.

It is obvious that ϕ′
j , so extended, is bounded, i.e., ϕ′

j ∈ X ′ . Then by calculation we get

〈
f ,

(
μ − T ′)αϕ′

j

〉 = 〈
(μ − T )α f ,ϕ′

j

〉
= 〈

(μ − T )α g,ϕ′
j

〉 + 〈
(μ − T )α w,ϕ′

j

〉 = 0.

Since f is arbitrary, we have (μ − T ′)αϕ′
j = 0. Thus ϕ′

j ∈ R(E ′), j = k,k + 1, . . . ,k + q − 1. From the fact that Th Eh = Eh Th

and E−1 Eh is the identical operator on R(E), we can see that
h
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〈
(T̂ − T̂h)ϕ j,ϕ

′
j

〉 = 〈
Tϕ j − E−1

h Th Ehϕ j,ϕ
′
j

〉
= 〈

E−1
h Eh(T − Th)ϕ j,ϕ

′
j

〉
= 〈

(T − Th)ϕ j,ϕ
′
j

〉 + 〈(
E−1

h Eh − I
)
(T − Th)ϕ j,ϕ

′
j

〉
. (3.6)

Let Lh = E−1
h Eh , and it can be easily proved that Lh is the projection operator from X to R(E) along ker(Eh). Hence L′

h is
the projection operator from X ′ to ker(Eh)⊥ = R(E ′

h) along R(E)⊥ = ker(E ′). Thus〈
(Lh − I)(T − Th)ϕ j, E ′

hϕ
′
j

〉 = 〈
(T − Th)ϕ j,

(
L′

h − I
)

E ′
hϕ

′
j

〉 = 0,

noting that E ′ϕ′
j = ϕ′

j , we get〈
(Lh − I)(T − Th)ϕ j,ϕ

′
j

〉 = 〈
(Lh − I)(T − Th)ϕ j,

(
E ′ − E ′

h

)
ϕ′

j

〉
. (3.7)

From (3.7), the boundedness of Lh , and (3.3) (applied to T ′ and T ′
h) we have∣∣〈(Lh − I)(T − Th)ϕ j,ϕ

′
j

〉∣∣ � (
sup

h
‖Lh − I‖

)∥∥(T − Th)|R(E)

∥∥∥∥(
E ′ − E ′

h

)∣∣
R(E ′)

∥∥‖ϕ j‖ · ∥∥ϕ′
j

∥∥
� C

∥∥(T − Th)|R(E)

∥∥∥∥(
T ′ − T ′

h

)∣∣
R(E ′)

∥∥. (3.8)

Finally, denote R = 1
q

∑k+q−1
j=k 〈(Lh − I)(T − Th)ϕ j,ϕ

′
j〉; by using (3.5), (3.6) and (3.8), we obtain the desired result. �

Remark 3.1. Note that in (3.1) {ϕ j}k+q−1
k is a basis of R(E) and {ϕ′

j}k+q−1
k is the dual basis in R(E ′), and it can be seen from

the proof that they are all independent of h. Therefore, based on Theorem 3.1, we can realize the Richardson extrapolation
of multiple eigenvalues and the splitting extrapolation based on domain decomposition in the next section.

4. Finite element extrapolations of differential operator eigenvalue problems

In Section 4.1, based on Theorem 3.1 and [22], the Richardson extrapolations of the nonconforming element for multiple
eigenvalues are discussed. In Section 4.2, by using Theorem 3.1 and [27,28], the splitting extrapolations based on domain
decomposition for multiple eigenvalues are studied. For a general theory of finite element methods we refer to [3,6,11,32].

4.1. The nonconforming finite element extrapolations for multiple eigenvalues

Let Hs(Ω) be a Sobolev space with norm ‖ · ‖s,2, and H1
0(Ω) be the subspace of H1(Ω) consisting of those functions

which vanish on ∂Ω .
Consider the eigenvalue problem: Find a real number λ ∈ R, 0 �= u ∈ H1

0(Ω), such that

a(u, v) = λb(u, v), ∀v ∈ H1
0(Ω), (4.1)

where

a(u, v) =
∫
Ω

∇u · ∇v dx, b(u, v) =
∫
Ω

ρ(x)uv dx.

Here Ω = [0,1] × [0,1], ρ = ρ(x1, x2) > 0 and ρ ∈ C2(Ω).
Let τh be a uniform rectangular mesh of Ω , the length and width of the element be 2h1 and 2h2, respectively, and

h = 2
√

h2
1 + h2

2. Let Sh be the nonconforming EQrot
1 finite element space defined on τh (see [26]), i.e.,

Sh =
{

v ∈ L2(Ω): v|e ∈ span
{

1, x1, x2, x2
1, x2

2

}
, ∀e ∈ τh,∫

F

v|e1 ds =
∫
F

v|e2 ds if e1, e2 ∈ τh, e1 ∩ e2 = F ,

∫
F

v|e ds = 0 if e ∩ ∂Ω = F

}
.

Let

ah(u, v) =
∑
e∈τ

∫
∇u · ∇v dx, ‖ · ‖h = √

ah(·,·).

h e
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Then the nonconforming EQrot
1 element approximation corresponding to (4.1) is: Find a real number λh ∈ R, 0 �= uh ∈ Sh ,

such that

ah(uh, v) = λhb(uh, v), ∀v ∈ Sh. (4.2)

Here, the eigenpair (λh, uh) of (4.2) approximates the eigenpair (λ, u) of (4.1).
In order to discuss the error estimates, we will need the form of operator equation of (4.1) and (4.2). Define the operators

T , Th : L2(Ω) → L2(Ω):

a(T f , v) = b( f , v), ∀ f ∈ L2(Ω), ∀v ∈ H1
0(Ω),

ah(Th f , v) = b( f , v), ∀ f ∈ L2(Ω), ∀v ∈ Sh.

Set X = L2(Ω), 〈·,·〉 = b(·,·) and ‖ · ‖ = ‖ · ‖b = √
b(·,·). It can be easily seen that (4.1) and (4.2) have the equivalent

operator forms (2.1) and (2.2), respectively, T and Th are selfadjoint completely continuous operators (see for example [36]).
By the EQrot

1 element error estimate of the source problem corresponding to (4.1) (see [24,26]), we can deduce that ‖T −
Th‖ → 0 (h → 0).

Let λk be the k-th eigenvalue of (4.1) with algebraic multiplicity q, λk = λk+1 = · · · = λk+q−1, λ̂k,h = ( 1
q

∑k+q−1
j=k λ−1

j,h)−1.
Based on [22] we obtain the following:

Theorem 4.1. Let R(E) ⊂ H5(Ω). Then for the nonconforming EQrot
1 element, there holds the asymptotic expansion of the error of λ̂h:

λ̂k,h − λk = −1

q

k+q−1∑
j=k

h2
1 + h2

2

3

∫
Ω

∂2
1 ∂2

2ϕ jϕ j + ϑ
(
h4), (4.3)

where ∂i = ∂
∂xi

, ∂2
i = ∂2

∂x2
i

, i = 1,2.

Proof. Note that μk = 1
λk

, μ̂k,h = 1
λ̂k,h

, T and Th are selfadjoint operators; from (3.1) and (3.2) we have

λ̂k,h − λk

λkλ̂k,h

= 1

q

k+q−1∑
j=k

b
(
(T − Th)ϕ j,ϕ j

) + R,

|R|� C
∥∥(T − Th)|R(E)

∥∥2
. (4.4)

From [3] and [22], we can see that

|λ̂k,h − λk| � Ch2,
∥∥(T − Th)|R(E)

∥∥� Ch2.

Then (4.4) can be written as

λ̂k,h − λk = 1

q
λ2

k

k+q−1∑
j=k

b
(
(T − Th)ϕ j,ϕ j

) + ϑ
(
h4). (4.5)

According to the error estimate of the nonconforming EQrot
1 element, we have∣∣b(Tϕ j − Thϕ j,ϕ j − ϕ j,h)

∣∣ � ‖Tϕ j − Thϕ j‖b‖ϕ j − ϕ j,h‖b � Ch4,

and

b(Ih Tϕ j − Thϕ j,ϕ j,h) = 1

λ j
ah(Ih Tϕ j − Thϕ j,ϕ j,h) + ϑ

(
h4),

where Ih is the interpolation operator of EQrot
1 element. Thus

b
(
(T − Th)ϕ j,ϕ j

) = b(Tϕ j − Thϕ j,ϕ j − ϕ j,h) + b(Tϕ j − Ih Tϕ j,ϕ j,h) + b(Ih Tϕ j − Thϕ j,ϕ j,h)

= 1

λ j
b(ϕ j − Ihϕ j,ϕ j,h) + 1

λ j
ah(Ih Tϕ j − Thϕ j,ϕ j,h) + ϑ

(
h4)

= 1

λ j

(
b(ϕ j − Ihϕ j,ϕ j,h) + ah(Ih Tϕ j − Tϕ j,ϕ j,h)

+ ah(Tϕ j − Thϕ j,ϕ j,h)
) + ϑ

(
h4). (4.6)
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From (3.1) in [22], we can see that

ah(Ih Tϕ j − Tϕ j,ϕ j,h) = 0.

From (3.3) in [22], it follows that

ah(Tϕ j − Thϕ j,ϕ j,h) = −h2
1 + h2

2

3

∫
Ω

∂2
1 ∂2

2 Tϕ jϕ j,h + ϑ
(
h4)‖Tϕ j‖5‖ϕ j,h‖h

= −h2
1 + h2

2

3λ j

∫
Ω

∂2
1 ∂2

2ϕ jϕ j + ϑ
(
h4)‖ϕ j‖5‖ϕ j,h‖h.

From (3.9) in [22], we can derive

b(ϕ j − Ihϕ j,ϕ j,h) = ϑ
(
h4).

Substituting the above three equalities into (4.6) we have

b
(
(T − Th)ϕ j,ϕ j

) = −h2
1 + h2

2

3λ2
j

∫
Ω

∂2
1 ∂2

2ϕ jϕ j + ϑ
(
h4).

Substituting the above equality into (4.5) we get (4.3). �
Algorithm 1 (The Richardson extrapolations for the nonconforming elements).

Step 1. Under the partition with the mesh parameters h1, h2, solving (4.2) we can get λ̂k,h .
Step 2. Under the partition with the mesh parameters h1

2 , h2
2 , solving (4.2) we can get λ̂k, h

2
.

Step 3. Compute the value of the extrapolation

λre
k,h = 4

3
λ̂k, h

2
− 1

3
λ̂k,h.

Corollary 4.1. Under the condition of Theorem 4.1, there holds

λre
k,h − λk = ϑ

(
h4). (4.7)

Proof. From (4.3), it can be seen that

λ̂k, h
2

− λk = −1

q

k+q−1∑
j=k

1

3

((
h1

2

)2

+
(

h2

2

)2)∫
Ω

∂2
1 ∂2

2ϕ jϕ j + ϑ
(
h4).

Combining the above equality and (4.3), we obtain (4.7). �
Eq. (4.7) indicates that the nonconforming EQrot

1 element extrapolations for multiple eigenvalues achieve the accuracy
order ϑ(h4).

Remark 4.1. Thanks to [22], we can also study multiple eigenvalues extrapolations of the nonconforming Q rot
1 element

proposed by Rannacher [30]. Based on [17,23,35], the extrapolation of multiple eigenvalues of the Wilson element can also
be discussed.

4.2. Finite element extrapolations of non-selfadjoint differential operator eigenvalue problems

Let Ω ⊂ Rd be a bounded domain with d = 2,3. Consider the second-order non-selfadjoint elliptic differential operator
eigenvalue problems: Find a complex number λ ∈ C, 0 �= u ∈ H1

0(Ω), such that

a(u, v) = λb(u, v), ∀v ∈ H1(Ω), (4.8)
0
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where

a(u, v) =
∫
Ω

(
d∑

i, j=1

aij(x)∂iu∂ j v +
d∑

i=1

bi(x)∂iuv + c(x)uv

)
dx,

b(u, v) =
∫
Ω

ρ(x)uv dx.

Assume that aij(x), c(x),ρ(x) ∈ L∞(Ω), bi(x) ∈ W1,∞(Ω), x = (x1, . . . , xd), and there exists a positive constant a0 such that

Re
d∑

i, j=1

aij(x)ξiξ j � a0

d∑
i=1

ξ2
i , ∀x ∈ Ω, ∀(ξ1, . . . , ξd)

T ∈ Rd,

Re c(x) � 1

2
a0 + 1

2
max

x∈Ω, i=1,2

∣∣bi(x)
∣∣2

/a0, ∀x ∈ Ω.

Let G be a convex quadrilateral. A quadrilateral grid by connecting the equidistant mesh points of the opposite edges of
G is called a strong regular division of G . Let G be a convex hexahedral. A three-dimensional partition by connecting the cor-
responding strong regular division nodes of the opposite faces is called a strong regular division of G . For two-dimensional
case in strong regular division there are two independent grid parameters which are determined by the numbers of the
equidistant mesh points of the opposite edges. For three-dimensional case there are three independent grid parameters in
strong regular division.

Let Ω = ⋃m
s=1 Ω s , where Ωs is a convex quadrilateral (d = 2) or convex hexahedron (d = 3), and the initial partition

satisfies the compatible condition and has no interior cross points. Then for each Ωs , we construct such a strong regular
partition τs,h that τh = ⋃m

s=1 τs,h is a piecewise strongly regular partition of the domain Ω .
Note that the partition τs,h has d mesh parameters hsz (z = 1, . . . ,d) while the partition τh only has l (l < m × d)

independent mesh parameters denoted by h1, . . . ,hl . Let h0 = max1�i�l hi .
When Ωs is a quadrilateral, hsz is the side-length of an element on ∂Ωs . When Ωs is a hexahedron, hsz is the edge-

length of an element on ∂Ωs . Since τh is a piecewise strongly regular partition, there exist constants C1 and C2 independent
of the mesh diameter h such that

C1h � h0 � C2h.

Using the standard method (see [6,11,32]) we define the isoparametric d-linear finite element space Sh under the parti-
tion τh , Sh ⊂ H1

0(Ω) ∩ C(Ω). Then the conforming finite element approximation corresponding to (4.8) is: Find a complex
number λh ∈ C, 0 �= uh ∈ Sh , such that

a(uh, v) = λhb(uh, v), ∀v ∈ Sh. (4.9)

The adjoint equation corresponding to (4.8) is: Find a complex number λ ∈ C, 0 �= w ∈ H1
0(Ω), such that

a(v, w) = λb(v, w), ∀v ∈ H1
0(Ω). (4.10)

In order to discuss error estimates, we need the forms of operator equations of (4.8), (4.9) and (4.10). Define the operators
T , T ∗ : L2(Ω) → L2(Ω):

a(T f , v) = b( f , v), ∀ f ∈ L2(Ω), ∀v ∈ H1
0(Ω),

a
(

v, T ∗g
) = b(v, g), ∀g ∈ L2(Ω), ∀v ∈ H1

0(Ω).

We also define the operators Th, T ∗
h : L2(Ω) → Sh:

a(Th f , v) = b( f , v), ∀ f ∈ L2(Ω), ∀v ∈ Sh,

a
(

v, T ∗
h g

) = b(v, g), ∀g ∈ L2(Ω), ∀v ∈ Sh.

Observing that Sh ⊂ H1
0(Ω) we have

a(T f − Th f , v) = 0, ∀v ∈ Sh, (4.11)

a
(

v, T ∗g − T ∗
h g

) = 0, ∀v ∈ Sh. (4.12)

Set X = L2(Ω), 〈·,·〉 = b(·,·) and ‖ · ‖ = ‖ · ‖b = √
b(·,·). Let T ′ = T ∗ and T ′

h = T ∗
h denote the Hilbert adjoints of T and Th ,

respectively. Let E∗ be the spectral projection associated with T ∗ and μ∗ . In this case we would let ϕk, . . . , ϕk+q−1 be an
k
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orthonormal basis for R(E) and let ϕ∗
j = E∗ϕ j (see [3, p. 691]). From [3], we can see that (4.8) and (4.9) have the equivalent

operator forms (2.1) and (2.2), respectively, ‖T − Th‖ → 0 (h → 0) and (4.10) is equivalent to the operator form T ∗w = μ∗w .
Let λk be the k-th eigenvalue of (4.8) with algebraic multiplicity q, λk = λk+1 = · · · = λk+q−1, λ̂k,h = ( 1

q

∑k+q−1
j=k λ−1

j,h)−1.
Based on [27] we obtain the following:

Theorem 4.2. Suppose that the coefficients of differential operator are piecewise smooth: aij ∈ (
∏m

s=1 C5(Ωs)) ∩ L∞(Ω), bi ∈
(
∏m

s=1 C5(Ωs))∩W1,∞(Ω), c ∈ (
∏m

s=1 C4(Ωs))∩ L∞(Ω), and ρ ∈ (
∏m

s=1 C4(Ωs))∩ L∞(Ω). Assume that R(E) ⊂ (
∏m

s=1 H6(Ωs))∩
H1

0(Ω). Then there holds the asymptotic expansion of the error of λ̂k,h:

λ̂k,h − λk =
l∑

i=1

βih
2
i + ϑ

(
h4

0

)
, (4.13)

where the constants βi (i = 1,2, . . . , l) are independent of h.

Proof. Noting that μk = 1
λk

and μ̂k,h = 1
λ̂k,h

, it follows from (3.1) and (3.2) that

λ̂k,h − λk

λkλ̂k,h

= 1

q

k+q−1∑
j=k

〈
(T − Th)ϕ j,ϕ

∗
j

〉 + R,

|R|� C
∥∥(T − Th)|R(E)

∥∥∥∥(
T ∗ − T ∗

h

)∣∣
R(E∗)

∥∥. (4.14)

From [3] and [27], we can see that

|λ̂k,h − λk| � Ch2
0,∥∥(T − Th)|R(E)

∥∥ + ∥∥(
T ∗ − T ∗

h

)∣∣
R(E∗)

∥∥� Ch2
0.

Substituting the above two estimates into (4.14), we obtain

λ̂k,h − λk = 1

q
λ2

k

k+q−1∑
j=k

〈
(T − Th)ϕ j,ϕ

∗
j

〉 + ϑ
(
h4

0

)
. (4.15)

By the definition of operator T ∗ , (4.11) and (4.12), we deduce that〈
(T − Th)ϕ j,ϕ

∗
j

〉 = a
(
(T − Th)ϕ j, T ∗ϕ∗

j

)
= a

(
(T − Th)ϕ j, T ∗ϕ∗

j − T ∗
h ϕ∗

j

)
= a

(
Tϕ j − Ih Tϕ j, T ∗ϕ∗

j − T ∗
h ϕ∗

j

)
= a

(
Tϕ j − Ih Tϕ j, T ∗ϕ∗

j

) − a
(
Tϕ j − Ih Tϕ j, T ∗

h ϕ∗
j

)
. (4.16)

From (20) in [27], it can be derived that

a
(
Tϕ j − Ih Tϕ j, T ∗

h ϕ∗
j

) =
m∑

s=1

{
d∑

z=1

1

12
h2

sz

[
d∑

i=1, i �=z

d∑
j=1

∫
Ωs

ai j(x)∂2
z ∂i Tϕ j∂ j T

∗
h ϕ∗

j dx

−
d∑

j=1

∫
Ωs

∂2
z Tϕ j∂z

(
azj(x)∂ j T

∗
h ϕ∗

j dx +
d∑

j=1

∫
Ωs

∂2
i ∂z Tϕ jbz(x)T ∗

h ϕ∗
j dx

−
∫
Ωs

∂2
z Tϕ j∂z

(
bz(x)T ∗

h ϕ∗
j

)
dx −

∫
Ωs

∂2
z Tϕ jc(x)T ∗

h ϕ∗
j

)
dx

]

+
d∑

i, j,z

h2
szh2

si

∫
Ωs

Mzi Tϕ j∂z∂ j T
∗
h ϕ∗

j dx

}
+ R,

where Mzi are fourth-order differential operators and

|R|� Ch4
0

(
m∑

‖Tϕ j‖2
6,2,Ωs

) 1
2 ∥∥T ∗

h ϕ∗
j

∥∥
1,2,Ω

.

s=1
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From (26) in [27] we have

a
(
Tϕ j − Ih Tϕ j, T ∗ϕ∗

j

) = b
(
Tϕ j − Ih Tϕ j,ϕ

∗
j

)
=

m∑
s=1

d∑
z=1

1

12
h2

sz

∫
Ωs

ρ(x)ϕ∗
j ∂

2
z Tϕ j dx + ϑ

(
h4

0

)
.

Substituting the above two equalities into (4.16), together with (4.15), and noting that there are only l parameters are inde-
pendent among hs,z (s = 1, . . . ,m; z = 1, . . . ,d), and packing them we get (4.13). Since {ϕ j}k+q−1

k , {ϕ∗
j }k+q−1

k are independent
of h, the constants βi (i = 1,2, . . . , l) are independent of h. �
Algorithm 2 (The Richardson extrapolations for the conforming element).

Step 1. Under the partition with mesh parameters h1, . . . ,hl , solve (4.9) to obtain λ̂k,h .

Step 2. Under the partition with mesh parameters h1
2 , . . . ,

hl
2 , solve (4.9) to obtain λ̂k, h

2
.

Step 3. Compute the values of the extrapolation

λre
k,h = 4

3
λ̂k, h

2
− 1

3
λ̂k,h.

Corollary 4.2. Under the condition of Theorem 4.2, there holds

λre
k,h − λk = ϑ

(
h4). (4.17)

Proof. From (4.13), it can be seen that

λ̂k, h
2

− λk =
l∑

i=1

βi

(
hi

2

)2

+ ϑ
(
h4

0

)
.

Combining the above equality and (4.13) we get (4.17). �
Let h( j) = (h1, . . . ,h j−1,

h j
2 ,h j+1, . . . ,hl). We denote by λ̂

( j)
k,h the k-th approximate eigenvalue obtained by d-linear finite

element under the partition with mesh parameters h( j) . Based on [27], we have the following algorithm:

Algorithm 3 (Splitting extrapolations based on domain decomposition).

Step 1. Under the partition with mesh parameters h1, . . . ,hl , solve (4.9) to obtain λ̂k,h .
Step 2. Make a decomposition for the domain, and solve (4.9) in parallel on the meshes with mesh parameters h(1), . . . ,h(l) ,

respectively to get λ̂
(1)

k,h, . . . , λ̂
(l)
k,h .

Step 3. Compute the value of the extrapolation

λse
k,h = 4

3

l∑
j=1

λ̂
( j)
k,h − 4l − 3

3
λ̂k,h.

Corollary 4.3. Under the condition of Theorem 4.2, there holds

λse
k,h − λk = ϑ

(
h4

0

)
. (4.18)

Proof. From (4.13), it can be seen that

λ̂
( j)
k,h − λk =

l∑
i=1, i �= j

βih
2
i + β j

(
h j

2

)2

+ ϑ
(
h4

0

)
, (4.19)

from (4.19) and (4.13) we have
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Table 1
The numerical eigenvalues λ̂re

k,h obtained by Algorithm 1 (k = 2,5).

Elements’ number 4 × 8 8 × 16 16 × 32 32 × 64 64 × 128

λ2,h 47.037394 48.729567 49.190488 49.308450 49.338117
λ3,h 47.494826 48.761872 49.192582 49.308582 49.338125
λ̂2,h 47.265003 48.745714 49.191535 49.308516 49.338121
λ̂re

2,h 49.239284 49.340142 49.347510 49.347989
λ5,h 93.906837 97.335849 98.343652 98.607137 98.673766
λ6,h 97.616416 97.619961 98.362606 98.608342 98.673842
λ̂5,h 95.725701 97.477698 98.353128 98.607739 98.673804
λ̂re

5,h 98.061697 98.644938 98.692609 98.695826

λse
k,h − λk = 4

3

l∑
j=1

λ̂
( j)
k,h − 4l − 3

3
λ̂k,h − λk

= 4

3

l∑
j=1

(
λ̂

( j)
k,h − λk

) − 4l − 3

3
(λ̂k,h − λk)

= 4

3

l∑
j=1

(
l∑

i=1, i �= j

βih
2
i + β j

(
h j

2

)2
)

− 4l − 3

3

(
l∑

i=1

βih
2
i

)
+ ϑ

(
h4

0

)

= 4

3

l∑
j=1

(
l∑

i=1

βih
2
i − 3

4
β jh

2
j

)
− 4l − 3

3

(
l∑

i=1

βih
2
i

)
+ ϑ

(
h4

0

)

= 0 + ϑ
(
h4

0

)
.

In Theorem 2 of [27], the assumption of simple eigenvalue is a strong condition because the eigenvalue of non-selfadjoint
problems is not simple in general. Compared with [27], we easily drop the assumption of simple eigenvalue by using
Theorem 3.1. �
Remark 4.2. In Algorithms 1–3 we can also define

λ̂k,h = 1

q

k+q−1∑
j=k

λ j,h.

Theorems 4.1, 4.2 and Corollaries 4.1–4.3 also hold for such defined λ̂k,h for the reason that by a calculation we have

∣∣∣∣∣1

q

k+q−1∑
j=k

λ j,h −
(

1

q

k+q−1∑
j=k

λ−1
j,h

)−1∣∣∣∣∣ � C max
k� j�k+q−1

|λ j,h − λk|2 � Ch4.

5. Numerical experiments

Example 5.1. Consider the eigenvalue problem (4.1) with ρ(x) = 1. It is well known that the multiplicities of the exact
eigenvalues λ2 and λ5 of this problem are both equal to 2, and λ2 = λ3 = 5π2 ≈ 49.34802, λ5 = λ6 = 10π2 ≈ 98.696044.
We make a uniform rectangular partition for Ω (the proportion of the mesh’s length and width is 2:1). We use the non-
conforming EQrot

1 element to compute the approximate eigenvalues corresponding to (4.1), and set λ̂2,h = λ2,h+λ3,h
2 and

λ̂5,h = λ5,h+λ6,h
2 . Let the approximate eigenvalues obtained by Algorithm 1 be denoted by

λ̂re
k,h ≡ 4

3
λ̂k, h

2
− 1

3
λ̂k,h (k = 2,5).

Numerical results are listed in Table 1. Now we use the formula lg(
|λ̂re

k,h−λk |
|λ̂re

k, h
2
−λk | )/ lg 2 to calculate and obtain the orders of

λ̂re → λk are about ϑ(h4) (k = 2,5), which coincides with our theoretical analysis.
k,h
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Fig. 1. (h1,h2,h3).

Fig. 2. (
h1
2 ,h2,h3).

Fig. 3. (h1,
h2
2 ,h3).

Fig. 4. (h1,h2,
h3
2 ).

Example 5.2. Consider the non-symmetric convection diffusion problem:

− � u + b · �u = λu, in Ω, u = 0, on ∂Ω, (5.1)

where b = (1,1), and Ω is a square (0,1) × (0,1).
We know that the multiplicities of the eigenvalues λ2 = λ3 and λ5 = λ6 are all equal to 2, and

λ2 = λ3 ≈ 49.848022005, λ5 = λ6 ≈ 99.196044011.

We make a uniform square partition for Ω and use the conforming bilinear element to compute the approximate eigen-
values corresponding to (5.1). We decompose Ω as: Ω = Ω1 ∪ Ω2, where Ω1 = [0,1] × [0, 1

2 ] and Ω2 = [0,1] × [ 1
2 ,1]. Let

τs,h be the partition on Ω s (s = 1,2).
Note that τ1,h has 2 mesh parameters h11 and h12, τ2,h has 2 mesh parameters h21 and h22, but τh only has 3 indepen-

dent mesh parameters h1 = h11, h2 = h12 = h22 and h3 = h21 (see Figs. 1–4). Let h0 = max1�i�3 hi .

Let λk,h , λ
(1)

k,h , λ
(2)

k,h and λ
(3)

k,h be the approximate eigenvalues corresponding to the bilinear finite element approximations

on the partition with mesh parameters (h1,h2,h3), ( h1
2 ,h2,h3), (h1,

h2
2 ,h3) and (h1,h2,

h3
2 ), respectively. Let λ̂k,h = ( 1

2 ( 1
λk,h

+
1

λk+1,h
))−1 (k = 2,5), λ̂

(i)
k,h = ( 1

2 ( 1
λ

(i)
k,h

+ 1
λ

(i)
k+1,h

))−1 (i = 1,2,3, k = 2,5). We denote the approximate eigenvalues obtained by

Algorithm 2 by

λ̂re
k,h ≡ 4

λ̂k, h − 1
λ̂k,h (k = 2,5),
3 2 3
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Table 2
The numerical eigenvalues λ̂re

k,h obtained by Algorithm 2, and λ̂se
k,h obtained by Algorithm 3 (k = 2,5).

h0
1
8

1
16

1
32

1
64

1
128

λ̂2,h 51.951541 50.365882 49.976951 49.880220 49.856069

λ̂
(1)

2,h , λ̂
(3)

2,h 51.544287 50.267955 49.952725 49.874180 49.854560

λ̂
(2)

2,h 51.148823 50.170812 49.928548 49.868143 49.853051

λ̂re
2,h 49.837329 49.847307 49.847976 49.848019

λ̂se
2,h 49.795240 49.844650 49.847811 49.848011

λ̂5,h 109.81232 101.77789 99.835956 99.355663 99.235926

λ̂
(1)

5,h , λ̂
(3)

5,h 107.57658 101.27850 99.715022 99.325675 99.228444

λ̂
(2)

5,h 105.64870 100.79796 99.595254 99.295760 99.220967

λ̂re
5,h 99.099747 99.188645 99.195565 99.196014

λ̂se
5,h 98.298853 99.139610 99.192529 99.195824

and the approximate eigenvalues by Algorithm 3 by

λ̂se
k,h ≡

3∑
j=1

4

3
λ̂

( j)
k,h −

(
4

3
× 3 − 1

)
λ̂k,h (k = 2,5).

Numerical results listed in Table 2 are in accordance with our theoretical analysis.

Remark 5.1. We can see from Example 5.2 that the numerical eigenvalue by the splitting extrapolation has the same ac-
curacy with that by the Richardson extrapolation. The splitting extrapolation method needs to solve four subproblems. The
number of nodes of the maximum subproblem, which is illustrated in Fig. 3, are just a half of the number of nodes on the
fine grid of the Richardson extrapolation method. When considering Example 5.2 in Ω ⊂ R3, we make a split Ω = Ω1 ∪ Ω2.
From [27] we know that, to obtain the same accuracy, the splitting extrapolation method needs to solve five subproblems,
and the number of nodes of the maximum subproblem is just a quarter of the number of nodes on the fine grid of the
Richardson extrapolation method. The higher the dimensions are, the more superior the splitting extrapolation method
performs.

6. Concluding remarks

This paper discusses the extrapolation of numerical eigenvalues by finite elements for differential operators. Theorem 3.1
in the paper provides a new error expansion. Using this error expansion we solve the extrapolation for multiple eigenvalues,
which was once thought to be a complicated work. For instance, in the paper we achieve the extrapolation of nonconforming
finite elements for multiple eigenvalues and the splitting extrapolation based on domain decomposition of conforming finite
elements for multiple eigenvalues (including the case that the ascent is larger than 1) of non-selfadjoint differential operator.
Although the proof of Theorem 3.1 is just a minor modification of that of Osborn (see Theorem 3 of [29], Theorem 7.2 of [3]),
Theorem 3.1 develops the spectral approximation theory and is a general result.
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