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ABSTRACT. In this paper, we consider a hydrodynamic Q-tensor system for
nematic liquid crystal flow, which is derived from Doi-Onsager molecular theory
by the Bingham closure. We first prove the existence and uniqueness of local
strong solution. Furthermore, by taking Deborah number goes to zero and
using the Hilbert expansion method, we present a rigorous derivation from the
molecule-based @Q-tensor theory to the Ericksen-Leslie theory.
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1. Imtroduction. Liquid crystals are a state of matter whose properties are inter-
mediate between those of the conventional isotropic liquid and the crystalline solid.
The nematic, composed by rod-like molecules, is the simplest liquid crystal phase,
exhibiting long-range orientational order but no positional order. We refer [6] for a
comprehensive elaboration of the physics of liquid crystals. There are three main
theories to model nematic liquid crystal flow: the Doi-Onsager theory, the Landau-
de Gennes theory and the Ericksen-Leslie theory. The first is microscopic theory
derived from viewpoints of statistical mechanics, and the later two are macroscopic
theories based on continuum mechanics.

Notations and conventions. The Einstein convention will be assumed throu-
ghout the paper. We introduce the following notations for the space of symmetric
traceless tensors

of {QeR>™®: Qi = Qji, Qi =0}, (1.1)
def 12

{Q € Q: the eigenvalues of Q € (—= 7)} (1.2)

@phy 3 ) 3
def

The space Q is endowed with the inner product (Q1,Q2) = Q1 : Q2 = Q14;Q2i;-
The set Q is a five-dimensional linear subspace of R>*3. We define the matrix norm

on Q as |Q)] def \/trQQ = \/Ql-jQij. In terms of this norm, the Sobolev space is

defined as
H*(R® def / 3 10 f( |dx<oo}

l’|<k

with k being a non-negative integer and o’ being a multi-index. For two tensors
A, B € Q we denote (A- B);; = AixBij and A : B = A;;B;;. We denote (M :
Q)ij = M;jiQr where M is the fourth-order tensor and @ € Q. In addition,
n; ® ny ® - - - ® ng denotes the tensor product of k£ vectors ny, no,---, ni, and we
usually omit the symbol ® for simplicity. We use f; to denote 0;f for simplicity
and I to denote the 3 x 3 order identity tensor.

1.1. The Ericksen-Leslie theory. The hydrodynamic theory of liquid crystals,
established by Ericksen [8] and Leslie [16] in the 1960’s, is a system coupling the
time evolution equation of the fluid velocity v = v(¢,x) with the director equation
describing the motion of the director field n = n(t,x) € S?. The general Ericksen-
Leslie system takes the form

vi+v-Vv=-Vp+V-o, (1.3)
V-v=0, (1.4)
nx (h—+yN-2D-n)=0, (1.5)



WELL-POSEDNESS AND SMALL DEBORAH LIMIT OF A Q-TENSOR MODEL 2613
where v is the velocity of the fluid and p is the pressure. The stress o is modeled
by the phenomenological constitutive relation

o=oF + oF s
where ol is the viscous (Leslie) stress

ol = a1(nn : D)nn + asnN + asNn + a4D + asnn - D + gD - nn (1.6)

with & = (Vv)7, D= 1(k+xT) and
1
N=n+v-Vn—Q n, Q:i(mT—f-@).
The six constants o, - - , o are said to be the Leslie coefficients. Moreover, o¥ is
the elastic (Ericksen) stress given by
OF
E F
E e ks 1.7
Tij O Tk, (L.7)
where Er = Er(n, Vn) is the Oseen-Frank energy with the form
k k k
Ep :%(v n)? + g(n-(v xn))? + ?3|n><(v x n)|?
ko + k
e ; 4 (tr(Vn)? — (V- n)?). (1.8)
Here k1, ko, k3, k4 are elastic constants. The molecular field h is given by
_ 0EF _ OEr  OEp
~ én 9(Vn) On’

The Leslie coefficients and material dependent coeflicients 1, v2 satisfy the following
relations

Qg + a3 = ag — s, (1.9)
71 = Q3 —Q2, 72 = Qg — Qs, (1~10)

where (1.9) is called Parodi’s relation derived from the Onsager reciprocal relation
[23]. These two relations will ensure that the system (1.3)—(1.5) has a basic energy
law:

L9 %3 2 2
g” (/RS 2|v\ x + EF) /R3 ((a1 + 71)( nn)- + ay|D|

3 1
+ (a5 + o — ’7—2)|D ‘n|? + —|n x h|2)dx.
gi! "
(1.11)

For the well-posedness results of the Ericksen-Leslie system, we can refer to
[17, 28]. In addition, under a natural physical condition on the Leslie coefficients,
[28] proved the well-posedness of the system, and the global existence of weak
solution in two-dimensional case was showed in [14, 26].

1.2. The @Q-tensor theory. The most general continuum theory for the nematic
liquid crystals is the celebrated Landau-de Gennes theory which can describe uniax-
ial and biaxial liquid phases. In this phenomenological theory, the detailed nature
of molecular interactions and molecular structures is ignored, and the state of the
nematic liquid crystals is described by a macroscopic tensor value order parameter
Q(x), which is a symmetric and traceless 3 x 3 matrix, i.e. @ € Q. Physically, it can
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be interpreted as the second-order traceless moment of the orientational distribution
function f, that is,

Q) = /s2 (mm — %I)f(x, m)dm. (1.12)

Under this interpretation, the so-called physical constraint is that the eigenvalues
of @ should satisfy

Ai(Q) € (*%, ;), for 1 <i <3, (1.13)
nameIY7 Q € Qphy~

The nematic liquid crystal is called isotropic at x when Q(x) = 0. When Q(x)
has two equal non-zero eigenvalues, it is called uniaxial and Q(x) can be written as

Q(x) = s(nn — %I), s €R, n(x) € S%

When Q(x) has three distinct eigenvalues, it is called biaxial and Q(x) can be
written as

1 1
Q(x) = s(nn — §I) +r(n'n’ — EI)’ nnecS? nn=0 s reck.

The classic Landau-de Gennes energy functional, being a nonlinear functional of
(@ and its spatial derivatives, takes the following general form

Frc(Q,VQ)
b

= [ {-5r@) - @) + fen@?
bulk energy

1
+ 5 (L1|VQ|2 + L2Qij,j Qik, + L3Qij 1 Qik,j + L4Qiijl,ile,j) }dX, (1.14)

elastic energy

where a, b, ¢ are material-dependent and temperature-dependent non-negative con-
stants and L;(i = 1,2,3,4) are material dependent elastic constants. We refer to
[6, 20] for more details. The energy (1.14) can not ensure @) to satisfy the natural
physical constraint (1.13). For this reason, based on the mean-field Maier-Saupe
energy, Ball-Majumdar [4] proposed an energy functional, which will diverge if
Q & Qphy. There are many works to study the equilibrium solutions of the clas-
sic Landau-de Gennes model, for example, one may see [4, 19] and the references
therein.

So far, there are two types of dynamic @-tensor theories to describe the flow of
nematic liquid crystal. The first type models are obtained by variational methods
under physical considerations, such as Beris-Edwards model [5] and Qian-Sheng’s
model [24]. Let F(Q, VQ) be the total free energy, and define

_GF(Q.VQ)
The dynamical Q-tensor model of this types can be written in the following general
form:

99

57 V- VQ=D""(ug) + F(Q.D)+2-Q-Q -9, (1.15)
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P ,
XN v .Vv=—Vp+V. (0% + 0% + 0" + 0%), (1.16)

ot
V-v=0, (1.17)

where v is the fluid velocity, D" (p1) is the rotational diffusion term, F(Q, D) and
Q-Q — Q- are induced by the deformation part and and rotation part of the
velocity gradient, respectively. In addition, o is the distortion stress, o® is the anti-
symmetric part of orientational-induced stress, o® = vF(Q, p1g) which conjugates
to F(Q,D) (v is a constant), is the symmetric stress induced by the orientation of
molecules, and o%* is an additional dissipation stress.

In Beris-Edwards’s model and Qian-Sheng’s model, module some constants, o
and o are the same, i.e.,

d OF

Oij = (ka)@m i 0'=0Q pg—pq- Q. (1.18)

In Beris-Edwards’s model, the other terms are given by

Dy = yer C’BE =1D, okp=Fpe(Q, o),

Fip(@4) =6((Q+ 31 A+ A-(Q+ 31) - 2Q + sD(4: Q).
In Qian-Sheng’s model, they are given by
3810, Fos(@D) = 3D,
045 =FQQ: D)+ HD + QD +D Q).

When taking F(Q,VQ) = Fra(Q, VQ), for the well-posedness results of the Beris-
Edwards’s model on whole space and bounded domain, we refer to [21, 22, 13] and
[1, 2].

The second type is derived from the molecular kinetic theory by closure ap-
proximations. In such models, the evolution of @ is derived from the evolution of
probability density function f by relation (1.12). However, one have to approximate
the higher order moment such as

Dl = —Tug, ohs =

mmmumn f(x, m)dm (1.19)
S‘Z
by using Q. This process is called closure approximation. There are various kinds
of closure approximation and then they lead to different models in Q-tensor form,
which are summarized in [10, 11]. However, these models do not obey energy
dissipation law. In [12], based on Doi’s kinetic theory, the authors proposed a Q-
tensor model with energy dissipation law by using the Bingham closure. In this
paper, we are mainly concerned this model. Before introducing it, we first give a
brief description of the Bingham closure.
For a given configuration distribution function f(m) satisfying

1
. f(m)dm =1, /S2 (mm — §I)f(m)dm =Q,

the Bingham closure is to use the quasi-equilibrium distribution (also called the
Bingham distribution)

1
fo= 7 exp(Bg : mm), Zg = / exp(Bg : mm)dm,
Q 2
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to approximate f. Here, Bg € Q depends on @ and is determined by the following
relation

/ (mm — 1I)dem =Q.
S2 3

By Proposition 1, Bg can be uniquely determined for @ € Qp4y. Then, the fourth-
order moment and the sixth-order moment of f are approximated by

Mg) = /32 mmmm fodm, and Mg) = . mmmmmm fodm.

Now we introduce the dynamic @Q-tensor model presented in [12]. For given free
energy functional F(Q, V@), define

_ 0F(Q,VQ)

We introduce the following two operators

1
Mo(A) =3A+Q A~ A: MY,

1
No(A)ap Zai{ [’M(M$m5ij - géa,ﬁleéij)

1
+ (= VL)(Mgsﬁ)kzz'j 35aBM1mJ)]8 Akl}

Based on the Doi-Onsager’s molecular theory, making use of the aforementioned
Bingham closure approximation, the new Q-tensor model is given as following [12]:

0 £ 2
a—? +v-VQ = 5-No(ug) - E(MQ(HQ) + Mg(l‘@))

+ Mo(Vv) + M5 (Vv), (1.20)
ov _ s 1 - )
StV Vv = Vp+RAV+ STee V( : Mg?)

1
+ﬁ(2V Mq(pnq) + 1 : VQ) (1.21)
V.ov= o, (1.22)

where De and Re are called Deborah number and Reynolds number, respectively,
and v € (0,1) is a constant. The small parameter /¢ characterizes the typical
interaction distance, which is usually at the scale of molecule length. The term
No (@) represents the translational diffusion. An important feature of this model
is that (1.20)-(1.22) obeys the following basic energy dissipative law (see [12])

: - = @
dt( |V|2d * eDe]:(Q’vQ)) T /]Rs ( [Vv[* + 2R STk My :D
1-— 4(1 —
- 1(%@1) 72) He : No(ue) + %MQ : MQ(MQ))dX~ (1.23)

In [12], the energy functional is also derived from Onsager’s molecular theory:

F(Q,VQ) = F(Q) + F(Q, VQ),
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where the bulk energy F3,(Q) and the elastic distortion energy F. are respectively
given by

6]
5@ = Lo [ (~Zo+Q: Bo - §1QP)dx
13
Fe(Q,VQ) = 3 / {L1|VQ|2 + Lo (Qik,i@jk,j + ij,iQik,j) + Ls|VQW|?
4 4 4 4 4
+ Ly (Qz('kgm,ng'k)lm,j + Qg’k:)lm,in('k'gm,j> + L5Qz('jl)fl,ileJ }dx,

where Q) = QW (Q) is the fourth order symmetric traceless moment of the Bing-
ham distribution fgo. Namely,

1
QE;LI)CZ = /S2 {mimjmkml — ? (mimjékl + mkmléij + mimkéﬂ + mjmléik

1
+ mymydjk + mjmk5iz) + 5 (5@'51@1 + didj + 51‘l5jk) }deUL

The difference between Q™) and Mg) is that Q@ is traceless, i.e. QE;,)C,C =0,

while Mg) is not. The bulk energy F;, is equivalent to the penalized energy derived
by Ball-Majumdar in [4]. Thus, the order parameter tensor @) should satisfy the
physical constraint (1.13).

The parameters appearing in the system (1.20)-(1.22) have clear physical signif-
icance but not are phenomenological. In [12], the coefficients L;(i = 0,1,--- ,5) are
also explicitly calculated in terms of physical molecular parameters. The parame-
ter € appears in the elastic energy F. due to the fact that the ratios between the
coefficients of F. and the ones in F;, are at the order of square of molecule length.
Another important feature of the molecule-based @Q-tensor system (1.20)-(1.22) is
that the translational and rotational diffusions are still maintained.

1.3. Motivations and main results. The connection between different level of
liquid crystal theories is a problem of both physical and mathematical importance.
Based on a formal asymptotical expansion, Kuzzu-Doi [15] and E-Zhang [7] de-
rived the Ericksen-Leslie equation from the Doi-Onsager equations by taking small
Deborah number limit for spacial homogeneous case and inhomogeneous case, re-
spectively. Wang-Zhang-Zhang rigorously justified this limit in [27] before the first
singularity time of the Ericksen-Leslie system. In [29], they also presented a rig-
orous derivation from Beris-Edwards model to Ericksen-Leslie model. In [12], it is
proposed a systematic study on the modeling for liquid crystals in both static and
dynamic cases. They derived a @Q-tensor model from Onsager’s molecular theory
and Doi’s kinetic theory, which is introduced in the previous subsection, and also
derived Oseen-Frank model and Ericksen-Leslie model.

The main aim of this paper is to prove the local well-posedness for strong solution
of the molecule-based @Q-tensor model, and also to show that the strong solution
will converges to the solution of Ericksen-Leslie system under the limit of Deborah
number De — 0.

In this paper, to avoid some tedious technical difficulties, we will only consider
the case when the translational diffusion Ng(ug) = 0 and the coefficients Ly =
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1,L3 = L4 = L5 = 0. Then
_R(Q |, 3F(VQ)

0Fp(Q)
50 = By — aQ, (1.25)
0Fe(@)Y  _ - . )
( 50 )j = —¢(L1AQy; + La(Qingi + Qan) ) = e£(Q). (1.26)
Then, the corresponding molecule-based Q-tensor system becomes :
0 2
a—cf +v-VQ=— 5 (MQ(BQ —aQ+¢L(Q)) + MH(Bg — aQ + EE(Q)))
+ Mg (Vv) + MG(Vv), (1.27)
ov _ el -y @
N +v Vv——Vp+ReAv+ 9 Tre V- (D:M,")
1—
+ 5V (2Mq(Bg — aQ +££(Q)) +207(Q,Q)),  (1.28)
V.v=0, (1.29)
where o is defined by
~ OF, ~ ~ ~ ~
J?i(Qa Q) L _ Qi = —(L1QrijQuii + L2Qrm,mQrjyi + L2QrjiQuii)-

0Qr1,

It not hard to see that V- o%(Q, Q) differs from ug : VQ with only pressure terms.

When a > o, the bulk energy function F; has stable uniaxial critical points
Q = Sa(nn — %I) for any n € S2, which correspond to nematic phase. Here,
Sy = Sa(w) is a increasing function of a for o« > a*, see the precise definition in
(2.19). Throughout this paper, we always assume a > «* and Ly > 0, L1 +2Ly > 0.
Thus, it is known from Lemma 2.2 in [29] that

[ 2@ qaxza [1varax

for some constant ¢y > 0.
We first state the following the local well-posedness result.

Theorem 1.1. Let s > 2 be an integer. n* € S? is a constant vector and Q* =
Sy(n*n* — 1I). If the initial data satisfies

vi(x) € H*(R®), Qi(x)— Q" e H*T'(R?), (1.30)

with
Qr(x) € Qpy,s := {Q € Q : all the eigenvalues of Q belong to [— % + 4, ; — 5] },
(1.31)

for all x € R3, then there exists T > 0 and a unique solution (v, Q) of the Q-tensor
system (1.27)-(1.29) on [0,T], such that v(0,x) = vi(x),Q(0,x) = Q(x), and

v(t,x) € C([0,T]; H*(R*)) N L(0, T; H*1(R?)), (1.32)
Qt,x) —Q* € C([0,T]; H**!(R?)), (1.33)
and Q(t,x) € Qphy,s/2-
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Next, we consider the small Deborah number limit De — 0. To obtain the full
Ericksen-Leslie system, we have to take De = O(g) as in [12]. For simplicity, we
choose De = ¢. Then the system can be written as:

oQ* 2
éQt + V‘S . VQ‘S = — g (MQE (BQE — OKQE + El:(Qe))
+ MB. (Bo- — aQ + aE(Qs))) + Mo (VvF) + M5 (Vve),
(1.34)
O v v —— V4 Lavi+ L0y D M)
ot Re 2Re Q
1 —
+ -V (2Mq- (Ba: — aQ° +L(@Q7)) +207(Q7,Q7)),
eRe
(1.35)
V-ve=0. (1.36)
We define the coefficient in Ericksen-Leslie theory as:
54 SQ 1 SZ 1
(€3] 9 Qg 2 ( + C)y asg 2 ( <)7
4 5 1 1 6 1 1
=———58-=5 =-5:+ =5 ==-5,— =5 1.37
U= 75 T oyP2 T gpPt 5 74"'727046 704 T 702 (1.37)
and
1 def V2 1 2 2
"= ’ ’Y:_S, C:_7:,+7_7, 1.38
I E-& w3785 S Y
and the elastic constants in Oseen-Frank energy are given by
ky = ks = 2(Ly + L2)S2, ko =2L,52, k4= LyS3. (1.39)
Here Sy = Si(a) is also a constant related to «, see the definition in (2.19).
For a given direction field n(t,x), we define
PP(Q) = Q— (nn-Q+ Q- nn) — 2(Q : nnjnn, (1.40)
1 2
Hn(Q) = 1 (nn — gI)(nn 1 Q) +w2( —Q+nmn-Q+Q-nn-— gI(nn : Q)),
(1.41)

where 11 and 19 are constants depending on «. H,(Q) is the linearized operator
of Bg — a around the local critical point Sa(nn — %I) The detailed motivation
of the above definitions will be explained in Section 4.

The second main result of this paper is stated as follows.

Theorem 1.2. Let (n(t,x),v(t,x)) be a solution of the Ericksen-Leslie system
(1.3)-(1.5) on [0,T] with the coefficients given by (1.37)-(1.39), which satisfies

v e C([0,T); H*), Vne C([0,T); H*) for k> 20.

Let Qo(t,x) = S (n(t,x)n(t,x) — I) and the functions (Q17Q27Q3,V17V2) are de-
termined by Proposition 8. Assume that the initial data (Q5,V5) takes the form

3 3
Qi(x) =) " Q3(0,%) + Q7 p(x), vi(x) =) " vi(0,%) +£*v] p(x),

k=0 k=0
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where (QF g, Vi p) satisfies

V5 rllz + Q7 rllms +e P (QF r)lIz2 < Eo.
Then there exists g > 0 and F1 > 0 such that for all e < eq, the system (1.54)-
(1.36) has a unique solution (Q°(t,x),ve(t,x)) on [0,T] which has the expansion
3

3
Q°(t,x) = Zstk(t,x) +3Qgr(t,x), v°(t,x) = Zskvk(t,x) + 3vp(t,x),

k=0 k=0
where (Qr,VR) satisfies

E(Qr(t),vr(t)) < E1.
Here €(Q, V) is defined by

@) [{(vP+ 5@+ Q) Q)

1-— 1—
+ 52(|VV|2 + WJ”H,E(VQ) : VQ) + 54(|Av|2 + WJH;(AQ) : AQ) }dx,
and H (Q) = Ha(Q) + 2L(Q).

Remark 1. It can be observed from [7] that the Leslie coefficients of Ericksen-
Leslie system derived from the Doi-Onsager system have same forms as (1.37)-(1.38)
except for ;. The only difference is due to the Bingham closure approximation.

The remaining sections of this paper are organized as follows. In Section 2, the
important properties of the Bingham closure and the critical point are presented.
Section 3 is devoted to the proof for the existence of the local strong solution of
the molecule-based @-tensor system. In Section 4, we present some important
linearized operators which will be used in deriving the Ericksen-Leslie system from
the molecule-based Q-tensor system. In Section 5, by making the so-called Hilbert
expansion, we present a rigorous derivation from the molecule-based Q-tensor theory
to the Ericksen-Leslie theory.

2. The Bingham closure and the critical point. This section is mainly con-
cerned to the important properties of the Bingham closure and the critical points.

2.1. The Bingham closure and Bingham map. The Bingham closure plays an
important role in the system (1.20)-(1.22). For this, one should find Bg € Q such
that

/ (mum — 1 exp(Bg : mm)

2 3" Js2 exp(Bg : m'm’)dm’
for a given @ € Qpny. The following proposition tells us that By can be uniquely
defined for any @ € Qppy. We call this map from @ € Quuy to Bg € Q Bingham
map.

dm = Q, (2.1)

Proposition 1 (Existence and uniqueness of Bg). For a given Q € Qppy, there
exists a unique Bg € Q such that (2.1) holds.

Proof. A sketched proof is given in [4]. Here we give a detailed proof for complete-
ness.

Define w : Q — R as:
w(B) = ln/ ™8 qm, (2.2)
SQ
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Obviously, w(B) depends only on its eigenvalues. From the fact that
2
/ emm:Bldm emm:B2dl,n > (/ emm:(BlJng)/de) , (23)
s2 s2 s2

we know w(B) is convex. Then we can define its convezr conjugate by Legendre
transformation: w*(Q) : X — R as

w*(Q) = sup (B Q- w(B)) (2.4)
BeQ
with domain X defined by
X ={Q:sup (B:Q—w(B)) < +oo}. (2.5)
BeQ

We will prove that X = Q,ny. For this, we need an elementary inequality:

Claim. Let by < by < b3 and 1 < g2 < q3 are the eigenvalues of B and Q
respectively, then B : Q < byq1 + baqa + b3qs.

To prove it, we can assume B is diagonal without loss of generality. Suppose Q) =
1N ®N1 +gany ®Ny+g3ng ®ng with n; -n; = 5; Then B:Q =3, 193 bigjn?

jir
where n; = (n;1, n42,n:3)7. A direct computation shows that
bigi + bag + b3gs — B : Q = (q1 — q2) (b2 — bs)nis + (¢1 — ¢2) (b1 — b2)(1 — niy)
+ (g2 — q3) (b1 — b2)n3; + (g2 — q3) (b2 — bs) (1 — n3)
>0,
which yields our claim.
For @ € Qppy with eigenvalues ¢1 < g2 < g3 and ¢; —%

€ (—3
{b1,ba,b3}, we can assume that by < by <0<bgorb; <0<b
first case

). For any A(B) =

2
3
o < b3. Consider the

1 1 1
A:{m:mf—g—q1<0, mg—g—q2<0, mg—g—q3>0},

or the later case

1 1 1
A:{m:m%—g—q1<0, m%—g—q2>0, m%—g—q;>,>0}.

We know that the measure of A is positive in both cases. Therefore,
exp(w(B) — B : Q) > exp(w(B) — q1b1 — g2b2 — g3b3)

= / exp(blm% -+ bgmg + bgmg — Q1b1 — quQ — Q3b3)dm
s2

1 1 1
= / exp (bl(m% — - —q) +b(mi— < —q)+ bg(mg - - — qg))dm
» 3 3 3

> / 1dm = meas(A).
A

This implies that B : Q — w(B) < —In(meas(A)) is bounded. Hence @ € X, i.e.

Qphy Cc X.
On the other hand, if ¢; < —%, we take by = 2b — —00,by = b3 = —b, thus we
have

exp(B: Q —w(B)) = /S2 exp (b(—m7 + % +¢q1))dm

> dme®GH) 5 4o, (2.6)
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If g3 > %, taking b3 = 2b — +o00,b; = by = —b, then we can also obtain that
exp(B : Q — w(B)) is unbounded, which implies X C Qpp,. Therefore, X = Qppy.
For @ € Qphy, then there exists B € Q such that

B:Q-w(B)= ;ug)@ (By:Q —w(By)).

Thus

Q= (Vpw)(B) = Jg2(mm — 3T) exp(B : mm)dm

[z exp(B : mm)dm 2.7)

We let Bg = B, then the existence of Bg is proved. Since w(B) is convex, we can
deduce that (Vpw)(B1) # (Vpw)(Bs) for By # Bs, which implies the uniqueness.
O

The map from Qppy to Q which satisfies (2.7) is a diffeomorphism, and so is its
inverse. We denote them by B = B(Q) : Qppy = Q and Q = Q(B) : Q = Qpiy
respectively. For A;§ > 0, we introduce compact subsets of Q as

Qa ={Q € Q: all the eigenvalues of @ belong to [—A, A]}, (2.8)
1 2
Qphy,s ={Q € Q: all the eigenvalues of @) belong to [—5 + 9, 3 it (2.9

The next proposition tells us that B(Q) maps a compact subset of Qpp,, to a compact
subset of Q.

Proposition 2. For any § > 0, there is a positive constant A = A(d) such that, for
all Q € Qpiy5, B € Q.
Proof. We only need to consider the case that ) and B are both diagonal. Assume
Q = diag{ql, q2, Q3} and B = diag{bl, bg, bg} with b1 2 bg Z bg. Let
o _0 5 0 o0
U:{m:m3<am2<f}, V:{m:m3>f}. (2.10)
8 4 2
Then UNV =0, and

/e(bszl)ngr(bS*bl)(mg*%)dm Z/ 6(b2*b1)%*(b3*b1)%dm2meaS(U), (2.11)
U U

/e(brbl)mgﬂbrbl)(mif%>dm S/ 3=t i dm = e3P imeas(V).  (2.12)
1% 1%
Therefore, we have

1
Q3+§

1
= sz €b1 mf-ﬁ-bzm%-‘rbgmg dm

_ 1 2 (ba—b1)m3+(bs—b1)(mi—9)
= fgz e(bzbl)m§+(b3b1)(m§i)dm(/SQ\V‘f'/vmge 2—b1)m5+(bz—b1)(mz—3 dm)

6 1 2 3_ 6
‘ (bz—b1)m3+(ba—b1)(m3—%) 4 )
+ fSQ e(b2=b1)m3+(b3—b1)(mi—4) qm ( /V € m

( m§6b1m§+b2mg+b3mgdm>
SQ

meas(V) o(ba—b1)3

2
04
2 meas(U) ’
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which implies

4 2 meas(V)\ 4
by — b3 < —In{ ——= ) = A(9). 2.13
o3 =5 n(émcas(U)) (9) (2.13)
This concludes the proof of the proposition. O

Proposition 3. The Jacobian matriz VpQ(B) is positive definite for any B € Q.
Consequently, B(Q) is a smooth map from Qppy to Q.

Proof. 1t is straightforward to calculate that for any non-zero E € Q, it holds
(V5Q(B)E, E)
_ Jee(mm : E)?exp(B: mm)dm  ( fo,(mm : E)exp(B : mm)dm)2
- Js» exp(B : mm)dm - (Jsz exp(B mm)dm)2

B Js2 Jse {(mm :E)exp(B:mm) — (m'm’: E)exp(B : m’m’)rdmdm' .
(Joo exp(B: mm)dm)2 .

Thus, the Jacobian V gQ(B) is positive definite. Together with the fact that Q(B)
is a smooth function of B, we know the inverse B(Q) is also smooth. O

We give some estimates related to the Bingham map.

Lemma 2.1. For any 0 > 0, k € N* and constant matric Q* € Qpny, there is a
positive constant Cs depending on 6 such that if Q(x) € Qpry,s, then

|B(Q) — B(Q*)||mx < Csl|Q — Q| -

The above lemma is a direct consequence of Proposition 3 and Lemma 6.2 by
using change of variables.

Lemma 2.2. For any § > 0, there is a positive constant Cs depending on § such
that if Q1,Q2 € Qpny,s, then

|B(Q1) — B(Q2)] < Cs|Q1 — Q.
Thus
|0;:B(Q)| < Cs|0;Q).

Moreover, for k € N*, there exists a constant C = C(9, ||Q1 —Q*|| g, [|Q2 — Q|| z+)
such that

1B(@Q1) = B(Q2)lla+ < C6,[|Q1 — Q%[ s, Q2 — Q7| ) 1Q1 — Q2ll 77

Proof. The first assertion is a direct consequence of Proposition 3. The second one
can be induced by Proposition 3 and Lemma 6.4. O

Remark 2. Since Mg) is a smooth function of Bg, it shares the same estimates
with BQ.

Now we give some properties for the operator Mg : R3*3 — R3x3
1 4
Mg(A) :gA+Q~A7A:M(E?).

Note that Mg is defined not only for the symmetric matrix, and Mg(A) is not
necessarily symmetric even if A is symmetric. The following Lemma 2.3 gives some
basic properties of Mg, which proof can be found in [12].
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Lemma 2.3. (i) For any Q € Qppy, it holds that

3
Mq(Bg) = 5@
(i) Mg is self-adjoint on R3*3, i.e., Mg(A): B= Mg(B): A for A, B € R3*3;
(iii) For any Q € Qppy and A € R3*3, the operator Mq(A) is positive, i.e.,
Mg(A):A>0.
Lemma 2.4. For any 6 > 0, there is a positive constant Cs depending on § such

that if Q(x) € Qphy,s, A € R3*3, then it holds for any multiple indez a,

[0°Mq(A) = M@(0°A)|[> < C5([[VQI[ [ All mriai-2 + IIVQIIHwaw—IIIAIILoZ)- :
2.14

Consequently, if |a| > 2, we have
[0 Mg (A) = Mq(0“A)|[2 < CslIVQIl giar [| All riar-—1 - (2.15)
Proof. With Lemma 6.3, Lemma 2.2 and Remark 2, direct computation shows that
10%(A: MGy — 9°A MY |12

< CUVME o Al o1 + [V ME? | r1or-1 | Al o)

< Cs(IVB|| L [[All griai-1 + [[VB|| griai-1[| Al o)

< Gs(IVQllLel[All a1 + [VQ zriai-1 [ All L),
which concludes the lemma. O

Lemma 2.5. For any § > 0 and k € N*, there exist constants C; = C1(0) and
Cy = Co(0,||Q1 — Q|| [|Q2 — QF|| ) such that

Mg, (A) = M@, (A)|ar < Cil|Allgr @1 — Q2llL= + C2||All L= |Q1 — Q2| v
If 0 < k < 2, there exist constant C = C(6, ||Q1 — Q*|| g2, |Q2 — Q|| g2) such that
Mg, (A) = Mq,(A)||ax < CllA[ a2 11Q1 — Qalla*,

Mg, (A) = Mq,(A)lg+ < CllAg+ Q1 — Q2| 2.

Proof. From Lemma 6.1, we have that
Mg, (A) = Mq,(A)| mx
< O([|Q1 = Qall= | Al + @1 — Q2| || Al )
+ C(I1MG) = MG [LellAll e + MG = MG | el All < ).
Then the conclusion can be deduced from Lemma 2.2 and Remark 2. O

2.2. The energy functional and critical points. The bulk part of free energy
density functional takes the following form

def 1
Four(Q) = —InZg + Bg : Q = 5alQP,
A direct calculation yields that

O four(Q)
oQ
We say that a tensor Qg is a critical point of the bulk free energy density functional

Fouir(Q) if Qo satisfies Bo, —aQo = 0. The critical points are completely classified
n [18, 9].

=0 = Bg—aQ=0.
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Proposition 4. Let n be a solution of the equation

3e’l 2
g4+ L, (2.16)
Jo e dx a
Then there holds
1
Bg—-aQ =0 <= Bg :n(nn—gl), ncS? (2.17)

and there exists a critical number o* > 0 such that

(1) when a < a*,n =0 is the only solution of (2.16);

(1) when o = a*, besides n = 0 there is another solution n =n* of (2.16);

(7i1) when o > a*, besides § = 0 there are other two solutions 11 > n* > 12 of
(2.16).

A7

m

n2

FIGURE 1. The a — n curve of the critical point.

In the sequel, we always choose a > a*, and 1 = 11 («) corresponding the stable
equilibrium solution. We also introduce some important constants used in this
paper. All of them only depend on the parameter a.

We define
1 ' Py(z)em’dx
Ay :/ xkenmzdx, Sk = %7 (2.18)
1 S emtdx
where Py (x) is the k-th order Legendre polynomial. Particularly,
1 1
Py(z) = 5(322 —1), Pyz)= g(35;# — 3022 + 3).
Then we have
345 — Ag 354, — 3045 + 3A,
So=———, 85, = . 2.19
2 24, 7! 84 (2.19)
An important fact induced by Proposition 4 is that
1
Bg—aQ =0 < Q:SQ(nn—gl), ne S (2.20)
The relation
A
a 0 (2.21)
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and the inequalities
3A3 +2A0As —5A0A, >0, 64y —5A44 — Ag > 0, (2.22)
will play important roles in Section 4. Their proofs can be found in [27], and we

omit them here.

3. Existence and uniqueness of the local strong solution for the dynamical
Q-tensor systems. This section is devoted to the proof for the existence of the
local strong solution of the system (1.27) -(1.29). For s > 2, we define the space:

X(0,T,Cy) :{(Q’V) 1 Q € Qpnys/2, 1Q — Q% ars+r + |1L(Q) | L2 (as)
+ Vllae + IV z22) < Cos ae. t € [o,T]}.
If (Q,v) € X, then by Sobolev imbedding, we have
RNz +[[V@Ql[L~ + [[VllLee < C(Co).

The proof of Theorem 1.1 is based on iterative argument and a closed energy esti-
mate.

3.1. Linearized system and iteration scheme. First of all, we take

QU (t,x), v (¢, %)) = (Qr(x), vi(x)) € X(8,T. Cy).

Assuming that (QM™,v(™) € X(8,T,Cy) has been constructed, we construct
(QUHD | v(n+1)) by solving the following linearized system:

o T v vt — 7D76(MQ(77/) (Bgon —aQ™ +e£(Q"))
+ ME (Boo —aQ™ + e£<Q<““>>)) + Moo (VD) 4 ME o, (Vv HD),
(3.1)
ov(nth) ol 1—7
(n) . (n+1) — _yp(ntD) L T Ay(n+D) (DD . @
5 +v" . Vv Vp + ReAv + 5Te V- (D .MQ(n))
1—v _ (n) (n+1) din(n) AHn+1)
+ 5V - (2Maun (Bow — aQ™ +L(QU)) +207(Q), Q1Y) ),
(3.2)
Vvt = o (3.3)
with initial data:
(QUV(0,x), v"™(0,x)) = (Q1(x), vi(x))- (3.4)

The existence of (Q("*+1), v(»*+1)) is ensured by the classical parabolic theory, see [3]
for example. Now we prove that (Q("+1) v("*1)) € X for a suitably chosen T > 0.
Define the energy functional

1—7)e 1
E = — O*? 7( L 2 2L 2 _ 2
(v, Q) /R (10-Q P+ S5 (LaIVQP +2Lal Qi) + 5 Iv]
(I—79)e s+1,2 s 2 |
+ pehe (VT QP 4 2La| Vi Qi ?) + 5972 ) dx,

Q) = [ (IL@F +VL@F + V¥ + Vv ) dx.
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Obviously, we have
By ~ Q= Q72 + IVQIZ: + IVl Fs ~ [IVQIlzrsr +IVVIIF-.

Let Eg”) = ES(Q(”), V(")). We will prove the following closed energy estimates:

1

S LB LR < O(5,Cp,1)(1 + B ), (3.5)
for some small v > 0. The proof is split into three steps.

Step 1. L? energy estimate for Q"1 — Q*. From Lemma 2.2, we have

IBoe —aQ™ |12 = | Bgom — aQ™ — B + aQ*||12
< Gs[|Q™ — Q|2 < C(5,Cy).

Therefore, by making L? inner product to (3.1) with Q1) — Q*, we get

1 d * n n *
510" = Q. = (2., QY — @)

4
= ﬁ<MQ(n)(_BQ(W) +aQ™), Q") — Q*)

e
De

< (€0, Co) + CSILQU ) 12 + Col[Tv 12 ) [QEHY = Q2
< C(0,Co) (BID)Y2 + E{™HY). (36)

(Moo (£@QUF9)), QU — Q%) + 2(Mgw (V™)) Q) — @)

Step 2. L? estimates for (VQ" Y v("*+1), In this step and the next step, a key
point is that we will use the self-adjointness of Mg=. By making L? inner product
to (3.1) with £(Q™ V), we get

1d
5%/ <L1|VQ|2 + 2L2|Q¢j’j|2)dx = <5tQ("+1), £(Q(n+1))>
R3

== (VO TQIH £(Q ) — T (M (£(Q 1), £(Q))

4
+ D76<MQ(1L)(*BQ(”) +aQ™), E(Q(n+1))> + 2<MQ<n>(Vv(”+1)), ﬁ(Q(n+1))>
IV e IVQUD 1 | L@ D) 2 — L@ ) 3
+C(5,Co)|£Q ) 12 + 2( Mg (Vv D), £(Q D))

<C(8,Co,v)(1+ E) — o) £(QM ) 122 + 2(M e (VD) £(Q 1)),
(3.7)

From (3.2), we have

li Hv(nJrl) H%Z _ <8tV(n+1), V(n+1)>

2dt
1

_ Y n n - n+1) . (4) n+1
—E<AV( +1)7V( +1)>+T]‘%€<V(D( + ) .MQ(H)),V( + )>
2(1 — PY) n n+1
+ hepe (Mam (=B +aQ™), vv™)
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2(1 B 7)5 n+1 n+1
- S (Mo (6@ ), Ty )
(1*’7)€<d (n) An+1) (n+1)
- g (Q " 7Q " )7 Vv >
DeRe
Y n 1- Y n 4 n n
< ReHVV( 12, — ST (D) M(g<),L),D( DY 4+ C5 | Vv 12
~ T hehe (Mo (VWD) £(QT1))

+CIVQ™ |2 | VQUH V| 2 [ Vv V]| 2

< (Vv |2, + Csl|[ Vv 12

_i|
—  2Re

_ %(MQW (Vv D) £(QMHD)) 4 C(Co) [ VQTHY |12, (3.8)

Thus, we obtain from (3.7)-(3.8) that

Ld

" 1—7)e
331 (V01 S22 [ (09012 + 28210 Phax)

DeRe
* QLReHVv(”-H)H%Q )| LQM |12, < C(6, Co,v)(1+ E§n+l)). (3.9)

Step 3. L? estimates for (V*T1Q"+1 vsv("+1), We now turn to the estimate
of the higher order derivative for Q1)
1d
2dt Jes
= (V" vQUY), veL(@Q )
I
4
o (= P Mg (£(Q 1), VPL(Q 1)
I
4 X . . .
T De (VMg (—Boe +aQ™), viL(@Q"th))
1
+2(V* Moy (V")) Vo L(Q 1))

1%

(L1|VS+1Q|2 + 2L2‘VSQ7],j|2)dx _ <v58tQ(n+1)7 VSE(Q(n+1))>

These terms can be estimated as following;:

I <OV g« [VQU™ ™ =V LQ™ ™) || 12 < C(6, Co) (B D FmT1)1/2,
II < —(Mgoe (VELQM)), VL")

+ <[VS,MQ<n>]E(Q(n+1)),VSE(Q("+1))>
< —v[|VELQM )| 3.
+C(O)1QM™ = Q|- IILQU™ ™) | a1 [V LQMT) | 2
< —v[|VELQU) |72 + C(6, Co)(ES TV EITD)2,
I < Gsl|QM™ = Q|| e+ [ V¥ L@ V)| 12 < C(6, Co) (BV)1V2,
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IV = 2(Mge (VD) weL@h))
+2([V°, Mo Vv ) wo£(Q D))
< 2 Mo (VH90H), T2L(Q )
FCENQW e VY 112 [V LQU D)
< 2 Moo (VTIVIHD) T2 £(QU D)) 4 C(5, Co) (D D)1/,

Thus we get

1d
2dt Jps
< 2 Mgoo (VHVITD) voL@UHY)) — v VoL@ V)17

+ C(6, Co)(BU D)2 (14 (F{D)1/2), (3.10)

(Ll |VS+1Q|2 + 2L2|VSQ1']',]‘ \Q)dx

For the estimate of the higher order derivative for v("+1) we have

1 d DeR DeR
@i T IV YV = T (Ve v
_ ?BRE <vs(v(n) ) vv(n+1))’vsv(n+1)> + 1’7D€ <VSAV(TL+1),VSV(“+1)>
— -

- %{VS(D(”“) : M&L))7vs+1v<n+1>>

_ 2<VSMQ(n> (Bgom — aQ(”)), vs+1v(n+1)>

—2e(V* Mg (L(Q"TD)), vetiy(ntD)

_ €<Vs (ad(Q("), Q(n+1))) 7 Vs+1v(n+1)>
ET+IT+IIT+IV+V+VI

Estimating them term by term, we obtain

I< C(IvP o VYO e 4 VO [V D [ o) [ VoV D 2

< Cy (E§n+1)(E§n+1) I Fs(n+1)))1/27

D
1] = — 76<(VSD(7L+1) . ]\4((24()n))7 vsD(n+1)>

De s 4

+ 5 (IV°, Mo
D

<~ =SV DY M), veD D)

+C(8,Co)IVQ™ |+ D" o [ VSV 2

D
< = SV M), VDY) 1 O(5, Co) (B

. (n+1) sTy(n+1)
DD D)y

[\)

1/2
9

IV < C((S) HVQ(TL) ||Hq Hvsv(n-‘rl) ||L2 < C((S, CO)(E£n+1))1/2,
V=- 2€<MQ(n> (VSE(Q(nJrl)))’ vs+1v(n+1)>
+ 25<[VS7 MQ(’n)]E(Q(nJ"l)), Vs+lv(n+1)>
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< — 2e( Moo (VEL(QHD)), vetly(ntD)
CONR™ = Q- ILQ ) o+ [T+
< = 26( Moo (VEL(QU D)), Vo H v DY) (5, Co) (B Fn D)1/,
Vis CllV@(")llH IV QU™ | g7 [ VvV o < O(Co)(ETHD FnHD)1/2,

Thus we get
1 d DeRe s (n+1))12
SH 1o IIV 72
’)/De S ’I’L n S n
< *fIIV FvOD)|Rs = 2e(Mgen (VELQUHD)), voHiv(ntD)
+ C(6, Co) (B D)2 (14 (Bl H0)1/2). (3.11)

Combining (3.6), (3.9), (3.10) and (3.11), we know that it holds

; thgHD +vEMD < C(6,Co) (1 + ESHY), (3.12)

for v > 0 small enough. By Gronwall’s inequality, we get
EMD (1) < (14 EMTD(0))eC@C0) 1 = (14 Ey(Qr, vr))e“ %! — 1, (3.13)

for any ¢t € [0,T]. Then if we take Ty > 0 such that C(d, Cy)Tp < In(1+Cp) —In(1+

Es(Qr,vr)), then sup E§"+1)(t) < Cy. In addition,
0<t<T,

t t
||/ 0,QU Y (¢, x)dt|| S/ 10,1 (t, %) | 2t
0 0

t

<c(6,Co) [ (I£Q ) + [TV 2+ QD = Qs+ 1)t
0

< C(6,Co)t.

Thus, together with the assumption Qr € Qpny,s, it yields that Q) ¢ Qphy,s5/2
for t € [0, Ty, if we choose Ty sufficiently small. Then we obtain (Q(*+1) v(*+1)) ¢
)(((S7 717 Co) for T < To.

3.2. Convergence of the sequence. In this subsection, we are going to show
that the approximate solution sequence {(V(@, Q(l))}geN is a Cauchy sequence.
We set

55 = QU — QW 5% = By — Bouv, Sy = Mg?z) Mé“(l,l),
5€+1 — ) 7 5]@-1 — DD _p® 7 6£+1 — p(€+1) —p( )

By taking the difference between the equations for (vt Q¢+1D) and (v(©,Q®),
we find that

858“1 © or1 2€ 41 £+1
—— + vV, :E(MQ(Z)(E((;Q ))+MQ(2)( (60 )))
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+ Mo (V6§ + Mbw (V65T + 6, (3.14)
85£+1 ~ 1—

v Oyttt — _ ettt 4 T Astt 4 041, a4 r(4) sl

2 TV Vo, =-Vo, +R6A5V 5Fe Iy (Op ~: Mye) +V - 0F,

I

- %v : (zMQW (L5 +0%(Q1, 531)), (3.15)

V.ot =0, (3.16)

where

2e
5Ff == (84 £(Q0) + £@QV) -8 +2£(Q) : 5%
+36 - Vv 4 (VO T 56 — oD O 1 5% ) 8L v
2
+ De (MQ(Z)( Bgw + aQ" )) + MQ(@)( Bgw + OéQ(g))

~ Mgu— (=Bou- +aQ" V) = M{y (~Bge- + aQ“‘l)))7

1-
" DeRe (2MQ“)( Baw + aQ!") - 2Mge-n (=Bgu-v + aQ!"1)
+e(28g- <Q“>> - 2L(Q) s 8 + (55, 2))

l-7p
+ W 6M(4) 56 ® V(e).

From Lemma 2.5, we have
I8F7 ||z < C(8, Co) (106Gl mr + 1651 22)
16F; |22 <C(8, Co) (I18G e + [1831112).

Similar to the proof of (3.9), we can deduce that there exist v > 0 small enough
and C(,Cy,v) > 0, such that

OFf =

1d 1—7)e
3 37 (102 10578 + o [ (L VOGP o+ 20l 05 i) x)
0+112 {+1
+27}26||V6v ||L2+V||£(5Q )HL2
<5, Co, ) (195 s + 1557 s + 154135 + 185 1n). (3.17)
We denote

%) dx.

1—79)e
B (0) = 1001 + W06l + oo™ [ (LalVOg P+ 28al 65 s

Then (3.17) implies
d

ZECY 0 < o(BO® + BTV W)

Thus, we get
EfTMm <c / CENEN (rydr < © / “TNdr sup ES(1).
0 0 te(0,T]

Taking T' < Ty small enough such that C’fOT eCT=ndr < %, we obtain

1 ~
sup E(ZH)( t) < = sup E(ge)(t).
te(0,T 2 te(0,T



2632 SIRUI LI, WEI WANG AND PINGWEN ZHANG

Therefore, there exist Q@ — Q* € C([0,T], H') and v € C([0,T], L?), such that
QM —Q = Q-Q eC(o,1),H"), v =veC(o,T],L%. (3.18)
By the uniform bounds and interpolation, we have for any s’ € (0, s),
QMW —Q" - Q—-Q ec(o,T],H*Y), v 5veC(o,T],H). (3.19)

Thus we (Q,Vv) is a classical solution of (1.27)-(1.29). The uniqueness of (Q, V) is
guaranteed by the same energy estimate as we have done to the prove the conver-
gence of {(Q(™,v(™)}. Moreover, by the standard regularity argument for parabolic
system, we have that

Q—-Q* co(o,T], HTY), veC(0,T),H®) N L*([0,T], H*). (3.20)
We omit the details here. This complete the proof of Theorem 1.1.
4. Some linearized operators. In this section, we study some important lin-
earized operators which will be used in deriving the Ericksen-Leslie system from

the molecule-based Q-tensor system (1.27)-(1.29).
For a given Q = Q(B), the linearized operator of Q(B) is defined as:

Qu(B) = S(QB+1B) - Q(B))

4 1 ~\ /=
:MC%) :B— (§I+Q)(Q :B), for B€Q.
We can also introduce the linearized operator of B(Q) around @, which is actually

Qél, since Q(B) and B(Q) are inverse functions of each other.

The following proposition shows that Qg is a self-adjoint and positive operator.

Proposition 5. For Q € Qphy,s and By, Ba € Q, we have Qp(B1) : By = Qg(Bs) :
By. Moreover, if By # 0, then Qq(B1) : By > 0.

Proof. By the definition of M g) and the fact that [, fodm = 1, it is direct to
check

QQ(Bl) : BQ = / (mm : Bl)(mm : Bg)f@dm — (Q : Bl)(Q . Bg) = QQ(BQ) : Bl,

§2
2
Qu(By): By :/Q(mm:Bl)zdem— (/Q(mm:Bl)dem> >0,
S s
which concludes the proof. O

We are particularly interested in the linearized operators around the equilibrium
tensor Qo = Sa(nn— %I)7 where Sy are introduced in Section 2. We denote Qg (B)
by On(B) for By = n(nn — £I). For use of convenience, we calculate Qy explicitly.

For the equilibrium tensor o, the distribution function fg, and the order pa-

rameter tensor Mg;) can be written as

en(mm)?
fQo :Wa (41)
Mgt),ijkl =San;n;ngn; + 7 (ninjOrr + ninkdj + ninidjr + njngdy
S 25 1
+ njnidi, + ngnydi;) + (222224 70kl + 0ikdj1 + 0uds). (4.2)

35 21 15
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Substituting (4.1) and (4.2) to the linear operator

0u(@) = M) Q- 31(Q0: @)~ Qo(@o: Q).
then we have
On(Q) =& (nn — %I)(nn 1Q) + & (nn -Q+Q -nn— ;I(nn : Q)) +&Q, (4.3)

where

2(S5 — Sy) Sy 28, 1
S22 TP =2t 222 4.4
— & =25 -5 t ) (4.4)

To calculate Q5! explicitly, we may assume that

2-1(Q) = ¢y (nn — %I)(nn (Q)+ Yo (nn-Q + Q -nn — ;Inn 1 Q) +Ys3Q, (4.5)
where 1;(1 < i < 3) are constants. Then we have

Q. (Qn(@))
= Ga(mm = S0 Qa(Q) + v (0~ Qn(Q) + Qn(Q) - nn

51:547S§a 62:

_ %Inn: 0n(Q)) +50n(Q)
a4 L 42 L
=06t et &) I m Q)+ (26 1 26)(om - tDon @)
+2(éa+&)(nn-Q + Q - nn — %Inn 2 Q) + 3 (nn — %I)(nn 1 Q)
FsGa(on Q+ Q@ nn — STan: Q) + Us&Q
= (1/)1(%51 + 252 +&3) + 1/12(%51 + ;52) + 1/13§1>(nn - éI)(nn Q)
4 (42(6 +6) + Y) (0 Q + @ om — STnn: Q)+ Us&Q.

Therefore, the coefficients 1, (1 < i < 3) satisfy

DCE+ 56+ E) +a(36 + 262) +ista =0,

Va(€2 + &) +3€2 =0, Y33 = 1. (4.6)
By (4.4) and the definitions of So and S4(see (2.19)), we get that
_2(S2—84) 643 —5A4— Ag

52 7 4A0 > 0’

. Sy 259 1 . Ay — 245+ Ay
=z -Trn) -
2 4  3(AgAs — A2)
gfl+§§2+§3*42143 > 0.

Thus, the coefficients 1, ¥, 93 can be uniquely determined.
Another important linear operator is the linearized operator Hy(Q) of B(Q)—aQ
around g, which is given by

Ha(Q) = 05 (Q) — aQ. (47)

plays an important role in next sections.
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First, we introduce a two-dimensional subspace of Q as
Qir = {nnL +n'n: nt e Va},
where V,, := {n € R*|n! - n = 0}, and let Q2" be the orthogonal complement of

Q" in Q. The following proposition gives a characterization on the kernel space
and non-negativity of Hy:

Proposition 6. (i) HaQy' =0, i.e. Hn(Q) € Q.
(1) There ewists a positive constant co such that for any Q € Q%

(Ha(Q), Q) = co| Q.

Proof. (i) From (4.5) and (4.7), the linearized operator H, can be written as
1

M (@) = 1 (om — ST)(mn Q) + d(mn- Q@+ Q- mn — STan: Q) + (15 — @)@

where 11,19, 13 are given by (4.6). By (4.4) and definitions of Sy and S4, we have
Ay — Ay 1

§2+ &3 A 5 (4.8)

Together with (4.6), we know g + b3 = (£ + &3) 71

Hn(Q) = ¢y (nn — %I)(nn 1 Q) +1/12( —Q+4+nn-Q+Q -nn— %I(nn : Q)) (4.9)

This yields the assertions in (7) by observing

= «. Thus, we get

1 2
(nn — gl)(nn Q) eQo, —Q+nn-Q+ Q- -nn— gI(nn 1Q) € Qo (4.10)
(74) From the assertion in (¢) and (4.10), we have

0,1(Q) = aQ + Ha(Q).

Thus Q,(Q) € Q2 if and only if @ € Q2. Together with the fact that O, is a
bounded operator, we only need to prove that

Ha(Qn(B)) : Qun(B) = C0|B|2a
for some positive constant ¢y and any B € Q9. From (4.3), we have
(B, Qn(B)) =& |nn : B +2&|n - B> + & B,
and
2
(Qn(B); Qu(B)) =(5 (€1 + 26)” = 26 + 2683) [0« BJ?
+ (26 + 468)n - BI* + 61B|”.
Therefore we get
Hn(Qn(B)) : Qu(B)=(B — aQu(B)): Qu(B) = f1|nn : B + fo|n - B|* + B3| B,
where the coefficients are given by
2
Br=6& — 06(5(51 +26)% — 265 +26263),
B2 = 265 — (265 + 4€as), B3 = &3 — aki.
From (4.8), we have

Bo+2B3 =2(& + &) (1 — (e + &) =0,
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which implies
Hn(On(B)) : Qn(B) = Binn : B> + B5(|B|* — 2|B - n|?)
= (81 — 2B3)|nn : B|? + B3| B|?,

for B € Q2ut. If 81 > 2033, the assertion is apparently true. If 31 < 203, it is direct
to check that for traceless matrix B

|B|2 > g|B : nn|2.
Therefore
Hn(Qn(B)) : Qu(B) = (81 — 2683)[nn : B* + | B|?
2 1
> 5(51 — 23)| B> + 3| B|* = 5(251 — B3)|BI.
Some further tedious calculations give that
1 2 1
B1 — % =1 — 553 - Oé(g(& +26)? — 265 + 26285 — 55%)
B 8AgAz +9A3 — 17ApA,
B 4A2

—27A3 +54A0A3A, + AZ(16A3 — 324244 — 1143)
8A3(As — Ay)
~ 9(—3A3 —2A0A3(A; — 4A4) + AF(2A; — 5A4) Ay)
B 8A3(As — Ay)
_9(AgAy — A3)(3A3 + 240 Ay — 5A0Ay)
B 8A3(As — Ay)

> 0.

This concludes the proof. O

We denote by P the projection operator from Q to Q™ and by P°“ the pro-
jection operator from Q to Q24¢. By direct computation we have

|Q — (nn +n*n)]* = QI* - 2/Q -n’ +2/Q : nn[* + [n* — (I-nn)-Q - nf*.
Therefore, there holds
P"(Q) =n[(I—nn)- Q- n] +[(1 - nn) - @ - nJn
=(nn-Q+Q -nn)—2(Q : nn)nn, (4.11)
P™(Q)F° =2/Q - nf* —2|Q : nnf?, (4.12)
and
PUUQ) = Q- P™Q) = Q- (nn-Q+Q-nn)+2(Q:nnjnn.  (4.13)

Another two linear operators will be frequently used in the later are J, : R3%X3
Q and Uy : Q — Q, which are defined as

To(A) = %(M@(A) +MG(4)) = %(A+AT) + %(AT Q+Q-A) —A: MY,
Uo(B) = MO - B~ (@ BV,
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for A € R%3 and B € Q. When Q = Sz(nn — 1I), and A € Q*, then by (4.13)
we infer that

Q- A= Sy(nn— éI) - P A = Sy(A: nn)nn — éSQPOUtA,

which is symmetric. Thus, Q - A = AT - ), and then we have

Mg (A) = MG(A) = T5(A). (4.14)
A direct consequence of (4.14) and Proposition 6 is that, for Q@ = S(nn — 1),
Mo(Ha(Q)) = Tg(Ha(Q)), for any Q € Q. (4.15)

We denote Jg by Jn for simplicity when Q@ = So(nn — 1I). It should be noticed
that J, is not self-adjoint operator on R3*3 but is self-adjoint on the space Q.
Direct computation gives that

2(52 — 54) S4 252 1 :
L 0 _ (22 —0o4) K4 av2 - 1 iR in
On(nn— +n )—( - —|—2(35 51 —|—15))(nn +nn) € Q)
Jn(nn® + n'n)

/11 2(S2 — S4) Sy 25 1 L1 in

=(3+§% 7 25~ 5 +ig) et Hatn) e @
which imply

a0y CQY, JaQY C Q-

As Qn, and J, are self-adjoint on Q, we also have
Qn@rolut g Q;)lut, jn@?lut g qut'
Consequently, we get

[Qn, P =[Qn, P*1=0,  [TJn, P™]=[Tn, P*“]=0. (4.16)

5. Rigorous derivation from the @Q-tensor theory to the Ericksen-Leslie
theory. In this section, by making the so-called Hilbert expansion for the solu-
tion of the molecule-based @Q-tensor systems (1.27)-(1.29), we present a rigorous
derivation from the molecule-based @-tensor theory to the Ericksen-Leslie theory.

5.1. The Hilbert expansion. Let (Q°,v®) be a solution of the system (1.34)-
(1.36). We perform the following so-called Hilbert expansion:

3
def ~
Q=) "Qu+°Qr = Q+°Qn, (5.1)
k=0
2 def
v = Zekvk +&3vr E v+ edvp, (5.2)
k=0

where Q;(0 < i < 3),v;(0 < j <2) are independent of € and will be determined in
what follows. (Qgr,Vvg) are called the remainder term which depend upon €.

Substituting the above expansion to (1.34)-(1.36), and expanding all the terms
with respect to e, we can get several systems of equations to solve (Q;,v;)(0 < i < 2)
and Q3 by collecting all the terms of the same order with respect to e. In [27] and
[29], the expanding can be performed directly as it involves only polynomials of
variables. In contrast, the dependence of B and M p on @ is much more complicated
here.
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First, we make the following formal expansion for Zg- and Bge:
Bge = By +¢eB;4 +€232 +5333 +e3BR—|—€4ERB, (53)
ZQE =Zy+eZy +62ZQ +€3Z;3 +63ZR+64%2. (54)

Here B;, Z;(0 < i < 3) depend on @Q;(0 < i < 3) only, and Bg, Zr depends on Qg
and @Q;(0 < ¢ < 3) . Moreover, B;, Z;(0 < i < 3) are independent of ¢ and Bg, Zg
are the linear functions of Q. All the terms with higher order of ¢ are put in 4% p
and e*M . To perform the Hilbert expansion, we have to write B;, Z; and Bg, Zr
in terms of Q;, Qr explicitly.

By viewing Zg- as a function of B, we have:

3
Zge :/ exp (mm : (Z e*By, + B + 649%3)>dm
s k=0

:ZQ() (1 + ‘C:QO : Bl + EQ(QO : B2 + 21) + 63(Q0 : B3 + 222

+Zs) +°Qo - BR) +e'Rz, (5.5)
where

= 1
Zy = (mm : B;)? exp(mm : By)dm,

27q, Js2
= 1
Zy = (mm : By)(mm : By) exp(mm : By)dm,

2ZQ0 SZ
= 1
Z3 (mm : B;)? exp(mm : By)dm.

:6ZQD S2
By the expression of Q¢, we have

1

Q :ZQE

3
1 .
/ (mm — §I) exp (mm ( E e*By, +e°Br + 549%3)>dm
s k=0

= (Qo + E(Még? - %IQO) : By +¢? [(Mé;? - %IQO) : By + Q1]
+ (M) - 31Q0) : By +2Qs + Q5] + (M) - 31Q0) : By] + O("))
: (1 +2Qo: By +€%(Qo: B+ 1)

+&3(Qo : Bs 4+ 275+ Z3) + Qo : Br + 0(54)>_1

= Qo+ <((M) = 31Q0): B — Qo= BI)Qo) +¢*((MS) ~ 31Q0) : By + Q)
~Qul@Qo By + Z1) ~ {(ME) = 31Q0) : B} (@0 B) + Qol@Qo': B1)?)
+3((MS) — TQ0) By + 2G5 + Qs — Qul@o : By + 27 + Z3)
(@0 Bat 22)(MG) - 51Q0): By [(MG) ~ 31Q0) B2 + Q1)(Qo : B)
£2Q0(@0 B)(Qo: Ba+ Z0) + (Qo: B (MS) ~ 11Q0): B — QolQu s B1)°)

+8 (M)~ 21Q0) : Br— Qul@Qo: B)) + O() (5.6)
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where

. 1 1 2

Q1 :2ZQ . (mm — gl)(mm : B1)” exp(mm : By)dm,
0

~ 1 1

% =57 [ (mm — 1) By)(mm - B) explomm : Bo)dm,
o JS

~ 1 :

Qs :6ZQ /S (mm — gl)(mm : B;)? exp(mm : By)dm.
0 2

Noting the definition of linear operator Qg, and from (5.6) we can duduce that

Q1 = Qq,(B1), (5.7)
Q2 = Qq,(B2) — (Qo : B1)Qq,(B1) + Q1 — Z1Qo, (5.8)
Q3 = Qq,(Bs) — (Qo : B1)Qg,(B2) + ((Qo : B1)* — Qo : B> — 21)QQ0(B1)
+(Qo : B(Z1Q0 — Q1) — (222 + Z5)Qo +2Q2 + Qs (5.9)
Qr = Qqg,(Bg). (5.10)

Thanks to the invertibility of Qg,, we know that B; can be explicitly given by
Q;(0 < j <), and Bp is linearly depend on Qg.
Similarly, we next make the expansion for Mgla):

MY = M +eM® v M) + MY + MY+ Ry, (5.11)
Then we have

1

MWD
Zg- Js

QE

3
mmimimn exp (mm : (Z e*By, +e*Br + 649%,3)>dm
k=0

4 —~(4 —~(4 —~
= ( W eMS) B+ 2(MS) By + M) + 3(ME) - By + 205" + MY)
+ (MY : Bp) + 0(54)) : (1 +eQo: Bi+€2(Qo: Ba+ Z1)
~ ~ —1
+e%(Qo: By + 275+ Z3) +£%Qo : Br + 0(54))
_ @ (©) . . ()
= MG) +e(MS): By~ (Qo: BI)MY,)
+e (Mgi) : (B2 = Bi(Qo: B1)) = MG (Qo: B2 — (Qo: B1)” + 21) + 1\71(4))
+¢&8 (Mg? : [Bg + B2(Qo : By) + Bl((Qo : 31)2 —(Qo: B2 + 21))]
_ Mé;o) [QO : Bs + 222 + 23 —2(Qo : B1)(Qo : Ba+ 21) +(Qo : Bl)3]
+ 21\/4\2(4) + ]\/4\:§4) - M\l(QO : B1)) + &8 (Mg’;)) : Br — M(S?(QO : BR)>
+0(e"). (5.12)

Here Z; are defined after the expansion of Zge, and ]\ZM) are defined as

— 1
M1(4) - mmmm(mm : B;)? exp(mm : By)dm,
2ZQ0 s2
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]T/[\2(4) = mmmm(mm : By)(mm : By) exp(mm : By)dm,
YN

— 1

M?E4) _ mmmm(mm : B;)? exp(mm : By)dm.

6Z¢, Js
Noting the definition of linear operator Ug, and from (5.12) we get
MY =Uq, (By),
MY =Ug, (Bs) — (Qo : By )Ug, (By) + M — ZM(S?
M5" =Uqq (Bs) — (Qo : By (B2) + ((Qo : B1)” = Qo : Ba = Z1)Ua,(By)
+(Qo: B)(ZiMG) — M{Y) — (22 + Za)MG) + 200" + MY,
MY = Uq,(Br).

Now, we can write down the expansion of the original system (1.34)-(1.36) and
collect the terms with same order of €. Specifically, we have
e The O(¢7 1) system

MQO (BO — OZQ()) = 07 (513)

e The zero-order term in ¢

% + Vo VQo =—4Jg, (HQO(Ql) + E(Qo)) + 270, (K5 ), (5.14)
%+VO'VVOZ_VPO"‘éAVo-FlQ_TJV-(Do:Mgo)

+ %v (270, (Hay (Q1)) +2Ma, (£(Q0)) + 0(Qo, Qo) )

(5.15)

V-vo=0. (5.16)

e The first-order term in ¢

0
% +vo-VQi1 =—vi-VQo —4Jg, (HQO (Q2) + E(Qﬂ) + 270, (k1) + Fy,
(5.17)
0
%+V0'VV1 :*Vl'VVO*Vler%AVl
1-v @ @
+ 572V (Do: MY+ Dy : M)
I—v
+ =1V (2Ma, (Ha,(Q2) + 2Ma, (£(Qu)) — G
+0d(Q0,Q1)+0d(Q1,Q0)>7 (5.18)
V-vy =0. (5.19)

e The second-order term in ¢

Qs +vo-VQ2=—v1-VQ1 —vy-VQo —4Jg, (HQO(Q?)) + 5(@2))

ot
+Jq,(k3) + Fa, (5.20)
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ov
871f2+v0.vv2 =—vy-Vvy _VQ'VVO_VPQ‘F%AVQ
| @ @ YO
+5pe V- (DO.M2 +D,: MY D, .MQO)
1 _
-V (2Ma, (Ha, (Qs) + 2Ma, (£(Q2)) — G
+0%(Qo,Q2) + 0(Q1, Q1) + 0%(Q2, Q) ) (5.21)
V.vy=0. (5.22)

Here, F1, Fa, G1, Go are defined as following:
F, =F, + F4,
Fy =4a(Q1 Q1 — (@14 (Qo: B)Qo) : MY — Qo (MY — ZM&)))
Fi =Q1 - (~2£(Qo) + £8) + (—2£(Qo) + o) - Q1 — 2(~2L(Qo) + Do) : M{",
G =31 —2(Q1 - £(Q) — £Qu) s 1Y),

F2 =Q2 - (20Q1 — 2£(Qo) + #5 ) + (2aQ1 — 2£(Q0) + o) - Q2
+Q1 - (20Q2 = 2L(Q1) + K1) + (20Q2 — 2L(Q1) + K1) - Q1
—2(20Q; — 2£(Qo) + Do) : MY — 2(2aQ — 2£(Q1) + Dy) : MY
—4aQo (— (Qo: BOMY + ((Qo: B1)? = Qo : By — Zy) M
+(Qo: B)(ZiMG) = M{Y) = (22 + Zs)MG) + 200" + MY ),
G2 =Q2 - (20Q1 — 2L(Q0)) + Q1 - (20Q2 — 2L(Q1))
— (20Q1 — 2£(Q0) : M" — (20Q2 —2£(Qu)) : M{"
—2aQo : (* (Qo: BMSY + ((Qo : B1)? — Qo : Bo — Z1) MY
+(Qo: B(ZiMY) — M) = (22, + Zs)Mly) + 2MP + MEY).

The equation of O(e71) (5.13) is equivalent to By — a@Qo = 0. Thanks to Propo-
sition 4, @)y takes the form

Qo(t,x) = S2(n(t, x)n(t,x) — %I), (5.23)
for some n(t,x) € S2.

The evolution of n(¢,x) is determined by the O(1) system (5.14)-(5.16). At first
glance, this system is not closed since it involves )1 which is unknown. However, if
we project (5.14) into the subspace QI = Ker Hy,, then @ is vanished in (5.14) by
Proposition 6. In addition, if we project (5.14) into the subspace Q9" = (Ker Hy)*,
then we can solve Hy,(Q1) in terms of (Qo,vo). Thus @1 can also be eliminated
in (5.15). Actually, the following proposition shows that the system (5.14)-(5.16)
implies (n, v() satisfies the Ericksen-Leslie system with coefficients depending on
the molecule parameters. One can see the detailed proof in [12].
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Proposition 7. If (vo, Qo) is a strong solution of the system (5.14)-(5.16), then
(n,vg) is necessary a solution of the Ericksen-Leslie system (1.3)—(1.5), where the
coefficients are given by (1.37)-(1.39).

In the next subsections, we will show how to solve Q;(1 < i <3) and v;(1 <j <
2) from (5.17-5.22). The whole procedure is very similar to the one used in [27] and
[29].

5.2. Existence of the Hilbert expansion. Assume that (vg,n) is a solution of
the systems (1.3)-(1.5) on [0, 7] such that

vo € C([0,T); H*), Vn € C([0,T); H")

for k > 20. Since Qo = S2(n(t,x)n(t,x) — +I), we have Qo € C([0,T], H*T1).

Let Q1 = Q{ + Q1 with Q] € Q™™ and Qi € Q2“*. Notice that we can solve Qi
by the equation (5.14) and have Qi € C([0,T]; H*~!). In order to solve (v1,Q{),
we need to derive a closed system for (vi,Q]) from (5.17)-(5.19). We will also
show that this system is linear and have a closed energy estimate, which implies the
solution (v, @{ ) will not blow up in [0, T].

In what follows, we denote by L(Q{ ,vy) the terms which only depend on (Q{ ,v1)
(not their derivatives) linearly with the coefficients belonging to C([0, T]; H*~1!). We
also use R € C([0,T]; H*=3) to denote the terms depending only on n, vy and Q1.

Lemma 5.1. [t holds that
0Q1

Pout(w +vo - VQl) = L(QI) + R,
i O oQ7
Pm(%‘FVO'VQﬂ = gtl +vo-VQ{ +L(Q])+R.
Proof. The proof can be found in [29)]. O

For any @ € Q, we set
F1(Q) =10(Q* - [Q + Qo(Q'(@) : Q)] : Un(221(Q))
~Qo: (ML(Q) - Zu@MS)).

where ]/\4\1(62) and Z;(Q) are nonlinear functions with respect to Q,

My(Q) = 2le " mmmm (mm : Q;l(Q))2 exp(mm : By)dm,
72(Q) = 221Q " (mm : Q;l(Q))QeXp(mm : Bp)dm.

Therefore, note that Q; = Q{ + Qi, we have

Fi=Fi(Q1) =F1(Q]) + L(Q]),

where the definition of L(-) is as the above. The next lemma tells us that when we
take the projection P on Fy, the terms which are nonlinear with respect to Q{
will vanish.

Lemma 5.2. Fi(Q]) € Q% that is, P""F; = L(Q7 ).
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Proof. Let Q] = nn+nn where i Ln. It suffices to prove that F1(Q{ ) : (np+pn) =
0 for any pLn.

Due to the definition of Q5! we know Q1 (Q{) = (W2 + ¥3)Q] , where 1,13
are coefficients defined in (4.6). Thus we have

Qo+ Q5 (Q1) = 82( + is)(om — <T) : (mik + in) = 0.

Direct calculation yields that
(@ :tn(97'(@1)) : (np + pm)
= M0 [ (- ) an - p) exp (n(om - w)?)m,
(Qo: M{"(Q[)) : (np +pn)
— SO E [ e - ) me ) m ) m - ) exp (son - w?)am,
Z(Q1)(Qo : MG)) : (np + pn)
_ 252,(Q) /SQ ((m-n)? - é)(m -n)(m - p) exp ((m - n)2)dm.

ZqQ
By the coordinate invariance, we may assume n = (0,0,1)” and f = (a1, by,0)7,
p = (a2,b2,0)”. Let m = (sin 6 cos ¢, sin fsin p, cos §)7, then

(QF :Un(Q2(@1))) : (up + pn)
2w e
= 8(1/}22;1/)3) /O /0 cos® 0 sin* 0(a; cos ¢ + by sin )?

- (ag cos @ + by sin p)e” cos? dody

0

=0.
Similarly, we have
(Qo: M{P(@Q])): (ap+pn),  Zi(Q])(Qo: M) : (np +pn) = 0.
This completes the proof of Lemma 5.2. O

We are now in a position to derive the systems of (v, Q). We denote
A =P (Ta(L(Q1))), Az =P (Tu(L(Q)))),
B1 = ,Pln (‘7@0 (Vvl)), B2 = POUt (jQO(Vvl)) .
Taking the projection P on both sides of (5.17), note that Hn(Q2) € Q%! and
Ta(L(Q1)) = Tu(L(Q])) + R, from Lemma 5.1 and Lemma 5.2 we get
9Q{
ot

Here we have absorbing P (v - V@) into L(v1). Taking the projection P°* on
both sides of (5.17), we have

4T (Hn(Q2)) — 4A2 + 2By + F1(Q7 ) + L(Q] ) + L(v1) + R =0,
which implies that
—2J0(Hn(Q2)) + G1 = 2A5 — By + L(Q{ ) + L(vy) + R. (5.25)

+vo-VQ] = —4A, + 2B, + L(Q] ) + L(v1) + R. (5.24)
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Substituting (5.25) to (5.18) and together with (5.24), we obtain the following closed
system for (vi, Q)

;
8?; [ = —4A +B1 + L(Q{) + L(v1) + R, (5.26)
%‘FVO Vv1 :—Vp1+R—Av1+Wv ( Mc(;?)
1—
- (V- (282~ B —2Mq, (£(Q]) + L(Q]) + R)
4*V~(U%QO$%U‘%U%QI,Q@))+IXVQ, (5.27)
V-vy=0. (5.28)

Apparently, (5.26)-(5.28) is a linear system of (vi, Q] ). To prove its solvability, we
give a priori estimate for the energy

k—4
B ST (000 + 5001 £@'@D)) + (@1 el

le]=0

We will prove that there exists a positive constant C' such that

d
Z B < OB+ |[R(®) | e-s), (5.29)

which ensure that the systems (5.26)-(5.28) have a unique solution (vi,Q{) on
[0, T satisfying

vi € C([0,T); H**), Q{ € C([0,T); H*®). (5.30)

Without loss of generality, we only prove (5.29) in the case of £ = 0 and the proof
is similar for the general case. When ¢ = 0, the corresponding energy is given by

By = {vi,v1) +(Q{,Q{) + <Q1 ) (QI»
First, we get by (5.26) that

<Q1 Q1) = (—ATa(L(Q])) + Ta(VV1),Q1 ) + (L(v1) + L(Q] ) + G, QY )

2 dt
< 8IVviliZe + CslQ1 IF + C(lvilZe + IRIIZ2). (5.31)

Meanwhile, we can obtain from (5.26) and (5.27) that

1d/2Re 2Re

2 (T o) 21 L@D)) = 7= 0w + 200 £@D)

2
- %vauiz — (D, : MY, Dy) + 2<2A2 B, — 2Mq, (L(Q])), Vv1)
I
Re
+ 2<L(V1) + L(QlT) 1 — v (Ud(Q07 QI) + O.d(Qira QO))7 vV1>
I
=2(vo - VQI, L(Q])) +2( — 4A1 + By, L(Q]))
Ig I4

+2(L(v1) + L(Q]) + R, L(Q])) .

I
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For I, I3 and I5, we have
13 = —2/ (Llﬁjvm@inTi,jﬂjQL/j, + 2L2(31V0janIklaleTkm
R3

+ Ov0;0QT0m Q) ) dx < CQT I, (5.32)
I + I < 8Vvill32 + Cs(lval3 + 1QT 3 + I RI3). (5.33)

Now we turn to estimate I; + I5. Recalling the fact that for any Q € Qi (Qout),
In(Q) and Mg, (Q) belong to Qi (Q2*?), we have:

<Pout (jn(Vvl)),Vvl> _ <Pout (jn(vvl)),D1> = <Mn(VV1),P0ut(D1)>
= (Vv1, Ma(P™(D1)) ) = (Vv1,7a(P*(D1)) )
= (P(Dy), T (P'(D1)) ) > 0, (5.34)

where we have repeatedly used the symmetry of J,(-) and the self-adjointness of
M, (note that My(+) is not symmetric and J, is not self-adjoint). Similarly, it
holds that

(Fule@D), P (@) = 0. (5.35)
On the other hand, thanks to (4.14) and (4.16), we have

(P (Ta(L(@Q1)). v ) + (P (T(Tv1). £(@]))
= (Fa(P(£(@]))), V¥1 ) + (Ta(Tv1), P L@T) )
= (M (P (£(Q]))), V1) + (Ma(Vv1), P"L@Q]))

= (Mau(£@])), Vv1). (5.36)
Combining (5.34)-(5.36), we get
I +1, <0. (537)

Therefore, we obtain the following energy inequality
d
%E1 < C(E1 + ||R|31),
which indicates the existence of (v1, Q7).
Again, we write Q2 = Q4 + Q5 with Q5 € Q" and Q5 € Q2. By (5.25) we
can solve Q3 as
1 1
Qy = 57{;1711_1(— 2A5 + 532 — Gy — L(vi) — L(Q]) — R) € C([0,T]; H*?).
(5.38)
Then, (vg,Q5) can be solved in a similar way as (vi,Q{). Qs can be solved
similarly as in (5.38)(unique up to a term in QI'). We omit the details and leave

them to the interest readers.
To summarize, we have proved:

Proposition 8. Let (vg,n) be a solution of (1.3)-(1.5) on [0,T] and satisfy
vo € C([0,T); H*), Vne C([0,T]; H*) for k> 20.



WELL-POSEDNESS AND SMALL DEBORAH LIMIT OF A Q-TENSOR MODEL 2645

There exists the solution (v;,Q;)(i = 0,1,2) and Q3 € Q2" of the system (5.17)-
(5.22) satisfying

vi € C([0,T); H* %), Qs € C([0,T); H**'"*)(i = 0,1,2), Qs € C([0,T]; H* ).

5.3. The system for the remainder. In this subsection, we focus on the deriva-
tion of systems of the remainder and uniform estimates for the remainder. Through-
out this subsection, we assume that v; € C([0,T]; H*=%) for i = 0,1,2 and

Q; € C([0,T); H*1=4) for i = 0,1,2,3. We denote by C a constant depending on
2 3

Z sup ||vi(t)|| gr-a: and Z sup [|Q;(t)]| gr+1-4:, and independent of .
o telo.T] 5 te0.T)

Let

E = |Qrllm +ellAQr 2 + *IVAQRI L2 + [VRlL2 + e VVR] L2 + €% AVE| L2,
F =¢|VLQR)llLz +* | ALQR) |2 + €*|AVVR] 2.

By Sobolev embedding inequality, for kK = 0, 1,2, we have

Qe + " IVrlar < B, ellQrllr~ +&*|vrlL~ < CE, (5.39)
Ek+1||£(QR>||Hk + €3||VVRHLoc < C(E+¢eF), (5.40)

for some constant C. To simplify the formulation, we introduce a notation R to
denote all the terms (called good terms) which can be controlled by

R[22 + el VR L2 + 2| AR||z2 < C(eE)(1 + E + eF) +cf(E), (5.41)

where C(-) and f(-): Rt U {0} — R* U {0} are increasing functions. They may
depend on ||Q;|| and the parameters of the system, but are independent of €. The
main feature of the righthand side is that it is almost controlled by C(1 + E) when
€ — 0. Therefore, we can deduce a closed energy estimate uniformly in e, see
Proposition 9. Since ||Qo — Q*|| g+, |Qillg+(k < 3,1 < ¢ < 3) are all bounded by a
constant independent on e, we have that

1Q° = Q*|lu+ < C+*|Qrllux < C(eE),  |[v*|gr < C(eE).
We explain the motivation to introduce this definition. To control the remainder

term, first we have to write down the evolution equation for Qr and vg. In other
words, we have to calculate

1,0 . 0 0 5 0 30
&3 <8tQ TR T L T 8tQ3)'
The system for (Q°,v¢) can be written in the following abstract form:

0 e __ 1 e £ €
507 = SF(Q) + G(@°.v), (5.42)

0 1
SV = PV - (EH(QE) n J(QE,vg)), (5.43)
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where Py;y is projection operator which projects a vector field to its solenoidal part,
and

~6Q +20(Mo(Q) + MT(Q)) H(Q) = (30 - 20Mo(Q)),
= ~2(MQ(£(Q) + ME(L(@) + (Mo(V¥) + ME(TV)) ~v-VQ
£ G1(Q) + Gal@v) + Gol@,V),

3(Quv) = 21

F(Q)
G(Q,v)

S o)+ L 1 o(@.Q)

1—7v (4) 2y
—D: My — —D
+ 2Re Q V®V+Re

£ 31(Q) + 32(@) + 3@ ) + I4(v) + 21D,

Then we have
(FQ)-F(@) + (6@ v) - G@Q.v)

(tr(@ + @) - Q)

By the choices of Q;(0 < i < 3),v;(0 < j <2), we know that

|5Cr@ +e@v - 2a)| (5.44)

g3 \e

s 3(Q.9))

are bounded by a constant uniformly in e, then they are good terms.

H?

Lemma 5.3. For the difference terms arising from G and J, we have

G1(Q%) — G1(Q) = —25° (Mo, (L(Qr)) + M, (L(Qr))) + R, (5.45)
G2(Q,v°) — G41(Q, )—5 (MQO(VvR) + MG, (VVR)) +&°R, (5.46)
G3(Q°,v°) — G3(Q,¥) = (5.47)

1Q) - 3(Q) = 32(13‘6 " M (£(@n)) + 5% (5.49)
J5(Q°) = J2(Q) = R, (5.49)
J3(Q°,vE) — I5(Q, %) = & 12]_%:D MS) + R, (5.50)
Ji(vF) = J4(¥) = 3R, (5.51)

Proof. First, by Lemma 2.5, for 0 < k < 2, we have
M= (L£(Q7)) = Mg(L(Q7)) | ar
< Mg (£(Q) = MG(L@Q) | 1x + | Mg- (L(Qr)) — M5(L(QR))l| a2
< O(IIQ% Lo, 1QllLoe, 1Q° = Q[ e, 1Q — Q[ e ) 12 Q| 11 | £(Q) | re+2
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+e8C(1Q%) ow, 1QNl oo ) IE(QR) | e l|e* @ Lo
+3C(1Q% e, 1R e, 1Q° = Q" e, 1Q — Q* (11 ) 1 £(QR) | o< 1 Q| 725
e’ IM5(L(QR)) = May(L(QR)) | a
<30 (||Qol| =, 1Ql 2o, Qo — Q|| ris2, |Q — Q" || gr+2)
1@ = Qollge+2 1 £(Qr) | 1
Using [|Q — Qollgre+2 = el|Q1 +£Q2 + €2Qs] gr+2 < CE, we have
" Mo: (L(Q7)) = Mg(L(Q))| g+ < C(eE)e’E + C(eE)e*E(E + F),
3 M5(L(QR)) — May (L(QR))||ar < e*C(E +¢F).
Thus we obtain
Mq=(L(Q%)) = €2 Mg, (L(QRr)) +*R.

This implies (5.48). (5.45) and (5.46) can be proved in the same way. Moreover,
Mgll) — Mg? shares the same estimate with Mg, — Mg,, so (5.50) is also true.
For (5.49), we have

e)04(Q%, Q%) = 0@, Q)llgr = ¥ F[04(Q%, Qr) + 0/ (Qr. Q)|+
< C||E"VQR] (1 + € VQR| )
<3C(1+€¢R)E.
In the same way, (5.47) and (5.51) can be deduced. O

Lemma 5.4. For the difference terms arising from H and F, we have
~ 11—~
H(Q°) - H(Q) = 2¢° 7o Mao (Ha, (Qr)) + 'R, (5.52)

F(Q°) ~ F(Q) = 25" (Mg, (Ha, (Qr)) + ME, (Ho, (Qr) ) + 'R, (5.53)

Proof. First, we have
3Q° — 2aMq-(Q°) — (3Q — 2aM5(Q))
= 2Mq:(Bg- — aQ®) — 2Mg(Bg — aQ)
= 2Mq:(Bg: — aQ) — 2M5(Bg- — aQ®)
+2Mg(Bg: — aQ) — 2Mg5(Bg — aQ).

Using Talylor expansion for Bg = B(Q), we get
1
I1Bo: = By = Q5 @ullrs = [ [ (@ Vo) Bigpusan s,

< °C(E%)|Qrllu2) |Qrl a4 |Qrl 2 < °C(eE)E||Qr ax. (5.54)
Therefore, Bo: — Bg — g3 Qél(QR) = ¢, which implies

Mg(Ba: — aQ%) — Mg(Bg — aQ) =e*M5(Q5"(Qr) — aQr) +&'R
:EgMQo(QZgi(QR) —aQp) + 'R
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By Lemma 2.5, we can obtain

[Mqe(Bge — aQ®) — Mz(Bge — aQ)|[yr

< C(1E*Qnlli)I*Qnll | Ba- — Ba, — (@ — Qo)

< CI*Qrlla2)e 1Qr N ar (1 + €2 Qrllm2) < e C(eE) |QRllix (1 + B).
Thus

Ma:(Bg: — Q%) — Mg(Bo- — aQF) € R. (5.55)

Combining (5.54) and (5.55) and recalling the definition of Hg, (Qr) := Qéi (Qr)—
aQr, we get (5.52) and (5.53).

Combining Lemma 5.3 with Lemma 5.4, we finally arrive at

0 1
g)tR = - 4jn(an(QR) + »C(QR)) + ZJH(VVR) + SR? (556)
Ovp s l—7o @
% VpR—kReAvR—kTReV (DR.Mé )
11— 1
V-vg=0. (5.58)

5.4. Uniform estimates for the remainder. In order to obtain the uniform
energy estimates, we introduce

Ha(Qr) = Ha(Qr) + cL(QR),

and the following energy functional

&)= [ (Ial* + 7, (Qn): Qn+ - Ha Q) : Qn) + <2 (VP

-y € . 4 2 I—~ € .
+ I HA(VQR) : VQr) +*(|Aval* + —THA(AQR) : AQr)dx,

50 = [ (19l + 2 g0 @) s Haen)

4(1—
+ 52(%‘AVR|2 + %Jn(ﬂiw@m) : Hﬁ(vQR))

4(1—1)
e2Re

+ et (L |vava + Tu(H5(AQR) : H5 (AQr) ) dx.
Lemma 5.5. There holds

1Qrllmr + (eV?Qr.VQr) |12 + | (Vi, eV VR, 2VPVR) 12 < C€2, (5.59)
1 .
I(CHa(Qr), VHA(QR), eAHL(Qr))llz2 < C(E+F)2, (5.60)
|(VL(QR) EALQR)) 12 + (YR, V?VR, £ VVR) |12 < C(E+F)2. (5.61)

Proof. The first estimate follows from the non-negativity of H,. The second esti-
mate can be deduced from the strict positivity of J, and the following estimates
for communicators

0iHa(QRr) — Ha(9iQR) 22 < ClIQRrIlL>,
|AM; (Qr) — Ha(AQR)| L2 < C| QR H1-
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For the last one, we have
1€ L(Qr)||2 = [|H(0:QR) — Hn(0iQR)|| L2
< |H&(0:Qr)| 12 + ClO:Qr| 2 < C(E+3F)%,
12ALQR)Iz2 < leHE(AQR) ||z + ClleAQRllz2 < C(E +F)%.

The estimates for vy is straightforward to prove. The proof is completed. O

Corollary 1. E < C¢'/2 F < C(¢ 4+ F)V/2.
Now, we state the a priori estimate for the remainder (Qg, vg).

Proposition 9. There exist two functions C and f depending on Q;,v; and the
parameters of the system (except €), such that if (Vr,Qr) be a strong solution of
the system (5.56)—(5.58) on [0,T], then for any t € [0,T], it holds that

d
dt

Proof. First, for B € Q, and A € R3*3, we have:
(M@, (Hi(B)), A) = (Ha(B), Mg, (A)) = (Tn(A), H(B))- (5.62)

This relation will be repeatedly used in the proof.
Step 1. L2-estimate. Using the equation (5.56) and Lemma 5.5, we have

E(t) + F(t) < C(e€) (1 + &) + £f(€) + C(c€)eg.

(P20 75 (@m) + S (HA(Qn), Qn) = (2vR, Q) + (9% 77 (Qn)

< ClQrllc2 (IVVRllL2 + 1R]]22) < 603 + Cs,€ + C|IR| 72 (5.63)
We can also obtain
Re 8vR 8QR 1
—7< ot VR T {2
2
== IVl — 5 (D MY D) = Z(Ma, (#4(Qr)). Tvi)

Re
1-—

— (M5 Q). Hi Q) + (2T (VvR), ZHG(Qu)) + (3, HA(Qn)

—Hz(Qr))

+

7<V iﬁ—i—fﬁ VR>

Using (5.62) with (4, B) = (Vvg, Qr), and the fact that (Dp : M DR> >0, we

have

R 0 0 1

() + iRaeHs(QR)>
+*||VVRHL2+ <Jn(H€(QR)) Ha(Qr))
< Re

T (V-R+R,vr) + (R, ng](QR» < 6% + C¢ + C|R|2.. (5.64)
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Step 2. H'-estimate. Using (5.56)-(5.58), we have

Re ,0 0 1, .
T 7<§amg, 0ivR) +(5:0:Qr, ~HL(0:QR))
1 2
:’"IZ*”V@VRH;-—fQ%DR:AAQJZDR>——{Ad@xHi@%QR»7v@VR>
- 2 Q e
1

2
— §<DR : 8ng‘),8iDR> + g<[MQ0Hf1, 31‘]QR, VaiVR>

- é<jn(Hf1(aiQR)>7Hf1(aiQR)> + (2Ta(VO;vR), %Hi(@iQR»

- éan?'ifﬂ 9;1Qr, My (0:Qr)) + (2[Tn, 0]V, éHi(giQR»
Re
-7

It is straightforward to obtain the estimates:

1
(Dp : &Mg‘),&DRM < C|Dgll12||0:Dxll 12 < e 2(60F + CE),

571<[MQ0H37 ai]QRa VaiVR> = 571<[MQ0IHna ai]QR+€[MQO‘C’ ai]QR’vaivR>
< 5_20(||QRHL2 + EHQR”H2) H‘gvaivRHL2

< e(8F + C),
—e H{[Tn M5, 0))Qr, HE(0;QR)) < e *C(||Qrllr2 + l|Qrl 1) HH;(@QR)HH
<e (6T + C€),
e [T, 0] VVR. HL(0:QR)) < e M |IVVR| 12| Ha(8:QR)| 2 < e (00T + CE).

Therefore, by the cancelation relation (5.62) with taking (A, B) = (VO;vg, 0;Qr),
we have

e?Re , 0 0 e
1 7(—8ivR, 6¢VR> + 5<&&’QR> Hn(aiQR)>

ot
527 2 5 £
1 IVO:vR|T2 + 4(Tn(HL(0iQR)), Hi(0:QR))

< 5o + C€ + O||e0;R] 2. (5.65)

_|_

Step 3. H?-estimate. Using (5.56)-(5.58), we get

Re ,0 9 Lo
T (g Avr AVe) + (5, AQm, HL(AQR))
_2
€

1
=- %VIIVAVRH%a — 5(ADr: ML, ADR) — =(Ma, (Ha(AQR)), VAVE)

1 2
+5(18, Mg) DR, ADR) + =([Mq, 5, AJQr, VAVR)

- A Fu(HA(AQR). M (AQR)) + (20(VAVR). 2745(AQR)

— (1T AlQR HA(01Q) + (210, AIVVR, THE(AQ))
Re
l—n

1
+ (V- AR+ AR, Avg) + (AR, “H; (AQr))-
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Similar to Step 2, we can obtain
(A, Mg” |Dr, ADR) < Ce*||®Dp| g1 ||e2ADg|| 12 < e (863 + C€),
E_1<[MQO’HfI,A]QR,VAVR>
=e H{[MgyHn, AlQr +e[Mo, L, A]Qr, VAVE)
< = (|eQnllm + L@ ) |2V AVR]| 2 +74(60F + C€),
— e {[TaMs, AlQr, Ha(AQR))
< e (eQullm + L@ i) |[Ha (AQR) | o+ < (503 + CE),
e ([T, AIVVR, H5(AQR))
< e e Vva|mlleHa(AQR) (12 < 7 (805 + C€).
Using (5.62) again, we have
e*Re <g
1—~'0t
+ SV AVAIL: + 4220 (5Q), Ha(AQn)
< 605 + C€ + Ol AR|3-. (5.66)

0
Avg,Avg) + 83<§AQR7 Hi(AQR))

Step 4. The completion of energy estimate. Recalling (4.9) we get

H3,(Q) =1 (om — ST)(mn: Q) +¢5(~Q +mn-Q+ Q- mn — 2Tn: Q) + ££(Q).

With Qg : I = tr Qg = 0, it yields
L@ Ha@n)
=2( 2 Qn H(Qw) + 2 (@, v (om s Q)0 (um) + 1 (O4(m) : Q)
(24 (0m) - Qr + Q- 94 (om)) )
=200 Ha(Qn)) + 2 Qv (Du(m) < Qrmn + 20, (om) - Q)

Lemma 5.6 tell us that

§<QR, Y1(0¢(nn) : Qr)nn + ¢20;(nn) - QR>
1
=

1
< 5||EH;(QR)H2L2 + 06(5

Ho(Qr). Qr) + 1Q]32).

Thus we have

1 d 1.0
2;@@1%,7{;(@1%» < g(aQR,Hf}(QR» + 48 + C¢€.

Similarly, the following inequalities hold
ed
2dt
e d

0
§£<AQR77‘@(AQR)> < 53<§AQR7Hi(AQR)> + 65+ C¢.

(O:Qn, o (0Qn)) < el 0Qn, Ha(OQm)) +55 + €
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Together with (5.63)-(5.66), we arrive at
ld 2 22 A2
5 dte(t) +§(t) < 0T + Cs€ + [|R|72 + [[eEVR|[72 + [[e"AR| T

Recalling that R denotes good terms with
IR 2 + | VR 12 + 2| AR 2 < C(eE)(1 + E + eF) + e f(E),
and Corollary 1, we have
1d

57 &0 T8(1) <05 + C5€ + O(F@)(1 + € +7F) + £ (@),

Taking § enough small leads to the Proposition 9. O

Lemma 5.6. For any d > 0, there exists a constant C = C (6, ||Ve,xn| Lee, ||Vl nee)
such that for any Q € R3X3 . it holds that

sym,0’

H(0u(om) - Q, Q) <5 ZHE(Q)I + O

e

2@ 0,(nn), @ s i) <0 245 Q)3 + Ci

(Ha(Q), Q) + 1QlIZ),
(Ha(Q), Q) + 1|QII72)-

M | =M =

The proof of Lemma 5.6 can be found in [29].

5.5. Proof of Theorem 1.2. Given the initial data (v§,Q§) € H? x H3, thanks
to Theorem 1.1 there exists a maximal time 7, > 0 and a unique solution (v¢, Q)
of the system (1.34)-(1.36) such that

ve € C([0,T.); H*) N L*(0,T.; H?), Q° € C([0,T.); H?).

Now we prove that T, > T. Suppose it is not. By Proposition 8, the solution has
the expansion

ve = vy +evy +eivy + 53v%{,
Q° =Qo+eQ1+e°Q2+ Q3 +°Q%.
For the remainder (v, Q%), we infer from Proposition 9 that
d
&e(t) +3(t) < C(e€)(1+ €) +ef(€) + C(e€)eF,
for any ¢ € [0,7]. Thanks to the assumptions of Theorem 1.2, we know that
¢(0) < C1 (Vi allwe + Q7.
Let By = (2+ C1Ep)el —2 > €&(0), and
T, =sup{t € [0,T] : €(t) < Eq}.

s + e 7HIP(QS p)lre) < CEo.

Thus, if we take g9 small enough such that
CleoEr) <1, eof(E1) <1, e9<1/2,
then for t < T, it holds that
%(’E(t) <2+ €E(1). (5.67)
If T. < T, Gronwall’s inequality gives that for ¢ <77,
E(t) <e'(2+ C1Ey) —2 < By,
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which implies Ty = T. and at time T, (v.,Q.) € H? x H3, which is contradict with
our assumption. Thus T' < T, and €(t) < E; for t € [0,7]. Then Theorem 1.2
follows.

6. Appendix.

6.1. Some basic estimates in Sobolev spaces. The following product estimates
and commutator estimates are well-known, see [25] for example, and frequently used
in this paper.

Lemma 6.1. Let s > 0. Then for any multi-index «, 3,7, 0, there holds
10%£0° gllms < C(1FlLo=llgl gres1aiisr + gl zoe | Fll prosiarien );
10%£0%gll s < Clfllpresioarsin lgll ggesisivis, —if s+ |y +16] > 2.

In particular, we have

Ifgllas < C(I1fle=llglas + gl fllm:);
Ifgllezs < Clfllasllghas,  if s =2
1f 9l < Cmind{[[f|grllglla2, [ flla2llgllms},  ifO<k<2.
Lemma 6.2. Let s >0 and F(-) € C*®°(R%) with F(0) = 0. Then
IE ) s < CULF Iz Lf [ e
Lemma 6.3. Let a be a multiple index. There holds
110% 9] fllzz < C(IVglleel fllzai-r + IV gl grer—2 | Fll o< ) -
In particular, if |a| > 2, it holds
110%, 9] fllzz < Cligllatara Lfll a1
1109, g1 fllze < Cllgllpgrarea || £l 1o

Lemma 6.4. Let Q be a convex domain in R? and k > 0 be an integer. F(-) €
C>*(Q) and k' = max{k,2}. Then

[1F(u) = F(o)llgx < C(l[ullzee, [[ollzoe) (4 [Jell g + 0l g )l = 0| -

Proof. We may assume that F’(0) = 0, since if not, we can consider G(u) = F(u) —
u - F'(0). By the fact that

we have

[1F(u) = F(u)llr2 < [lu— vl SFP]HF'(UH(U—U))HLN
t

s

< Cllullze; vllzee)llw — vl 2,
IV(F(u) = F(v))ll> < [[V(u—v)llz S [1F (v + t(u = v))l| L
€10,

+llu=vlar sup [[V(F'(v+t(u—v)))|la
te0,1]

< Cl[ullze, vllze)(lull e + ol a2)llw = vl a2
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and for k > 2,

[ F(u) — F(v)|[x < C(Ilu—vlle sup || F'(v+t(u —v))| gw
tefo,1]

= vl sup [[F (4t = 0) 1)
t€[0,1]

< C(llullzees [[ollzee ) (X + flull e + ol ze)llw = vl

Here, we have used the following estimate which is induced by Lemma 6.2:

1F (v + t(u = o)l < Cllv +tu = v)|[z) o + t(u — )l e
< Cllullzee; lvllzee) (Nl e + ol zx)-

This concludes the proof. O
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