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RIGOROUS JUSTIFICATION OF THE UNIAXIAL LIMIT FROM
THE QIAN-SHENG INERTIAL Q-TENSOR THEORY TO THE
ERICKSEN-LESLIE THEORY™
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Abstract. In this paper, we rigorously justify the connection between the Qian—Sheng inertial
Q-tensor model and the full Ericksen—Leslie model for the liquid crystal flow. By using the Hilbert
expansion method, we prove that when the elastic coefficients tend to zero (also called the uniaxial
limit), the solution to the Qian—Sheng inertial model will converge to the solution to the full inertial
Ericksen—Leslie system.
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1. Introduction. Liquid crystals are a state of matter with physical properties
between liquid and solid, in which molecules tend to align in a preferred direction. In
the nematic liquid phase, the molecules exhibit long-range orientational order but no
positional order. In physics, different order parameters are introduced to characterize
the anisotropic behavior of liquid crystals, which lead to different models. There are
three kinds of widely accepted theories to model nematic liquid crystal flows: the
Ericksen—Leslie theory, the Landau—de Gennes theory, and the Doi—Onsager theory.
The first two are macroscopic theories based on continuum mechanics, while the latter
is a microscopic kinetic theory derived from the viewpoint of statistical mechanics.
As they are derived from different considerations and are widely used in liquid crystal
studies, to explore the connection between different theories is an important problem.
In this paper, we aim to study the rigorous connection between the Ericksen—Leslie
model and the Qian-Sheng model—a representative model in the Landau-de Gennes
framework.

Before introducing the Ericksen—Leslie model and the Qian—Sheng model, we list
some notation and conventions. Throughout this paper, the Einstein summation
convention is utilized. The space of symmetric traceless tensors is defined as

def
S = {QeR¥®: Qi =Qji, Qi =0},

which is endowed with the inner product Q1 : Q2 = Q1;jQ2:5. The set S8 is a five-

dimensional subspace of R3*3. The matrix norm on S} is defined as |Q| def TrQ? =

\/QijQi]V For two tensors A,B € Sg we denote (A . B)LJ = AikBkj and A: B =
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A;jBi;, and their commutator [A,B] = A- B — B+ A. For any Q1,Q2 € L?(R?)3%3
the corresponding inner product is defined by

(Q1,Q2) def /RS Q1ij(x) : Qai5(x)dx.

We use f; to denote 0;f and I to denote the 3 x 3 identity tensor. In addition, the
superscripted dot denotes the material derivative, i.e., f = (0 +v - V)f, where the
fluid velocity v can be understood from the context.

In this paper, we denote by n; ® ny the tensor product of two vectors n; and ny
and usually omit the symbol ® for simplicity.

1.1. Ericksen—Leslie theory. The hydrodynamic theory of nematic liquid crys-
tals was initiated in the seminal work of Ericksen [9] and Leslie [20] in the 1960s. In
this theory, the local state of molecular alignments is described by a unit vector n € S2,
called the director. The corresponding total free energy, called the Oseen—Frank en-
ergy, is given by

k k k
Bp(n, V) = “H(T ) 4+ 2 (0:(V x ) + 2 x (¥ x m)f?
ko + k
(1.1) 452 JQF L (tx(Vn)? — (V- n)?),
where k1, ..., k4 are constants depending on the material and the temperature.

The full inertial Ericksen—Leslie system can be given as follows:

(1.2) vi+v-Vv=-Vp+V.o,
(1.3) V-v=0,
(14) nx([ﬁ—h+’le—|—72D~n):O,

where v is the fluid velocity, p is the pressure penalizing the incompressible condition
(1.3) of v, and I is the moment of inertial density usually considered as a small
parameter. The inertial term 11 is the material derivative of n. Equations (1.2)
and (1.4) reflect the conservation laws of linear momentum and angular momentum,
respectively. The stress tensor o consists of the viscous (Leslie) stress ol and the
elastic (Ericksen) stress o i.e., 0 = o'+ 0¥, which can be described by the following
phenomenological constitutive relations:

(1.5) ol' = ai(nn : D)nn + aunN + a3Nn + a4D + asnn - D + agD - nn,
OEFR

(1.6) of = (vn) - (Vn)7T,

where
D=l (v, =Ly @), Noaoam

Additionally, the molecular field h is given by

5EF (9EF aEF
h=— S 2 .
on on + 9(Vn)
The six constants aq,...,as in (1.5) are called the Leslie viscosity coeflicients.

They and the coefficients 1,72 together satisfy the following relations:
(1.7) Qg + a3 = g — Qs

(1-8) Y1 = a3 — G2, Y2 = Qg — Q5.
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The equality (1.7) is referred to as Parodi’s relation derived from the Onsager recipro-
cal relation of irreversible thermodynamics. The relations (1.7)—(1.8) will guarantee
that the full Ericksen—Leslie system (1.2)—(1.4) fulfills the energy dissipation law:

A (e lppte dx:—/ o1+ 2) (D nn)? 4+ D
dt R3 2 2 F R3 ! Y1 ’ 4

2
(1.9) +<a5+a6—%> D-n|2+1‘nx(h—lﬁ)|2) dx.
M ga!

It is worth emphasizing that the inertial term I in (1.4) is responsible for the
hyperbolic feature of the equation describing the molecular orientation. If the inertial
term is neglected, then the system (1.2)—(1.4) is immediately transformed into its
noninertial counterpart which is a parabolic-type system.

Concerning the noninertial version of the FEricksen—Leslie theory, the well-
posedness results are addressed [22, 23, 33] and the references therein. In partic-
ular, under a natural physical condition on the Leslie coefficients, Wang, Zhang, and
Zhang [33] proved the well-posedness of the system, and the global existence of a weak
solution in the two-dimensional case was shown in [14, 32]. Lin and Wang [24] proved
the global existence of a weak solution for the three-dimensional case with the initial
director field lying in the upper hemisphere. For more related works on the noninertial
Ericksen—Leslie system, for instance, see [23, 36, 8] and the references therein.

On the other hand, there are also some analytical works devoted to the original
inertial Ericksen—Leslie system. Very recently, Jiang and Luo [16] established the
well-posedness for the full inertial Ericksen—Leslie system in the context of classical
solutions. Cai and Wang [4] studied the global well-posedness of classical solutions to
the inertial Ericksen—Leslie model with positive 7;.

1.2. Landau—de Gennes theory. Landau-de Gennes theory [6] is capable of
providing a rather comprehensive description of the local behavior of the medium,
since it accounts for more complex phenomena of liquid crystals, such as line defects
and biaxial configurations. This theory employs a symmetric and traceless tensorial
order parameter QQ(x) to characterize the alignment behavior of molecular orienta-
tions. Physically, Q(x) could be understood as the second order traceless moment of

f:
Q) = [ (mm - ;1) J(x,m)dm,

where f(x,m) represents the microscopic distribution of molecules with the orienta-
tion parallel to m at material point x. The tensor Q(x) is said to be isotropic if all
its eigenvalues are zero, uniaxial if it has two equal nonzero eigenvalues, and biaxial
if its three eigenvalues are distinct.

In the absence of boundary constraint and external field, the Landau-de Gennes
free energy is given as follows:

F@.vQ) - |

R3

b
{ ~ 010(Q7) - PTn(@) + S1v(Q)
1 2
+ 5(Ll\VQ| + LoQij,j Qik i + LSQij,ink,j) dx

def

(1.10) (1@ + £:(7Q)Jax.
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where a, b, ¢ are nonnegative parameters which may depend on the material and tem-
perature, and L;(i = 1,2,3) are material-dependent elastic constants. f, is the bulk
energy density describing the isotropic-nematic phase transition, while the elastic en-
ergy density f. penalizes spatial nonhomogeneities. The interested reader is referred
to [6, 28] for detailed introductions.

Up to now, some dynamic @Q-tensor theories have been established to model ne-
matic liquid crystal flows, which are either derived from the molecular kinetic theory
by closure approximations such as [11, 12] or directly obtained by a variational method
such as the Beris—Edwards model [3] and the Qian—Sheng model [31]. The well-
posedness results of the Beris—Edwards system on whole space and bounded domain
can be found in [30, 29, 13] and [1, 2, 25], respectively. For the inertial Qian—Sheng
model, De Anna and Zarnescu [5] studied the local well-posedness for bounded initial
data and global well-posedness under the assumptions of the small initial data. For
the nonviscous version of the Qian—-Sheng model, Feireisl et al. [10] proved a global
existence of the dissipative solution which is inspired by that of incompressible Euler
equations.

The Qian—Sheng model [31] is a hydrodynamical model which reads as

(1.11) JQ+mQ=H-ED+1(e,q),
(1.12) g—:+v~Vv:—Vp+V~(a+ad),
(1.13) V.v=0,

where Q = (0, + v - V)Q, Q = (8, + v - V)Q, and the viscous stress o, the distortion

stress 0%, and the molecular field H are respectively given by
o =BQ(Q: D)+ AD + 5D Q+54Q-D+ 5 (D-Q*+Q*- D)
(1.14) +5Q - [2.Q) + m[Q. (@ - [2.Q)).
o5 = _agZ,jaiQ’““
(1.15) Hij = - (W}U = —;QJ; + Ok (agf;) .

Moreover, in (1.11), J stands for the inertial density which is usually small. The
viscosity coefficients 81, B4, 85, 86, 87, i1, and ug in (1.14)—(1.15) can be linked by the
following relation:

(1.16) B — Bs = pia-

The system (1.11)—(1.13) possesses an energy dissipation law; see (A.1) in the
appendix. Here we remark that, comparing with the original Qian—Sheng model in
[31], we add a new viscosity term B7(D;xQri@Qrj + QikQriDi;) in (1.14) to ensure that
the energy of the system will always dissipate without assuming any relation between
0Bs and Bg. Indeed, if 87 = 0, we have to assume (5 + B = 0; otherwise the energy
may not dissipate (see Lemma A.1). However, the condition 85 + 8¢ = 0 is so strong
that it cannot be satisfied by many liquid crystal materials. Therefore, we introduce
the B; term and assume that
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2
Blaﬂ47ﬂ1>03 54_4“72>07 ﬂ720a
(1.17) =

2
(B5 + B6)? < 867 (ﬁ4— Afi) if B7 # 0; 85 + Bs = 0 if B7 = 0.

The detailed discussion of the dissipative relation is postponed to Lemma A.1 in the
appendix.

1.3. Motivations and main results. The intricate connection between differ-
ent dynamical theories for liquid crystals is not only of significance in mathematical
literature but also directly related to many physical properties. The fundamental
subject, generally involving the singular limit problem, has drawn a lot of attention
in the physics and applied mathematics communities. In this respect, the formal
asymptotic expansions were first constructed by Kuzzu and Doi [19] to derive the ho-
mogeneous noninertial Ericksen—Leslie system from the Doi—Onsager system and to
determine the Leslie coefficients, under the small Deborah number limit. E and Zhang
[7] extended the Kuzzu-Doi derivation and obtained the inhomogeneous noninertial
Ericksen—Leslie system. In particular, the Ericksen stress is derived from a body force.
Their formal derivation was rigorously justified by Wang, Zhang, and Zhang [35] under
the small Deborah number limit. Based on the same spirit, Li, Wang, and Zhang [21]
provided a strict derivation from the molecular-based Q-tensor system, obtained from
the molecular kinetic theory by the Bingham closure, to the noninertial Ericksen—
Leslie system. Similar rigorous results were initiated by Wang, Zhang, and Zhang
in [34] concerning the Beris-Edwards system in a Landau-de Gennes framework. A
unified formulation for liquid crystal modeling was put forward by Han et al. in [12]
to establish relations between microscopic theories and macroscopic theories. There
are also some interesting works which have explored the relations between different
dynamical theories for liquid crystals in the framework of weak solutions; see [26].

Recently, to better understand the limit of zero inertia for the full Ericksen—Leslie
model, Jiang et al. [18] first studied a limit connecting a scaled wave map with heat
flow into the unit sphere S?. Later on, Jiang and others [15, 17] investigated the zero
inertial limit from the full inertial Ericksen—Leslie model to the noninertial one.

The main goal of this paper is to rigorously justify the connection between the
inertial Qian—Sheng model and the full inertial Ericksen—Leslie model, in a sense
of smooth solutions. Our methods and results can be seen as an extension of the
work initiated by Wang, Zhang, and Zhang in [34], who proved the uniaxial limit
for the noninertial Beris—-Edwards model. The main framework of our proof follows
the strategy in [34], that is, constructing approximated solutions (near the inertial
Ericksen—Leslie solutions) by using the Hilbert expansion for the inertial Qian—Sheng
model, and then deriving the uniform estimates for the difference between true so-
lutions and approximations. Some new and essential obstacles appear due to the
nonlinear hyperbolic structure of the @Q-tensor equation. Roughly speaking, in this
case, the dissipation part of the energy is not strong enough to estimate the singular
terms, and in addition, the nonlinear inertial term will bring some extra terms with
high order derivatives. To overcome these difficulties, the energy has to be delicately
modified such that these singular or high order terms can be absorbed. A more de-
tailed discussion for the main challenges and the novelty of our work is presented at
the end of Theorem 1.1.

In contrast to the constants a, b, ¢, the elastic coefficients L;(i = 1,2,3) in (1.10)
are usually regarded as being small, so we consider the following rescaled energy
functional with a small parameter ¢:
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1
(118) 7@ vQ) = [ (14 + 1(vQ)) ax.
R
and a,b, ¢, L;j(1 <i < 3) ~ O(1). We assume that the elastic coefficients L; satisfy
L1 >0, Ly + Ly + L3 > 0,

which will ensure that the elastic energy is strictly positive (see Lemma 2.5 in [34]),
i.e., there exists some constant Lo = Lo(L1, La, L) > 0 such that

(119) [ 1.09Q)ix = L[ TQ) 1o
R
Then the Qian—Sheng model with a small parameter € can be written as
(1.20) JQF + 1 Q° = H° — %DE + [, Q7
6V€ e e c d
(1.21) o TV YV =—Wp + V- (0c+0Y),
(1.22) V.-ve =0,

where Q° = (0 + v - V)Q°, QF = (O + ve - V)QE, and
D® = % (VVE + (VVE)T) , QF = % (Vve - (VvE)T) )
0e = F1Q°(Q° : D) + BuD + B5D° - Q° + BsQ° - D + 57(D° - Q7 + Q7% - D7)
+ %(QE - [QE7 QE]) + [QE7 (QE - [967 QED}7

X € e def g,e 5
_— .= g y .
aQilﬂ' le,z (Q Q )

The tensor 0%(Q, Q) is denoted as

09(Q,Q) = — (L1Qu1jQpri + L2Qrimim Qrjs + L3QijuQprs) -

The molecular field H® is given by

0 Ofc \ de
Q) =258 1o (15 ) ¥ 170 - 21@)

where two operators .7 and .Z are respectively defined by
2 2 1 2
7(Q) = aQ ~ 4@ +clQPQ + gHQPL
1 2
(Z(@Q))r =— <L1Ale + §(L2 + L3) (ka,mz + Qum,mk — 35leij,ij)> :

/b2
W, we define

For a given director field n(¢,x) and s =
2°(Q) =Q — (nn-Q + Q- nn) + 2(Q : nn)nn,
0 (Q) = bs (Q —(nn-Q+ Q -nn) + %(Q : nn)I) + 2¢5%(Q : nn) (nn — ;I) ,
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which will be explained in subsection 2.1. We also take the viscosity coeflicients in
the full inertial Ericksen—Leslie model as

2 2
ay = 18, ag= 5#25*,1115 s

1 1 2
(1.23) ag = SH2s + p1s?, oy =By — 5(55 + B6)s + 557527

as = P55 + éﬁ782» ag = Pos + %ﬁ782,
and the coefficients 1, 72 and the inertial coefficient I are
(1.24) =28 yo = pas, I=2Js%
In addition, the elastic constants in the Oseen—Frank energy are given by
(1.25) ky = ks = 2(Ly 4 Lo + L3)s?, kg =2L1s%, kg = L3s>.

Throughout this paper, we assume that the viscosity coefficient u; is large enough
compared with the inertial coefficient J, i.e., p1 > J, and the condition (1.17) holds,
and the elastic constants L;(¢ = 1,2, 3) satisfy L1 > 0, L1 + Lo + Lg > 0. The main
result of this paper is stated as follows.

THEOREM 1.1. Let (n(t,x),v(t,x)) be a smooth solution of the full inertial
FEricksen—Leslie model (1.2)—(1.4) on [0, T] with the coefficients given by (1.23)—(1.25),
which satisfies

(v,0n,Vn) € L>([0,T]; H*) for k> 20.

Let Qo(t,x) = s(n(t,x)n(t,x) - %I), and the functions (Q1, Q2, Qs,v1,va) are deter-
mined by Proposition 2.4. Suppose that the initial data (Q(0,x), 0;Q°(0,x),ve(0,x))
takes the form

2

3
QE(Oa X) = Z 5ka (07 X) + ngi},O(X)v \a (07 X) = Z Ekvk’ (Ov X) + 53V§%,0(X)7

k=0 k=0

3
0,Q%(0,x) = ZEkatQk(QX) +%0:Q%,0(x),
k=0

where (Qf0(%), 0Q0(x). Vi () fulfills
Vol 2 + 1Q5 0l s + 10 Q502 + 127 (@50l 2= < Eo.

Then there exists eg > 0 and E1 > 0 such that for all € < gq, the inertial Qian—Sheng
model (1.20)—(1.22) has a unique solution (Q°(t,x),v=(t,x)) on [0,T] that has the
Hilbert expansion

3 2
Q°(t,x) = Zstk(t,x) +8Q%(t,x), vi(t,x) = Zekvk(t, x) + 3v5(t,x),
k=0

k=0

where, for any t € [0,T], (Q%, V%) satisfies

€ (Qr(t), vr(t)) < E1.
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Here € is defined by
€@ ™ [ (WE+1GR 4108 + 15 (@) Q) + 22 19V + 0P
(1.26) F1A0Q):0:Q) o (1AVE +AQR + 1 (8Q): AQ)

and Q = (0; + v -V)Q, v = Yr_ye"vi, HE(Q) = Hu(Q) +Z(Q) in (1.26) and

the constant E; is independent of €.

Let us say a few words on the rough idea of proving the main result. We first
make a formal expansion for the solution (Q%, v®):

Qs(ta X) = QO(ta X) + EQl(ta X) + 62@2(t7 X) + 63623(t7 X) + €3QR(ta X)a
vE(t,x) = vo(t,x) +evi(t,x) + e2va(t, x) + 3vRr(t, x).

If we plug the above expansion into the inertial Qian—Sheng system (1.20)—(1.22),
then we obtain a hierarchy of equations in subsection 2.2. The O(¢~!) equation gives
Z(Qo) = 0, which implies by Proposition 2.1 that

Qo =s <nn ;I)

for some n € S? and s = Hivbijm“c. For the O(1) system, we can obtain that (v, n)
is exactly a solution of the full inertial Ericksen—Leslie system with the coeflicients
given by (1.23)—(1.25). Moreover, it can be shown that the existence of (Q;, v;) with
i > 1 for O(g?) can be guaranteed by the fact that (Q;, v;) satisfies a linear dissipative
system; see Proposition 2.4.

The core part to rigorously justify the uniaxial limit is to prove the uniform (in €)
bounds for the remainders (Qg,vg). For this end, we write the equation for (Qgr, VRg)
which roughly reads as

(1.27)
JQr + mQr =— %ﬁ’f(QR) - %DR + 11[Qr, Qo] + Fr+ -+,
% +9-Vva == Vpr+ V- (2 (Qr — 128, Qo)) + 11[Q0, (Qr — [, Qu))] )

(1.28) ST

The main difficult terms are the term 1.5 (Q ) which is singular in € and the term Fr
(see (3.2) for the precise definition) which includes 0, vy and second order derivatives
of Qr which will cause the problem of loss of derivatives in energy estimates.

To control the singular term éjfna (Qr), a natural method is to multiply the
equation of Qg with Qr, which will bring a term (éj‘f‘f(QR), Qr) into the energy.
However, the operator 47 is dependent of ¢, and its time derivative will bring some
difficult terms such as

1, . 1 .
(1.29) g<ﬁ'QR7QR>, g<(QR rnm)nn, Qr).
The dissipative energy offers us the control of ||Qr — [Qr, Qo] — %DRH%Z, which is

equivalent to Z||.7 (Qr)||%. in the noninertial case J = 0 due to (1.27) and then
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can be used to control the singular terms (1.29); see [34, Lemma 4.1]. However, it
does not work in the inertial case since the equivalence does not hold. _

To overcome this difficulty, we choose a delicate modified energy € (see (3.22)).
Roughly speaking, we add the term

(A6 (QR) . Qr)

(see (3.22) for the precise definition) into the energy, such that its time derivative
could cancel the above singular terms by using the structure of the system. A key
related estimate is given in Lemma 3.4. _

To estimate the terms with high order derivatives in Fr, we introduce the en-
ergy terms related to vg - VQ°; see (3.13)—(3.14). Then some hard terms can be
absorbed into the time derivatives of these new introduced energy terms, and others
are eliminated by using the symmetric structure of the system. These estimates are
summarized in Lemmas 3.5-3.6. _ _

Furthermore, we can show that the energy functional € is positive and & ~ € if
1 > J, and thus accomplish the main steps of the proof for Theorem 1.1 in principle.

2. The Hilbert expansion. This section is devoted to deriving the Hilbert
expansion for the inertial Qian—Sheng system (1.20)—(1.22). In particular, we will
show that the O(1) system is just the full Ericksen—Leslie system. The existence of
the O(e*)(k > 1) system in the Hilbert expansion will also be proved.

We first give some preliminary results about critical points and the linearized
operator.

2.1. Critical points and the linearized operator. A tensor Qg is called a

critical point of Fy(Q) if 7(Qo) := %—g’ 0-0, = 0- The following characterization of

critical points can be seen from [27, 34].

PROPOSITION 2.1. .7(Q) = 0 if and only if @ = s(nn — 1I) for some n € S,
where s = 0 or a solution of 2cs* — bs 4+ 3a = 0, that is,

b+ Vb2 + 24ac b— Vb2 + 24ac
S|=———— 0r §g= ——————.
! 4c 4c
Moreover, the critical point Qo = s(nn — %I) 1s stable if s = s7.

Given a critical point Qo = s(nn — %I), the linearized operator J7, of 7 (Q)
around @ is given by

Higo(Q) = aQ = b(Qo - Q + Q- Qo) +clQol*Q +2(Qo : Q) (CQO + gI) '

Then a direct calculation yields

i (@ =5 (@ (am- Q-+ Q) + 2(Q st ) + 2662(@Q: ) (mn 31

def

= Ja(Q).

The kernel space of the linearized operator .74, being a two-dimensional subspace
of S§, can be defined as

(2.1)

Ker s, & {on' +ntneS):nt €V,}
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for any given n € S?, where V,, def {nt € R®:nt-n=0}. Let 2™ be the projection
operator from S} to Kers%, and £2°% the projection operator from S} to (Ker.#,):.
Using the simple fact that

Q@ — (ot +n"n)[* = |QF —2|Q - nf* +2/Q : nn* + [n" — (I -nn)- Q- nf,
the projection operators Z" and Z°% are expressed as, respectively,

2"(Q) =n[(I—nn)-Q-n] +[(I—nn)-Q njn

(2.2) =(nn-Q+ Q- -nn)—2(Q : nn)nn,
@out(Q) — Q _ f@in(@)
(2.3) =Q-(nn-Q+ Q- -nn)+ 2(Q : nn)nn.

The important properties of the linearized operator %, can be found in [34].

PROPOSITION 2.2. (i) For anyn € S?, it holds that 76,Ker4, = 0, i.e., #4(Q) €
(Kers#,)*.
(ii) There exists a constant Cy = co(a,b,c) > 0 such that for any Q € (Kers#,)*,

H6(Q) : Q = o Q.
(iii) %, is a 1-1 map on (Kers#,): and its inverse £, is given by

H7NQ) = é(@— (nn-Q+ Q- -nn) + ;(Q : HH)I)
(2.4) + %(Q :nn) (nn — ;I) .

2.2. The Hilbert expansion. Let (Q¢,v®) be a solution of the system (1.20)—
(1.22). We perform the following Hilbert expansion:

3
- def ~
(2.5) Q=) Qi +e*Qr = Q+£°Qn,
k=0
2 f
(2.6) ve = Zekvk +&’vp L3+ 3vr,
k=0

where Q;(0 <4 < 3),v,;(0 < j <2) do not depend on ¢, while (Qr,Vvg) is called the
remainder term which depend upon ¢.

As shown in (2.9)—(2.18) below, inserting the Hilbert expansion (2.5)—(2.6) into
the system (1.20)—(1.22) and equating like powers of € leads to a hierarchy of equations.
We will prove that (Q;,v;)(0 < i < 2) and Q3 can be determined in this way: Qg
must be a critical point of 7 (Q), and the system of (Qg, vg) could be reduced to the
full inertial Ericksen—Leslie system, while (Q;, v;)(1 <14 < 2) and @3 solve the linear
equations obtained by using the projection operators.

For Q; € R3*3(i = 1,2,3), we introduce the following definitions:

def

B(Q1,Q2) = Q1- Q2+ Q% - QT — %(Ql 1 Q2),

def

C(Q1,Q2,Q3) = Q1(Q2: Q3) + Q2(Q1 : @3) + Q3(Q1 : Q2).

Let @5 = Q1 + Q2 + £%2Q3, just as the polynomial expansion technique adopted in
[34], we get the expansion of 7 (Q¢) in € as follows:
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T(Q°) = T (Qo) + e/:(Qu) + €% (Ha(Q2) + By) + (A (Qs) + Ba)
(2.7) +e2H(Qr) + ' T,

where B1, B2, and B¢, independent of Q g, are respectively

Bl = - g‘@(leQl) + C%(Q07Q17Q1)7
By = — 0A(Q1,Q2) + 2c¢€(Qo, Q1,Q2),

b i
Bf = — 5 g €+] 4<%(QZ7Q])
i+j>4
1<i4,5<3

cC S
E i+j+k—4
+§ € J (K(QiaQ]ﬁQk%
itj+ k=>4
at least two of 7, j, k are not zero

and the fourth order term 75 in ¢ is given by
~ ~ C ~ o~
y]% =B° - b‘%(ng QR) + CCK(QR7 QE7 QO) + 55%(QR5 Qsa QE)

b ~
(2.8) - 55293(6237 Qr) + €€ (Qr, Qr, Qo + Q%) + c=*€(Qr, Qr. Qr).
For the sake of brevity, we also denote

Ho = 74(Q1) + Z(Qo),
H, = 74 (Q2) + Z(Q1) + By,
H; = 74,(Q3) + Z(Q2) + Ba.
We are now in a position to write the expansion of the original system (1.20)—
(1.22) and collect the terms (independent of Q g) with the same order of . Specifically,

we have the following:
e The O(e71) system:

(2.9) T (Qo) =0.
e Zero order term in e
(2.10) JQo + 11 Qo = —Hg — %Do + 1[0, Qol,
% + Vo Vvo = =Vpo + V- (81Q0(Qo : Do) + A1Do + 5Dy - Qo
+ 6Qo - Do + B7(Do - QF + QF - Do)
(2.11) + %No—FMl[QO,No] +ad(Qo,Qo)),
(2.12) V-vo =0,

where

Qo= (9 +vo-V)Qo, Qo= (3 +vo-V)Qo, No=Qo— [Q0,Q0].

e First order term in e:
JQ1+mQ = —Hy — %D1 + 111 (121, Qo] + [Q0, Q1] — v1 - VQo)
- J(2V1 -V (0:Qo) + 0¢v1 - VQo + (v1 - V)vg - VQo

(213) —+ (Vo . V)Vl . VQ(] + (V1VO : VQ)Q(] + (VOV1 : V2)Q0>7
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% +vp-Vvi=—-vi-Vvg—Vp + V- (51 (Qo(Qo : Dy)

+ Qo(Q1 : Do) + Q1(Qo : Dy)) + 84Dy
+ 65(Do - Q1+ Dy - Qo) + Bs(Qo - D1 + Q1 - Do)
+B:(D1- Q5+ QD1 +Dy-Q1-Qo+Do-Qo- Q1
+Q1'Q0'D0+Q0'Q1'Do)+%ﬁ1

(2.14) + p1([Q1,No] + [Qo, N1]) + Ud(Ql, Qo) + Ud(Qo, Ql)),

(2.15) V. Vi = O,

where

Q1= (0 +vo-V)Q1, Q1= (8 +vo-V)Qi,
N =Q1—[Q0,Q1], Ni=N +vi VQo—[Q,Q0]

e Second order term in e:

JQo 4 11Qy = —Hy — %D2 + ([QQaQO] + [0, Q2] + [Q1, Q1]

—ve-Vvg—vy- VQl)

- J(2V1 “V(0Q1) +2v2 - V(0:Qo) + 0rv1 - V@1

+0va - VQo+ (vi-V)vi - VQo + (vo-V)vy - V@1

+ (vovi : V2)Q1 + (vivo : V2)Q1 + (vivi 1 V) Qo
(2.16) + (vavo : V3)Qo + (vova : VQ)Q0)7

0
8vt2+V0'VV2:—VQ-VVO—Vl-Vvl—Vpg-FV'(ﬁl Z QZ(QJDk)
itjrk=2
+ B4D2 + B5(D2 - Qo+ D1 - Q1 + Do - Qo)
+ B6(Qo - D2 + Q1 - D1 + Q2 - Do)
+ Br Z (Di'Qj'Qk+Qi'Qj'Dk)+%N2
itj+k=2

+ Ml([QzM\M + [Q1, N1] + [Q(%NZ])

(217) +0d(Q27Q0) +O-d(QhC?l) +Jd(¢20a¢22)>3
(2.18) V vy =0,
where

Q2 = (0 +vo - V)Q27 Qz = (0 +vo-V)Q2, No= QZ — [0, Q2],
No=No+vay-VQo+vi-VQ1 — [Q2,Q0] — [Q1,Q1].

In what follows, we will show how to solve (Q;,v;)(0 < i < 2) and Q3. First of
all, combining (2.9) with Proposition 2.1, we deduce that Q) is a critical point and
could be taken as
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(2.19) Qo(t,x) = s <n(t,x)n(t, n) — ;)1)

for some n(t,x) € S? and s = s;.

PROPOSITION 2.3. Suppose that (Qo, Vo) is a smooth solution of the system (2.10)—
(2.12); then (n,vo) must be a solution of the full inertial Ericksen—Leslie system
(1.2)—(1.4), where the coefficients are determined by (1.23)—(1.25).

Proof. Recalling the first property %, (Q1) € (Kers#,)* in Proposition 2.2, we
can deduce from (2.10) that

(2.20) (JQ() + ,ulNo + X(QO) + %DO) : (nnL + nln) =0.

Substituting (2.19) into (2.20), we get by a subtle calculation that

s(iin + 2nn + ni) : (nnt + n'n)

= 2sii-n7,

Qo : (mn* + n'tn)

No : (nnt +ntn) = [s(in + nn) + s(nn - Q) — Qo - nn)] : (nnt + n'n)

=2sN-n",
#(Qo): (nn* 4 n'n) = —Thon',
Dy : (nnt + ntn) =2(Dy-n) - nt,
from which it follows that
nt- (252Jf1 + 252N — h + susDy - n) —0,
which implies
(2.21) n x (Iﬁ—h+71N+72Do-n> =0,
where
I=25"J, v =25"p1, 72 = spa.
Applying the definition of Ker.s%;, and (2.19) yields

0
No:%+V0'VQ0+Q0'Qo*QO'Q0

= s(nN + Nn) € Kers4,.

Consequently, we have

o) def B1Qo(Qo : Do) + B4Dg + B5Dg - Qo + BsQo - Do
+ B7(Do - QF + QF - Do) + %No + 111 (Qo - No — No - Qo)
= f15%*(nn : Dg)nn — %ﬁ152(nn :Do)I+ 84Dy + B5sDp - nn

1 1
—+ ﬁGSIlIl . DO — §(55 + /86)SDO —+ §ﬁ732(D0 -nn +nn - DQ)
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2 1
+ 5,6’782D0 + 5#25(HN + Nn) + [L182(IIN — Nn)

1 1
= 6132(1111 : Do)nn + (2/128 — /1,152> Nn + <2/J,28 + /1'182> nN

+ <ﬂ4 - %(55 + B6)s + 35782) Do + <[353 + ;5752> nn - D

1
+ <Bgs + 35732> Dy - nn + pressure terms
=ol 4+ pressure terms.

In addition, from Lemma 3.5 in [34] we know that o® = 0%(Qo, Qo). Here oF and
ol (see (1.5) and (1.6)) are just the elastic stress and the viscous stress in the full
inertial Ericksen—Leslie system, respectively. This completes the proof of Proposition
2.3. ]

2.3. Existence of the Hilbert expansion. In this subsection, we are going to
elucidate the existence of the Hilbert expansion. In other words, we will show how to
solve (Q;,v;)(1 <14 < 2) and Q3 from the system (2.13)—(2.18). To be more specific,
we have the following Proposition 2.4.

PROPOSITION 2.4. Let (n,vg) be a smooth solution of the full inertial Ericksen—
Leslie system (1.2)—(1.4) on [0,T] and satisfy

(vo,On, Vn) € L>([0,T); H*) for k> 20.

Then there exists the solution (Q;,v;)(i = 0,1,2) and Q3 € (Ker#%,)* of the system
(2.13)—(2.18) satisfying
(vi,0:Qs,VQ;) € L>=([0,T); H**)(i = 0,1,2), Q3 € L>([0,T]; H*~11).

Before proving Proposition 2.4, we need the following Lemma 2.5 from [33] and
Lemma 2.6.

LEMMA 2.5. The dissipation relation
(2.22) Bijnn : D|? + B5|D|? + B5/n- D> 2 0

holds for any symmetric traceless matric D and unit vector n if and only if
. . . 3 . . .
(2.23) P220, 282+ P5=0, 552 + B3+ 1 2 0.

LEMMA 2.6. Assume that Q) = Q] +Q1 with Q{ € Kers%, and Q1 € (Kers#,)* .
Then it follows that
(2.24)

P27 Q) =L(Q]) + R, 2™Q)=Q] +L(Q])+R,
(2.25)

Z°MQ) = LQ)) +L(Q]) + R, Z™Q)=Q] +L(Q)+L(Q)+R,

where Q7 aof (0 +vo - V)Q{ and Q] aef (0, + vo - V)QT . In addition, L(-) rep-
resents the linear function with the coefficients belonging to L>([0,T]; H*=1) and
R € L>=([0,T); H*=3) some function depending only on n, vy, Q7.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/22/20 to 210.32.136.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

UNIAXIAL LIMIT OF THE QIAN-SHENG MODEL 4435

Proof. For the proof of (2.24) see [34] for the details. It remains to prove (2.25).
Let Q] = nn' + n'n with n! - n = 0; then it follows that

I =nnt +nnt +ntn+ntn,
| =2(mnt + ntn) + nit + itn + int + nti,

where n = (9; + vo - V)n and nt = (9; + vo - V)n'. Note that

ntn=n-n=0, (ni-n)=nt-nt+nt-n=0,

(nt-n)=nt-n+2nt -n+nt-a=0.
By a simple computation, we have

ST o L. L. vl .l .1 1w
(I—nn)-Q -n = (6 —ning) (200505 + 0y nw) + ngity + g g + iyng + nj i) mu
Lo o L |
= 20N g + Ny 4 Ny RN — nyiy N
.l 1 iR . L. .
=n; + (nmk +n; nk) Ny — 2NNy Ng + 200y, Ny

Consequently, using the fact n- = @ -n and the definition of the projection operator
P we obtain

2@ =n((-nm)- Q] n)+(C-nm)-Qf n)n
:nﬁl+ﬁLn+2(Q1T:nﬁ) nn + L (Q),
which yields that
Z(Q1) = 27(Q]) + R
=2 (fn- Q] + @ -mi) +2 (Q :ni)nn+ 1 (Q]) + R
= L(Q)) + L(Q]) +R.

Therefore, we can deduce that

PMQ1) =Q1— Z*(Q1) =Qf +L(Q])+L(Q])+R. 0

Proof of Proposition 2.4. Suppose that (n,vp) is a smooth solution of the full
inertial Ericksen—Leslie model (1.2)—(1.4) on [0,T] such that

(vo, 0, Vn) € L>=([0,T]; H*) for k > 20.

Thanks to Qo = s(n(t,x)n(t,x) — 1I), we know Qo € L>([0,T], H**!). Note that
we could solve Q1 from (2.10) and easily get Qi € L>=([0,T]; H*~!) by Proposition
2.2. Thus, the existence of (Q1,v1) can be reduced to solving (Q7 ,v1).

The key observation is that (QI, v1) satisfies a linear dissipative system, although
the system seems nonlinear at first glance due to the term Hy in (2.13) which contains
B;. For this end, we derive the linear system of (v1,Q{ ). We denote
1
3

ﬁm,cz):—b(@-@— (@:Qn)+c(z<cz:@o>@+<@:@)@o).
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Thus we have
B; =B1(Q1.Q1) =B1 (Q],Q]) +B1 (@, Q1) +B1 (Q,Q]) + By (Q1,Q7)
=B (Q1.Q])+L(Q] 1)
By a simple calculation we get
(2-26) B (Q[,Q[) € (Kers4)*.
We denote

o =2"Z Q). € =2"([0.Ql), %1=2"D),
U =" (Vv1-VQo), C=2""(21,Qu), Z»= 2" (D).

Taking the projection 2" on both sides of (2.13), and noticing that % (Q2) €
(Kers#)t and Z(Q1) = Z(Q] ) + R, from Lemma 2.6 and (2.26) we obtain that

IOT +mQl == = 201+ m% —J% + L(@Q]) + L (@] ,v1) + R

Note that, due to (2.26), the nonlinear term By (Q[, Q[ ) vanishes in the above equa-
tion.
Thus, we have the following closed linear system of (Q7 ,v1):

221)  JQ +mQf =~ = 29+ b —Ju + LQ)) +L(Q] V1) + R,

% F Vo Vvi=-Vp + V- (61Q0(Q0 :D1) + B4D1 + B5Dy - Qo
+ B6Qo - D1+ B7 (D1 - QF + Qf - D)
+ % (Q1T - [917620]) + [Qo, (Q1T - [917620])}
(2:28) +0%(QT, Qo) + Q0 Q1) + L (QT . v1) + R),
(2.29) Vv = 0.

In order to prove the unique solvability of the linear system (2.27)—(2.29), we need
to present an a priori estimate for the energy

def :
Et) = [Ivallze +(Q1,Z (1)) + Q1 I7= + Q] I,
that is, to prove the energy inequality
d
(2.30) 7¢O < CEM) +IRML:),

where the solution (Q7 ,vy) satisfies (v1,0,Q{,VQ{) € L>=([0,T]; H**).
First of all, from (2.27) and (1.19) we have

J{Q1.Ql) +m (Q.Ql)
= (- 2(Q]) - 2D\ + (21, Qul. QT ) - J (%1 - VQu.Q])
+ (L@ +L(Q] vi) + R.QT)

d
< == (V- VQu.QT ) + 3 VvilZ: + Cs (Il
(2:31) QT 172 + QT I3 + 1R )
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where we have been obliged to estimate the term —J(v; - VQo, Q). In fact, from
integration by parts we know that

—J(¥1-VQo, Q7 )

= g<V1 VQo,Q1 ) + (vi- (0 +vo - V)VQo, Q1 ) + (vi-VQo, Q7 )

Cdt
d )
< - (v1-9Q0, Q1) +C (Ivile + 107 3= + 197 13:)
It can be observed that, for any @ € S3, there holds

@Q,Q) = /}R3 9:Qi;Qij + viOrQij Quydx
= /]RS (at(QijQij) + 0k Ok (Qi Qi) — QijQij)dX

d . .
(2.32) :7/ Q : de—/ |Q|?dx.
dt R3 R3

From (2.31) and (2.32) we thus obtain

d )

S| (07 QT +(vi - VQo) s Q7 + HHQT ) dx

R3

(2.33) < 09V l3 + Cs (Ivall3e + 1QT I3 + 1QT I + IRIZ: ) -

Taking advantage of the linear system (2.27)—(2.29) and integration by parts over
R3, we know

(Opvi,vi) + J(Q7, Q7 )
= —<51Q0(Q0 :D1) + 54Dy + 55D - Qo + sQo - D, VV1>

I
~(5(D1- Q3 + @3- D1), Vv )
I
~ (@7 ~ (91, Qo)) + 1 [Qo, (@7 ~ [, Qa])], Vv1 )
I3
—m{Q1 —%1,0Q[) - <42/ + %-@17Q1T> —J(%, Q1)
I Is
+(L@Q) + L (QT.v1) + B QT )+ (0"(Q] Qo) +0%(Q0, Q7). Vv1 )
Ig
(2.34) + <L (@QF,v1) + R, vV1>.
I7

We next estimate the right-hand side of (2.34) term by term. Using Qp = s(nn — 1I)
and the relation 85 — 85 = s in (1.16), noting that ([D1,Qo],D1) = 0, we obtain
that
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+
J 55256

<ﬂ1Q0 Qo : D1) + 84Dy +
— (87(D1- @} + Q3 - D). Dy)

+<(65+66—55> D;- Qo+ (M—@s) QO'D17D1+91>

(Qo-D1+ Dy ’Qo),D1>

2 2

s(Bs + Bs 2
—— pustfom s D — (51— S 25 oy

= (5095 + 80) + 365 ) I Dl + %2 (90, @ol. D)

Making use of Z2(Q] ) = Q] +L(Q7 ) and the self-adjoint property of the projection
operator yields that

—(, Q1) =~(Z(Q).Q +L(Q]))
=—<=€”( Q1) 00Q1) = (Z(Q1),vo-VQI) = (£ (1), L (1))

(2.35) Q1,2 (Q1))+ClQi 17

<-3a
Here we have employed the following fact that, for any Q € S3,
(2.36)
—(Z(Q),vo-VQ)
= /]RS V0; Qkt,j (LIAQM + %(LQ + L) (ka,ml + Qim,mk — §5leij,i]‘)> dx

1
= / <—L1UOijl,ijkl,m - §(L2 + L3) (00 Qi1 Qrem,m + v0; Qi kj Qim,m)
]R3
1
—L1v0j,m@Qri,j Qrt,m — §(L2 + L3) (v0,1Qx1,j Qkm,m + UOj,kal,lem,m)> dx
1
= / (—LWOj,kal,ijz,m - §(L2 + L3) (v0;,1Qx1,j Qkm,m + UOj,kal,lem,m)) dx
R3

< CllQlF-

In addition, we have

)= o 00)
<D17Q1 +L (Q1 )>

(2.37) < - 2 (D0.QT) +3IVvil3: + CsllQf 13-

I\J‘E

For terms I3 and 14, we notice that

M1 <<517Q1T> = 1 <[Q17Qo]a P (QI)> = <[ﬂ17Q0LQ1T +L (QI)>
< ([, Qol, QT ) +01IVvallfa + CsllQT I3
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then from (2.35) and (2.37), we get

I3+ 1y < — % <(QlT - [Ql,Qo]) 7D1> — <[Q0791]7 (QlT - [QlaQOD>
—n (O~ 190,@0,0T) - £ S (@7 2 (@)~ 2 (D107 )
+6[VviZ: + Cs|1Q1 17

= — 12 (QF = 91, Qol. D1) = B2 (1921, Qo). Dy) = Q] — €20, Q3

1d

53 (@12 (@D) + IV VillE + CollQT I3

. 2 2
<= m|Qf —[20,Qo) + 5 D]+ £EIDG: — (19,0l DY)

L2
1d

— 53 (Q1.Z(QD)) +3IVvill32 + Cs1QT -

For term I5, using (2.27) and basic properties of the projection operator £
and integration by parts, we deduce that

Is = — J<v1 - VQo, P (QT)>
- J% (vi-9Qo, 2" Q1))+ (v1-VQo, 7™ (QT))
+ J<V1 -VQo, (0¢ +vo - V) 7 (QI)>

<= 75 (v Q0,27 (Q1)) + 7 (27 (vi-9Q0) 0T ) +C (Ivillza + 107 1)

a8 (o170 (1)) - (7 000~ w2 (@)

— <V1 - VQo, %Dl + u1[91,Q0]> — J{(v1-VQo,V1-VQo)

(2731 9Q0), L (@7) + L (T vi) + B) +C (vl + 107 32)
J d

<- J% <V1 -VQo, 2™ (QI)> - 5&”"1 - VQol|7 2

+8|Vvilz2 + Cs <HV1||2LZ + QU NZ2 + Q7 17 + \IRI\i2) ;

where VQO = (0 + vo - V)VQo and we have utilized the following estimate

Jd
2 dt

J d
<_ =
- 2dt

~J(V1 - VQo, V1 - VQo) = = S Ivi - VQolla + T (vi - VQo,v1 - Vo)

V1 - VQoll72 + Cllvi[7--
For terms Ig and I7, we have
Is + Iy < 0||Vvi|[72 + Cs (IIVlI\%2 +QL 172 + 11 17 + IIRH%z) :

Putting all the above estimates together and using Lemma 2.5, we obtain that
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%% /R3 (|v12 + J(IC-21T|2 + v VQ0|2) +Qf .2 (Qf) >dx
+ 3w von 2 (a7))

< —Binn: Dy|3. — B2 D172 — Bsln - Dy|72 — 56| Vvill7
+ 46(|Vv1 |72 + Cs (||V1||2L2 +Q1 132 + Q1 117 + ||R||2L2>

(2.38) < —0lIVvilfa + Cs (Ivili3e + 1QT 132 + 1QT 13 + I1RIZ:)
where the coefficients 3; (i =1,2,3) are given by

Br=P1s*, fPo=P1—50— M + 35732 _ 4“7%7
(2.39) m

Bs = 5(Bs + Be) + %57827

and § > 0 is small enough, such that 31, 32, 35 satisfy the relation (2.23) (notice that
(2.23) holds with strictly positive sign when ¢ = 0). Notice that

vil2 4+ T(JQT P + [v1 - VQof?) +2J(vi - VQo) : 2(Q])

=i+ I (127(Q]) + vi- VQo + 127 Q] )

vV

1 )
§|V1|2 +C(IVQo))|Q] .

Therefore, combining (2.33) and (2.38), and choosing suitable M > 0, such that
1 . .
M (S + COVQUDIQT) + QT + @ + (1 Q) : QT + 41T

> C(IVQoll) (Wil + QT2 + 1QT )

we obtain the following energy estimate:

d
76 ® = CUIVQoll=)(E(#) + [ R()l|2)-

The estimate of the higher order derivative for (vq, Q1) can also be established by
introducing a similar energy functional. Therefore, the solution (v, Q1) is uniquely
determined. In a similar argument, we can solve (v2,@Q2) and Q3 by (2.16)—(2.17).
Here we omit the details. |

3. The estimate for the remainder. The main task of this section is to de-
rive the remainder system and the uniform estimates for the remainder. Proposi-
tion 2.4 tells us that (v;,9:Q;, VQ;) € L>=([0,T]; H*=*) for i = 0,1,2 and Q3 €
L>=([0,T]; H*~11). Hence, in what follows, v; and Q; will be treated as known func-
tions. We denote by C' a constant depending on Z?:o supyepo, 7] [IVi(t) [l ge—ai and

Z?:o supyeo, 7] [|Qi ()| zrr+1-1:, and independent of e.

3.1. The system for the remainder. Recalling the Hilbert expansions (2.5)—
(2.6), we have

(3.1) Qr=e7°(Q = Q), vr=ec (V" —V),
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where Qi and v depend on €. In order to derive the system of the remainder (3.1),
we denote

52D0+ED1 —|—82D2, 62904—69—{-6292,
Qr=0,+V-V)Qr, Qr=(0+V-V)Qxg.

From (2.7)-(2.8) and the definitions of H;(i = 0,1, 2), the molecular field H(Q®) can
be expanded into

H(Q®) = _5_19(@5) -Z2(Q°)=-Hy—cH,; — e?H, — ’Hp — 539157
where Hp = #(Qr) & #(Qr) + = 2(Qr).

Therefore, from (1.20)—(1.22) and (2.9)—(2.18), the system for the remainder can
be derived as follows:

(3.2) JQr +mQr = — " (Qr) — %DR + 11[Qr, Qo] + Fr + Fp,

0 N
EALLg Vvgp=—-Vpr+V- (51@0(@0 :Dg)+ BsDr+ Q0 -Dr

ot
+B6Dr - Qo+ f7(Dr - Qf + Qf - D)
+ £2(Qr — 1922, Q) + 1 [ Q. (Qr — 122, Qu])] )

(3.3) +V-Gpr+ G,
(3.4) V.vg=0.

The term Fg is given by
Fr=F  +F;+F3+F;+Fs,

where F; is independent of (vg, Qr),

F, = J( —02Q3 — 2vo - VO,Q3 — 2v1 - Vi(Q2 + £Q3) — 2vy - V,Q° — dvo - VQs

ALK V(QQ + 8@3) AT VQE — Z €i+j+k_3Vi . V(Vj . VQk)>

i+j+k>3

+M1<—3tQ3 —vo-VQ3—vi-V(Q2+eQ3) — vz - V@E)

+,u1< > TR Q- Q- Qi)) - B - 2(Qs)
i+j2>3
= 7JF11 - ,LL1F12 - B° - X(Qg),

and Fy, F3 linearly depend on (vg, Qr),
~ ~ ~ ~ c ~
F = (@ Qn — Q- ©) — (—b2(Q°,Qr) + € (Qn, @7, Qo) + 5c%(Qn. @7, Q)
F; = —JvR-V(atéJrv.v@)+u1(—vR-vé+enR-@f —s@E.QR)
= — JF31 — 1 Fao,

and F4, F5 nonlinearly depend on (vg,Qr),
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F,=—&%Jvp-V(vg - VQ) +53M1<—VR'VQR+QR'QR—QR'QR)
= — ESJF41 — 53M1F42,

F;=— (gszﬂ(QR, Qr) + c=*€(Qr. Qr, Q) + =€ (Qr, Qr, QR)) :

The term F R, including the derivative term with respect to time ¢, is given by
Fr=—J(@ +v V)(vg-VQ)
+ 53J( (8 4V -V)(VR-VQRr) — VR VOr — i V(ve - VQR)>.
On the other hand, the term G, takes the following form:
Ghr=—Vvi-Vvy— Ve -Vv| —evy-Vvy —vr - VV — v - Vg,
Similarly, the term Gg can be written as
Gr =G+ G2+ G,

where G is given by

G = Z gititk=3 (51@,(% : D) + 57(D¢ Q- QL+ Qi Q 'Dk))

i+j+h>3
+ Y et (ﬁ5Di - Q; + Qi - Dj + 0(Qs, Qj)) + %Fu
i+j>3
+ Nl( > eTQL Q)+ Y, RS [Qh (Vi VQr — [Qka])D,
i+j>3 i+j+h>3

and Gg, G are given by
Gz = /1(Q(Qr : D)+ Qr(Q: D) +=Qo(Q" : D) +Q°(Q: Dr))
+35(D - Qr+2Dr - Q%) + fo(eQ° - D+ Qe - D)
+6:(D-Qr Q+D Q Qr+eDp-Q° Q+eDr- Qo Q)
+57(Q-Qn-D+Qr-Q-D+eQ°-Qy-Dr+:Q-Q° - Dp)
+ 2 (Fa — [0.Qa]) + 1 [Qr, (9:Q +¥ - VQ ~ [2.Q)) |
+0|Q, (Vi VQ - [€2,Q]) | + m[=Q%, (Qn — [, Qo))
- m[Q,[2,2Q7]] +0%Q. Q) + 0" (Qr. Q).
Gy =< (51 (@(@r : D)+ Qr(@: D) + Qr(Qr : D) +£*Qu(Qr : Dr))
+57(D-Qr-Qr+Dr-Q-Qr+Dr-Qr-Q+="Dr-Qn-Qn)
+57(@-Qn-Dr+Qr-@-Dr+QnrQn-D+Qr-Qp-Dr)

+B5DRr-Qr+ BsQ@r - Dr + %Fu + 1 [@7 (VR -VQr — [Qkr, QR])]
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+ [QR, (Qr+vr-VQ—[Q,Qr] — [, @D]
+ e’ [QR, (V- VQr — [, QR])] +0%(Qnr, QR))-
3.2. Uniform estimates for the remainder. In this subsection, we derive the

uniform estimates for the remainder. We assume that (vg, Qr) is a smooth solution
of the remainder system (3.2)—(3.4) and introduce the following energy functional:

() © [ (jval?+1nf + |Qnf + A (Qn)  Qn)
+ 2 (IVvaf +10:Qnl? + 17 (0.Qr)  0.Qr)
(3:5) + et (|Aval + [AQrP + 71 (AQR) : AQr ) dx,
(3.6) 0 d:ef/Ra 5(I9val + 22| Aval + 4V AVR[?)dx.

By using the definitions of € and §, we can immediately obtain the following.

LEMMA 3.1. The following estimates hold:
1(eV?Qr.e*V?QR) |12 + |(VR, eV VR, e2V2VR)|| 12 < CEZ,

1Qrllm + (Qr,e0:Qr, e>AQR)| 12> < CE3,
(VVvR,eVVR,e2V3vR) |12 < CS%.

In order to establish the estimates of the remainder terms (Fr, Gg) and Gf, it
is desirable to utilize the following inequality:

(3.7) 1fgllms < ClF a2 llgllee, k=0,1,2.
LEMMA 3.2. For the remainder term Fg, the following estimate holds:
|(Fr,eVF g, e2AF )| 12 < C (1 FET 4 eC 4383 4 eF 4 ae%g%) .
Proof. Applying Lemma 3.1, we see at once that
H (Fl, €VF1, €2AF1)HL2 S C,
|(Fa, eVFs, 2AF,) |12 < CE2,
|(F3,eVF3,e2AF3)|| 2 < C(€7 + §7).
Using the inequality (3.7), we have

IFallere < Cellvallme (Ie*VVrllaz + lle*val )

+ Ce||vrl a2 VQR| 12 + C2||eQr | 12l VR 1
which implies
|(F4,eVFy, e AFy)| 12 < Ce(€ + €2§2).
Similarly, from Lemma 3.1 and (3.7) again, we can infer that
|(Fs5,eVF5,2AFs) |12 < Ce(€ 4 £2¢3).
The proof is finished. 0
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LEMMA 3.3. For the remainder term Gg, the following estimates hold:
|(Gr.eVGr e2AGR)||z < C (1+ €} €+ et 4 e5h 1 2eigh + clegh),
|Gy eVGR,2AGR) 12 < C (14 € + 51+ ceigh).

Proof. Tt is straightforward to show from Lemma 3.1 that

| (G1,eVG1,e°AGy) |12 < C,
| (G2,eV G, e?AGy) || 2 < C(E3 + £F7).

By the inequality (3.7), we obtain

1G]l e < Ce®|leQrllme (||VVR||Hk +1Qrllmx +*1Qr : Drllgx + |Qrll i+

+ Vel +* (Ive - VQrll e + 1925 - Qallan) )
+ Cell*YQal e (Ival e + IV Qalmv).

which gives
1(Gs,eVGs,e2AG3)| 12 < C(e€ + €7 4 2€2F2 + 1€F2).

Then the conclusion follows. 0

We point out that for m = 0,1, 2, highly singular terms @%’f(a;”QR), O"QR) in
(3.5) come from the L2-inner products <ga;”%f(QR),a;’1QR>. Fortunately, Lemma
3.4 will play a crucial role in dealing with these singular terms, which makes the whole
machinery work.

LEMMA 3.4. Assume that (Vr, Qr) is a smooth solution of the remainder system
(3.2)—(3.4). Then for any § > 0, there exists a constant C depending on n,V,; ,n,v,

and Q) such that

2 (ain- Q. Qn) <~ (A (W QR Qn+ v V@)

(3.8) +C(1+eE+e°¢%) + (6 +C€) §,
é ((Qr :mn)nn, Qr) < —Jg <%_1 (Q; :nn (Hn— 11)) JQr+ VR VQ6>

dt 3
(3.9) +C(1+€+e%) + (6 + C2¢) §,

where i (8,+v-V)(nn), Q° = Q+3Qr, and " is defined by (2.4). Moreover,
form = 1,2, the following estimates hold:

(3.10) 2™~ (an - 0" Qr, " Qr) < C€,
(3.11) 21 {(0"Qp : _n) nn, 0"QR) < CE,

where 0" represents the mth order partial derivative operator with respect to the
component x;.
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Proof. We assume Qr = Q% + Q% with Qf € Kers%, and Qi € (Kersz,)=,.
Then we obtain

(Mn - Qr,Qr) =(MN - Qp,Qf) +2(Mn - Qf, Qx) + (AN - Qx, Qx) -

Note that there holds nn - QE € (Kers#,)* since nn = nn + nn € Ker4,. Then we
have %(ﬁ -QF, QL) = 0. Using Proposition 2.2, it follows that

1/_. 1 1
~(AT- Qk, Qk) < CZIIQk I3 < O (a(Qr). Q)
< 0 (245 (Qn). Q) - (£(Qn). Q) < Ce
It can be seen from Proposition 2.2 that
L(mn- Qh Qi) = (A (- Q). LA Q)
c R'»<YR n R ' n\'YR
= (o - Q). LA (@) — (A - Q). 2(Qn))
< (A @ Q) 2 (Qn)) + CUV Qs + Q).
From (3.2), we have

(o - Q). LA (@)
— (A @ Q). Q) —m (A (8- QF). Qr)
My Mo

1 (A (0 QR). D) g (A (01 Q). (€25, Qo]

M3 My
+ (A (@B QR) Fr) + (A (@5 Qf). ).

Ms MG

Using integration by parts, we get

d : : : :
My == J 2 (A7 (00 QR),Qr) + T((00 + V- V)4 (B0 QF), Q)

d . . .
< — I (7 @8- QF), Qr) + CUIQRIZ: + |Qr]32):

From Lemma 3.1, we can easily estimate that
M < C|1Qrll21QrllL2 < C€,
M+ My < C|Qrllr2|Vvr] < Ce2§2,
Ms < CllQrl|2|Frll < C€*[Fg|e.

For the term Mg, we have

d . ~
Mg = — JE<,%”H_1(E QL), VR VO + vy - VQR>

+ (0 + 9 V) A (BT Qh).ve - VQ)

My
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+ 53J<(8t Y-V ER QL) va - VQR>

Mo
+ %I ( (Ve V) A (ER - QR Q)

Mo
+ 86J<(VR V)Y@ QL) vr - VQR> .

My
Using Lemma 3.1, we can infer that
My < C(|QrlIz + Qo) VRl 2 < C€,
My < CE(|Qrl L2 + 1Q ) IVl 2 I VQR] 2 < Ce€?,
Ms < CE|[vall 2| Qrllm IQrllL: < Cee?,
My < Ce%|[ Va3 1Qrlin < Ce€.

Thus, we obtain the following estimate:

| _d ~1== AT\ _d == T . B
~ (AT Qr. Qr) < —J (7 (@8- QR),Qr) — J 3 (AT @B Qf).va - V)
+ O+ & +2€2) + (6 + C2)3.
Similarly, we get

(Qr : 1M, Qg : nn) = (Q} : 1l, Q% : nn) + (QF : iin, Q% : nn).

Therefore, the analogous argument leads to the second estimate (3.9).
For the case of m = 1in (3.10) and (3.11), we first assume that 9;Qr = (9;Qr) " +
(0;Qr)* with (0;Qr)" € Kers%, and (0;Qr)* € (Ker4,). Then we have

(3.12) (M- 9;Qr,%;Qr) =2(M0 - (0;Qr) ", (0;Qr)") + (A0 - (8;:Qr)", (B:Qr) ™).
By Proposition 2.2, the third term in (3.12) can be estimated as
e(@i - (%:Qr)", (BiQr)") < Cell(0:Qr) " |72 < Ce(Ha(0:QR). H:QR)
< O (0:Qn), :Qn) — (L (0:Qn), Q)
<ce.
For the second term in (3.12), using Proposition 2.2, we obtain
e(@mm- (0,Qr)", (0:Qr)") = 5<%71(ﬁin' (371QR)L)7=%’§1(31QR)>
< Ce (I@Qu)* I3 + 10:Qrl2:) < Ce.
Likewise, we can prove that
£(9;Qp : 1N, 0;Qp : nn) < CE.

For the case of m = 2, we suppose that AQr = (AQr)" + (AQr)* with
(AQr)" € Kers#, and (AQRr)*: € (Kers#)*. Adopting an analogous argument
yields (3.10) and (3.11) for m = 2. d
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We next deal with the estimates for the remainder term F gr. For convenience, the
remainder term F'g, involving the derivatives with respect to time %, is denoted by

Fr=—J@+v V)(vg-VQ)
+ €3J( — (0 +V - V)(VR-VQr) — VR VQr — VR - V(vg - VQR))

efp LR,

LEMMA 3.5. For the remainder term f‘R, it follows that

(313) (FrQr) < —J S {vr - VQ,Qr) +C (€ +%€)

Proof. Using integration by parts, it is easy to calculate that
(F1.Qr) =— J((0+¥ - V)(vr - VQ), Qr)
d ~ ~ .
=—J—(vr-VQ,Qr) + J(vr - VQ,Qr)

dt

d ~
< - J&<VR ~VQ,QR> + C¢.

By virtue of the incompressibility V - vp = 0, the following fact holds:

d

a(VR -VQr,Qr) = 0;

this combines with Lemma 3.1 to get
(F2,Qr) = —*J((8; +V - V)(Vr - VQR),Qr) + €*J (VR - VQr, Qr)
+&%J(vR - VQr, VR - VQR)
d .

= _53J&<VR VQr,Qr) +2e°J(vi - VQr, Qr)
+e%J(vr - VQRr, VR - VQR)

< Ce*|vrl 2| VQrl 2 |Qrll 2 + Ce®|l VR 7 VQrIFa

< C(a‘@% + e%2¢?).

Consequently, we conclude the proof of the lemma. ]

LEMMA 3.6. For the remainder term ﬁR and m = 0,1,2, there holds

52m<aimf‘R7 azmQR>

mJ d m e\ (|2 m d m € 1M
< 2 S lor (v VI, — T L0 (va - VQ). 07 Qn)
(3.14) +C (14 €+ +%¢°) + (6 + C%¢) 3,

where O] represents the mth order partial derivative operator with respect to the
component z;, and Q° = Q + 3Qr.

Proof. We only provide here the arguments of (3.14) for the case m = 0. We
relegate the proof of the cases m = 1,2 in (3.14) to the appendix so as not to distract
from the main body of this paper.
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First, we control the term (f‘l, QRr). Note that there holds (vg-VQq, #4(Qr)) =
0 since vi - VQo € Kerd%, and 74,(Qr) € (Kers#,)L. Then we have

(vi-VQ, L2 (@n)) = (vi- V&, Ha(@r) +2(Qn)
(3.15) < Cllvell2(|Qrl 2 + €l|Qrllu2) < C€,

where Q = Qo +2Q° = Qo +(Q1 + £Q2 +£%Qs3).
From (3.2) and the bound (3.15), utilizing integration by parts and Lemma 3.1
yield

<f‘17 QR> = J%<VR : véa QR> + J<VR ' v@v QR>

=- J%<VR VQ,Qr) — m(vr - VQ,Qr) — <VR -VQ, éjff(QR»

+ <VR -VQ, _%DR + 111 [Qg, Q0}> + (Vg -VQ,Fp +Fpg)

< IS v VQ.Qn) +C(e + €551

(3.16) + C€*|[Frs2 + (vr- VQ. Fr).
It is easy to check that

J d

(3.17) (vr-VQ,Fi) = _gau"R ' V@HQB

By using integration by parts, we deduce from Lemma 3.1 that

(VR -VQ,F3) = — €3J%<VR VQ,vr-VQr) + & J{vg - V(Vr-VQ),Qr)
n 83J<(5t £ V) (vr- VD), Ve VQR>
S,

+ 56J<VR V(vg-VQ), Vg VQR>

d ~
< —€3J£<VR -VQ,vg - VQR> +8;

+ CE3vrl w2 VR @ 1Qr| 22 + C8 VR %2 VR H [ VQRI L2
d ~
<- J€3a<vR -VQ,vr-VQr)+S:
(3.18) e (se% +2€2 4 c@FE + 52633%) .

Then from (3.16)—(3.18) and Lemma 3.2 we obtain

- d - . Jd 2 d -
(F1,Qr) < — JaWR -VQ,Qr) — E&HVR VQl L. — 53Ja<VR -VQ,vr-VQr)
(3.19) +S,+C (1 +E4+e2¢? 4 G%S%) + CE2€5.

Now we derive the estimate of (Fa, Q). Similarly we obtain from (3.2) that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/22/20 to 210.32.136.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

UNIAXIAL LIMIT OF THE QIAN-SHENG MODEL 4449

(F2,QR) = th (VR VQr,Qr) +€*J (VR - VQr, Qr)

— & J(vr - VQr,Qr) +€°J(Vr - VQr, Vi - VQr)
d . .
- EBJdt (VR -VQr,Qr) —€’11(vr - VQr, Qr)
Aq
1
—&° <VR -VQg, *ﬁ(QR)> +€3<VR VQr, ~22Dp + p1[2R, Qo]>
€ 2
As A3
+&%(vr VQr,Fr+Fr) +e°J(vr - VQr,vE - VQr) .

W,

By Lemma 3.1, we have
Ar < C|vallu2|VQr| 12 |Qrll> < Ce€?,
Ay = =2*(vi - VQr, #a(Qn) +=2(Qn))

< CE?||vr|lu2IVQr| 2 (1Qrl L2 + [leQrla2) < C(e2€2 + €F3),
As < CEVR| a2 IVQR| 2 |V VRl L2 < Ce€F2.

By Lemma 3.2, we get

(Vi VQr,Fr) < |IVrlu2IVQr| 2 IF gl 2 < c€|Fgl|L
<C(1+¢+e%e% +:5¢%) + C2¢e3.

Using integration by parts, it follows immediately by Lemma 3.1 that
e (Vi - VQr,Fr)
¢/ d 9
= —¢° 5 dt”VR VQrlli> —S1—Wi—¢ J<VR “VQpr, VR - V(VR - VQR)>

6J d
= —¢° 9 dt”vR vQR||L2 -8 —

Thus we find

~ . d

(F2,Qr) < —€3Jd (ViR - VQr,QRr) — € §&HVR VQr|7:
(3.20) — 81+ C (1+ € +e%¢? 4+ £8¢%) + C2e3.

Recalling Q¢ = @ +e3QR, we have

d ~112 d ~ d
lve VeI +26° 2 (Ve VQ,vr - VQr) + "~ Ve VQr|:

d ~ 2 d 2
(3.21) = fHVR~V(Q—|-€3QR)HL2 = fHVR~VQEHL2.
dt dt
Therefore, summarizing (3.19) and (3.20), and using (3.21), we obtain

(Fr,Qr) < 2dt||vR VQEHsz dt<VR VQ©,Qr)

+C (14 €+ ¢ +%¢°) + (6 + C2@)3. O
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3.3. The uniform energy estimate. In this subsection, we derive the uniform
energy estimate for the remainder system.

PROPOSITION 3.7. Let (Vr,QRr) be a smooth solution of the remainder system
(3.2)—(3.4) on [0,T); then for any t € [0,T), it holds that

%@(t) F3(1) SC(1+ €+ +5€%) + C(e +£2€2 +£%¢)g,

where the energy functional @(t) is defined by

(3.22) E(t) 2 & (t) + E1(t) + Ea(1),

and &;(t)(i = 0,1,2) are given as follows:

&)= [, (al* + 1Qn -+ va-VQ" +Quf + (1 = )@l

LAEQR)  Qn)dx + T (AT GQR), Qn v V),

62

~ . 1
&)= [ (10wel + 710,00 + 0w V@ + L A5 (0.Qn) : 0:Q1) dx.

84

E(t) = 5 /]R (|AVR\2 F JIAOR + A(vr - V) + é%’f(AQR) : AQR)dx.

Here G(Q) 9f s - Q — 4cs*Q : nn(nn — 1) and Q° = Q+e3Qr.

Proof. Step 1. L2-estimate. On the one hand, multiplying (3.2) by Qg, taking
the trace and integrating over the space R3, and using the fact that J2°(Qr) : Qr > 0
yield

(3.23)
J(Qr, Qr) + 111(Qr. Qr)
= *<é%f(QR), QR> - %(Dm Qr) + 11 (R, Qo). Qr) + (Fr + Fr,Qr)
< C|VVal2l|Qrllz2 + €2 |[F gl L2 + (Fr. Qr)-

Considering the previous equality (2.32), then (3.23) can be reduced to

1d : )
2t Loy (27Qn Qrt p|QnP)dx
(3.24) < O(€ +€23%) + €2 |[Fg 2 + (Fr, Qr).

On the other hand, multiplying (3.2) by Qr and (3.3) by vg, integrating by parts
over the space R3, we hence obtain

(VR,VR) + J(Qr, Qr)
= *<B1Q0(Qo :DR) + B4Dr + BsDr - Qo + B6Qo - Dk, VVR>
yAl
—<57(DR Q5+ Q- Dg), VVR> _%<QR — [Qr,Qo], VVg)

IQ IS
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—N1<[Q07 (Qr — (2R, Qu))], VVR> _&<DR7 Qr)

2
Ts Is
. ) 1 .
—11(Qr = (2 Qo). Qr) —( 5 (Qr). Q)
Ts 7
(3.25) +(V-Gr+ Gy, vi)+ (Fr+Fr,Qg).

Now we estimate (3.25) term by term as follows. We will frequently use a simple fact
that (A, B) = 0 if the tensor A is symmetric but B skew symmetric. Remembering
the relation 8 — 85 = pe, and noting Qo = s(nn — %I), it follows that

Bs + Bs
2

i+ T =~ ($1Qo(Qo : Dr) + BiDp +
~ (8:(Dr - Q3+ Q3 - Dp), D)
i <(55 + Be —ﬁ5)DR‘Q0+ (554‘56 —56>Q0‘DR,DR+QR>

(Qo -Dr+Dg-Qo), DR>

2 2
=~ gilon Dyl — (8 L8 2y 2y p g,
(326) (5085 + o) + 2 Br5?) I Dl + L2( D, Qol, ).

7
Due to the symmetry of the commutator [Q2g, Qo], it follows that

T} +Ts + Ts = LD Qol, ) — £2(Qr — 191, Qo). D) = 5D, Q)
= —12{Qr — [Qr, Qo), Dr).
Simultancously, we have
Ii+Ts = — 11 ([Qo. (Qr — R, Q0))], Qr) — 11 (Qr — [Qr, Qo], Qr)

= M1<[Q07 QRL QR - [QRv QO]> - :U1<QR - [QRa Q0]7 QR>
= — | Qr — [Qr, Qol[7--

It may be observed that

2

T+ Ty + Ty + Ty + T = —MIHQR — [, Qo] + o

1 2
D ‘ H2 D 2.,
R|,,* 4#1“ Rz

which combines with (3.26) and the dissipation relation (2.22) yields
Th+T+Is+ITs+1s + Is
) 2
= —M1HQR — [Q2r, Qo] + 2”72]33‘
H1 L2
— Billnn : Dg[|7: — B2[|Dr7: — fsln- Drl|7: — 46Dl
(3.27) < 45Dl

2
Ha 2
—||D
+4M1H rll7>

where § > 0 is small enough, such that Bl(z =1,2,3) given by (2.39) satisfy (2.23).
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For the term Z7, using Qr : I = TrQr = 0, we can write

& (L@ @n) = 20A5(@n) ) + L (bs(amn- Gn+ Q-1
— 2¢s? (QR :ﬁ(nn) + (Qr: nn)ﬁ),QR>
=277 + §<bsﬁ Qr — 2¢5°QpR :ﬁ(nn),QR>,

which implies from Lemma 3.4 that

1d /1 d :
17 < oq <€j{’ﬂns(QR)7QR> - J&<%_19(Q£),QR + Vg - VQE>
(3.28) +O(1+ & +£2¢2) + (§ + C2@)3.

Hence, summarizing (3.25) and the estimates (3.27)—(3.28), we get

1d 2 5 |2 1 € .
vt fo, (Val + 71Qnl + A4 (@Qr) - Qr )
d .
+J 2 (AT GQR). Qr+ VR VQ7) + 40|Vl
< O(IGRI€* + [Frll o€ + |Gl ) + (Fr, Qn)
(3.29) +C (14 €+°¢%) + (6 + C%¢) 3.

Then, adding (3.24) to (3.29), and using Lemmas 3.2-3.3 and Lemmas 3.5-3.6, we
obtain

d~
7 %o(t) + 409[|VvR 7
(3.30) <O (1+€+2€% 4 8¢%) + 65 + C(e + €7 4 2)3.
Step 2. H'-estimate. We apply the derivative 9; on (3.2) and take the L2-inner

product with 8;Qr. Again by acting 8; on (3.3) and taking the L?-inner product with
0;VR, we then have

52<8t(8iVR)7 aiVR> + 52J<at(aiQR)v 5iQR>

= _52<ai (51@0(@0 :DRr) + sDr+ BsDr - Qo + BsQo DR) , VaiVR>

T
. 52[37<8i(DR Q%+ Q2% Dp), V@ivR>
T2

_ 52%<ai(QR - [QR7 QO])» vaiVR> _52M1<6i [Qo, (QR — [QR, QO])] , VaiVR>

NES Ja
— 62<aﬂ~f . VVR7 8iVR> — 52 <8iGR, V@ivR) + 52 <81G/1%, 8iVR>
Ts
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2%@1‘[)1%, iQr) —e211(0:Qr — 3[R, Qol, % Qr) —€2<§3i%f(QR)7 8iQR>
N

NG
—eX(0iv - VQr, 0:Qr)) +*(0;F r + 0, F g, 0iQR).
N[

Ts

Via employing the analogous method in (3.26), we derive that
J+T2<—¢ <51Q0(Q0 0iDR) + B40;Dr + p50;Dr - Qo + BsQo - :Dr, VO; VR>

2

—c (0:Dr - Qf + Qf - 9:DR), V@LVR> + C||leVvr|L21eVOivR] L2

55-!-/36

(Bt
<- 52<51Q0 Qo : 0;DR) + B40:Dr + (Qo - 0;Dr + 0:Dr - Qo), 0iDR>
(

—&*{B7(8:Dr - Q} + Q% - 0:Dr), a,-DR>+a 2 ([0:Dr, Qo). VOivr) +CELFE.

T{
Direct calculation enables us to get
T+ Tz +Ts <€ <[5 Dg, Qo) 9:Qr) — £%12(0,Dr, 0,Qr)
+ 62@@ Q. Qol, D) + ClleVVil| 12|V 12
< —e212(0:Qr — [0:Qr, Qol, BiDg) + CE2F2.
For the estimates of J; and [J7, it is easy to deduce that
T+ T < — €2M1< [Qo, (9:Qr — [0:QR, Qo])], V@'VR>
— 21 (0,Qr — [0, Qo], D:Qr)
+0([[=(@r — 192, QuD| = + D@ — 12, Q0D 2 ) 1V Drv I
+C|leVVrl|2lle0:Qrll 2
< — 1|0,k — [0:28, Q]| + C(E3§7 + €).
Noticing the equality
— &1 |0:Qr — [0:QR, Qo] ||i2 — 2 112(0iQr — [0;R, Qo), 0;DR)

2
[0iQR, Qo] + 2“7231‘]312‘
M1 L2

and taking advantage of the dissipation relation (2.22), we can infer that

Ih+T+T3+Ta+Te+T7

H% 2
aiD )
+ 40D

2
= —£ ,Ul‘

< st han: 90l 2 (- “ ) o
—&%5(B5 + Bs)n - 0, D72 — 2 12(0:Qr — [0:QR, Qo], B:Dr)
— ]| 0:Qr — [0: kR, QO]H; +O(€3F% + ¢)

< —&*fi|nn : ;Dg|72 — 5]/ 0iDg72 — *B3|n - 9, Dgll7-

— 4625)|0,Dg| %2 + C(€2F2 + €)

< —4e%5||0,Dg||32 + O€ + 63,
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where 6 > 0 is small enough such that the coefficients 3;(i = 1,2,3) given by (2.39)
satisfy the relation (2.23). In addition, the terms J5 and Jy can be controlled as

Ts+ Ja < C([[eVVallia + [c0:Grlliz V0Vl
+ e0:Gll 22 0V rlle + eV Qullpzl|0:Qnll 12 )
< €+ O(|e0:Grll 125 + [€0,G |12 €F).
We next deal with the term Jg. First, we can observe that
T < = (A (0:Qn), 0:Qr) + € |Qrll 2110 Qrll 1
< - 5<%f(aiQR)7 8iQR> - €<%§1€(3¢QR)7 O;v - VQR> +CesgE
< —e(#(0.:Qr), 0:Qr ) + C(€ + €1FH),

Tg

Using Lemma 3.4, we get
d [ 1 . .
5@(%(@@1%), %iQr) = 2e(H; (0:Qr), 0:;Qr) + g<bs(ﬁ' 9;Qr + 0;Qr - )
— 2¢s? (&-QR :an(nn) + (0;,Qr : nn)ﬁ), 8iQR>

which implies
d
(3:31) T < =5 AL (OQn), Q) + 65 + C€.

Summarizing the above estimates, we get

52<6t(aiVR)7 5¢VR> + €2J<3t(3iQR)7 aiQR>

d
+ 3 (0.QR), 0,Qr) + 4260,V V.-

< C(etrGallia§? + e0:Gill2 €t + [|20,F rl ¢} )
+ 52<811FR, aZQR> + ce + 5%

Then using Lemmas 3.2-3.3 and Lemma 3.6, we obtain

d ~
&Qfl(t) + 4625||(91‘VVR||%2
(3.32) <O (1+ €+ +5¢°%) + 05 + Cle + 2€2 + 2¢)3.

Step 3. H?-estimate. Similar to Step 2, one can deduce that

54<8t(AvR), AVR> + 54J<6t(AQR)a AQR>

e3 d
+ 5 = (s (AQR). AQr) + 4=*6 |V AV 3

< c(||52AGR||L25% +|2AG |12 €F + ||52AFR||L26%)
(3.33) + eY(AFR, AQR) + C€ + 63.
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The proof of (3.33) is relegated to the appendix. Likewise, using Lemmas 3.2-3.3 and
Lemma 3.6 yields

d ~
a@g(t) + 4646||VAVRH%2
(3.34) <O 1+ €+ +8¢%) + 65 + Ofe +£2¢7 +£2¢)3.
Combining (3.30), (3.32), and (3.34), we finish the proof of Proposition 3.7. 0O

The following lemma shows that & () defined by (3.22) and €(t) defined by (1.26)
can be controlled by each other.

LEMMA 3.8. If u1 > J, then there exist constants cg > 0 and Cy > 0 such that
(3.35) co(1— (1)) E(t) < () < Co(1 + £€(2))E(1).

Proof. Tt suffices to prove the first inequality in (3.35). Let Sk = Qr+ve-VQ° +
Qr, Q° =Q +€3Qpr, and Qp = Q£ + Qﬁ with Q; € Ker.7#;, and Qﬁ € (Kers#4,)*.
Then using Proposition 2.2 we have

&(t) =5 | | (Al + 715k + (1 = DIQal* + 245 (@n) : Qr)x

+ J(ATIG(QR), Sr) — J(AG(QR), Q)
> C/R3 (IVR|2 + [SrI* + %‘QRP + é&fj(QR) : QR)dX

> €= IVQuli=) [ (1vrP +1Quf +1Quf + L5 (Qn) : Q).

3

Note that for m = 1,2, by using the Hélder inequality, we estimate

EQmHa;m(VR 3 vQE)HiQ
< Ce¥™||VR|Em + Ce¥™ 2 (VR Hn IVQRI T2 + VeI H: [ VQRIF )
<C(1+ce@)e,

which yields that
~ ~ . 1
€ (t) + &(t) > C/3 (|aiVR|2 +0:Qr|* + g%f(aiQR) 1 0;Qr
R‘
. 1
+ AV + |AQr|? + ~ 5 (AQR) : AQr )dx — do(1 +€)€.

Therefore, there exists a constant ¢y > 0 such that co(1 — e&(t))E(t) < &(t). 0

3.4. The proof Theorem 1.1. Given the initial data (v§, 9,Q5, VQ§) € H?, it
can be proved from the similar energy method in [5] that there exists a maximal time
T. > 0 and a unique solution (v, Q°) of the system (1.20)—(1.22) such that

(0:Q°,VQ°) € L>([0,T:); H*) N L*(0,Te; H?), v© € L*([0,T:); H*) N L2(0, T; H?).

From Proposition 3.7 and Lemma 3.8 we have

%@(t) FF() S C(L+E+ 2 4+ 86) 4 O 4 £2€2 + 26)F
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for any ¢ € [0,T¢]. Under the assumptions of Theorem 1.1, it follows that

€(0) < C1 (IVRoll 2 + 1Q%0

10 + 10 Q5 oll 2 + &1 27 Q)12 ) < C1 .
Let Ey = (14 C1Ep)e2°T > €(0), and
Ty, = sup{t € [0,T.] : €(t) < E}.
If we take ¢y small enough such that
= 2% 8 T4 253 27
teoBy < co, =3By +e{BI <1, C(so+eBE] +23E) <172,
then for t < T7j, there holds
d ~

€t <2001+ &).

Therefore, we can infer by means of a continuous argument that 7y = T, T' < T, and
¢(t) < E; for ¢ € [0,T]. Moreover, as co(1 — e€(t))€(t) < €(t) < By < ¢o/(4ep) and
&(t) is continuous, we know that &(t) cannot attain 1/(2¢). Otherwise £y > ¢y/(4e),

which yields a contradiction. Therefore, we have €(t) < 2E; /¢y £ Ey for t € [0,T].
This completes the proof of Theorem 1.1.

Appendix A. The energy dissipation relation.

2
LEMMA A.1. Assume that 5y, B4, 11 > 0, and 54— 4’:—51 > 0. Then for any smooth

solution (v, Q) of the inertial Qian—Sheng system (1.11)—(1.13), it holds that
d 1 -
& (L3P + n0Pax+ 7@v0)

2
— _3]Q: D — (/34 - 4‘;) IDIIZ2 — (85 + ) (D - Q. D)

(A1) oD@l - m]@ - 2@+ L2
. 7 L2 M1 9 2#1 L2'

Moreover, assume one of the following assumptions holds: (i) B5+8s = 0 if 57 = 0, (ii)
2
(Bs5 + B6)? < 8B7(Bs— £2) if B7 # 0; then the right-hand side in (A.1) is nonpositive.

4pa
Proof. First, using either of the assumptions, it is easy to obtain that

2
(ﬂ‘* B 4/}:1) DI+ (85 + 8)(D - Q : D) +26|D - QI > co[ DI

for some ¢y > 0. Now we prove (A.1). Taking the L2-inner product with Q in (1.11),
and taking the L?-inner product with v in (1.12), we get
J(Q,Q) + (Bv, V)
= —u(Q - 12,0}, Q)+ (H.Q) - ED, Q) + (V- 0" v)
—(B1Q(Q D)+ 8D+ 5D Q+ Q- D+ (D Q* +Q* D), Vv)
- 2@ - 12.QLvV) - 1 ([Q.(Q - [2. Q). Vv)

2
e T+ IIT 41V +V +VI+ VI
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For terms I and VII, we have
T4 VII == m(Q~[92,01,Q) - m([Q.(Q - [2.Q)),D + 2)
=— m(Q - 192,Q),Q) - (12,9, (Q - [2.Q)

= — Q- [2,Ql7:-
Recalling the relation S — 85 = p2, we can deduce that

HI+V+VI:—<51Q(Q:D)+B4D+B5D-Q+56Q-D,D+Q>
~ (8:(D-Q*+@*-D),D) - (20 - [2.Q], D)

- (ma@:>)+ap+ 200 .g 1 p) D)

—5)0-Q+ (ET% )0 DD+ a)
~ (6D -Q2+Q2~D>,D>—%<2Q—[ﬂ,Q],D>
=~ 41lQ : DII3> — AilIDI[72 ~ (85 + 66)(D - Q. D)

- 257“D ! Q“%Q - :U'2<Q - [Qa Q]a D>
Further, it follows that

I+ 11T+ V +VI+VII
= —B1Q : D3 — B4IIDH%2 - (&, + B6)(D - Q,D)
— 267D - Q|22 — 112(Q — [Q,Q], D) — 11 [|Q — [, Q]| 22

— ~1|Q: DJIf: — (81 - —)nDan ~ (85 + Bs)(D - Q, D)
Loy A et o ﬁD\ 2

L2’
For the second term I, noting that H(Q) = —%5 and V -v =0, we have
11 = <5Q 0Q) + (H(Q).v- VQ)

=— &}"(Q, VQ) + (H(Q),v-VQ).

d

Using the definition of the distortion stress ¢, we can infer that

IV:_/8<8Q QMZ)’UidX
oF oF
=— /}R3 (5 <5Qk ]> Qi 90r; le,ij) v;dx

oOF OF
o /]R3 (Hkl(Q)le’i " @le’i + mliQk“]) v;dx
- /]R3 (Hkl(Q)le,i + 0 F(Q, VQ))vidx

- <H(Q>7V ' VQ>

In conclusion, under the assumptions of Lemma A.1, we obtain (A.1). |
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Appendix B. The estimate of sz(Bif‘R, 3iQR). Similar arguments for
Lemma 3.6 will be applied to the estimate of higher order derivative terms. First
of all, note that (9;vg - VQo, 54 (0;Qr)) = 0; then we have

- €2<8i(vR VQ), éaijfna(QR»
< (0w V(Qo -+ @), 20,5 (Q)
+ Ce|vrll2 (10:7a(Qr)lL> + €l|0:Z (Qr)lL2)
<~ (Ovn VO, S04 (@n)) + O

< C2(|0ivrl L2 (0:76a(Qr) | L2 + £l|0:Z (Qr) | L2) + C€E
(B.1) < Ce.

Recalling (3.2), we derive from the integration by parts over x € R? that

2/ A\ o do S 21/ S
2(0iF1,0.Qn) = I 2 (0:(vk - VQ).0:Qr ) — 21 (0% - V(v - VQ),0,Qr )
+ 52J<8i(vR . V@), 8ZQR> — €2J<8i(VR . VQV), 81'\7 . VQR>
d ~ . SO
—_— 2 —_— . . . 2 . . -
< -2 = (0:va - VQ),0.Qr) +*(0:(vr - VQ),0,F )
(B.2) + C€2||ed,F |2 + C(E + €2F3),
where we have applied Lemma 3.1 and (B.1), and the following estimates:
—2J(0% - V(vr - VQ),0:Qr) < Ce2|Vrlm |0:Qrl 12 < C€,
—2J(8;(Vr - VQ), 0V - VQRr) < C2||vr|m |[VQr| 2 < C€,
and
e2J <ai(VR -VQ), aiQR>
2 A : 2 ~ 1 e
= —j€ <5’7:(VR -VQ), 3iQR> —€ <8i(VR -VQ), gaz‘% (QR)>
+22(0(vr - VQ), ~ 20D + 110,02, Qo))
+ 82<ai(VR . V@), GZFR + BifR)
< CE|\vallm (|10:Qrl > + 10: VR L2) + CE
+ Cel|vrllm lediFrl 2 + £*(0i(va - VQ), 0;F )
(B.3) < O(€+€252) + C€2 ||edF 12 + £2(0:(vR - VQ), iF ).

We proceed to deal with the term £2(9;(vg - V@), Bif‘m. Using integration by parts
yields

e <81(VR : V@),aif‘1>
= —EZJ%H@(VR V)2 — 52J<8i(vR VQ),0,v-V(Vg - vcﬁ})>

d ~
(B.4) < —EZJ&H@(VR -VQ)|3: + Cé€.
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It is obvious from integration by parts that
- 55J<81-(VR VO, (8 + V- V)i (v - VQR)>
d -
— _S 72 0hH. . . .
= I = (0:(vR - VQ). ilvr - VQn))
+ €5J<(3t +V-V)9;(vr - VQ),0i(VE - VQR)> :

So

Then by Lemma 3.1 we have
(B.5)
52<8i(VR -VQ), 3if‘2>

= —€5J%<5i(VR -VQ),0i(vR - VQR)> +S2

_ 55J<8i(vR VQ), 0% -V(vg- VQR)> n €5J<A(VR VQ),vg- vQR>
— €8J<(VR V)A(VR-VQ), Vg - VQR>

d ~
< =’ J—(0i(VvrR - VQ),0i(VR - VQr)) + S2 + C | VR m VR a2 | VQR| a1
dt
+ O VR IV QRlL: + C®|valie Vel ae | VQr] 12
d ~
S(0vr- V@), 0ivr- VQR)) + S
+ O(e€% 4 228 1 c€FE +2€3F7).

< —e2J

Thus from (B.4) and (B.5) we conclude that
52<8i(VR -VQ), 3iFR>
<27 Y 10:vr - VO 22 — 55Ji<a-(vR VO), (v - VQR)>
= dt (1 1 L dr 7 3 s Ui 1 3
(B.6) + 824 C (€ + %€ + £2€F) .

We are now in a position to estimate the term 52<8i1~“2, 8ZQR>. First, via employ-
ing integration by parts we find

€2<aiﬁ2»aiQR>
= —55J<8,»(8t +v-V)(vg-VQg), 81QR> - 55J<ai(VR -VQr), 81QR>
- €8J<5i(VR -V(vr-VQr)), 8iQR>

= *€5J£ <82-(VR -VQr), 8iQR> + €5J<ai(VR -VQRg), 81‘QR>

dt
—%J(0% - V(vr - VQr), 0iQn) =" J(0:(vi - VQR). 0.9 - VQr )
By Ba
*€5J<37:VR -VQnr, 61‘QR> *58J<31(VR V(vr - VQr)), 37:QR> :
Bs By
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Using Lemma 3.1, we have
By < Ce®||vallm2l|VQr| m 10:Qrll 2 < Ce€?,
By < Ce°|[vEl= | VQrlm | VQrlL: < Cee?,
By < C°||0ival 2 |VQrI| 12 0:Qrl 12 < Ce€F?
and
By = — €8J<3¢VR -V(vr - VQr), 3ZQR> - €8J<(VR -V)0i(vr - VQRr), 8iQR>

W.

< = Wy + C8|0ivr| w2 |[VRl a2 IV Q& i 10:Qr| 2
< — Wy + C(£2€2 + 23 37).
Similar to the estimate of (B.3), from (3.2) we get
55J<ai(VR : VQR)781'QR>
5 - 5 1 e
= —u (v VQR),0:Qr) — & (0:(vi - VQn), ~0: 45 (Qn))
+ 55<8i(VR -VQr), *%@DR + 1110 [, Qo}>
+ 55<8i(VR . VQR)78¢FR + 8Zf‘3>
< C||vRl|l a2V Qrlla (10:Qrll L2 + 10:V VR L2 + [0F k| 2)
+ Ot |[Vallu [ VQrm (10:#a(Qr)ll 22 + £l 0:2(Qr)|2)
+ €5<3z’(VR : VQR)751'1~“R>
< 55<8i(vR VQr), aifR> +C(e€? +c€F?) + Ce€|ed,Fpl 2.

Thus collecting the above estimates, we can deduce that

_ ) d ) ~
e(0F2,0.0r) < —"J = (0(vi - VQr). 0:Qr) +*(9:(Vr - VQr), 0.F )
(B.7) — Wy +C (1+ €42 4 5¢%) + C€E5.

Our next task is to calculate the term &°(9;(vg - VQR),aif‘R>. It is evident to
see from integration by parts that

€5<8i(VR . VQR),&IN?‘1> = —82 — JE5<8i(VR . VQR), 81\7 . V(VR . VQV)>
< =Sy + C°|Vallu [VQr | VEl
< -8, + Ce€?,

In addition, by integrating by parts we also have
55<311(VR : VQR)yaiﬁ2>
= <51 S0vr - VQRIE — (0 (vr - VQR). 0% - V(va- Q) )
+ W — &8(0(vi - VQr), &ivr - VQn )

— " {Bi(vr - VQR),0:(vR - V(vR - VQR)))

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 09/22/20 to 210.32.136.231. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

UNIAXIAL LIMIT OF THE QIAN-SHENG MODEL 4461

<= 0, (vr - V) + Wa o+ O v lel T QI
+ C¥|Vall3: IVQRI a2 VQE L2 + Ce IVEIF: IV QR 10iv Rl 2

< —eSJ%H@i(VR VQR)|2: + Wy + C(2€2 4 €3 + 2€3 52 + 3¢2F2).
Thus, combining the latest two bounds with (B.2) and (B.6)—(B.7), it follows that
(05, 0,08 ) < 223 S 0u(vr- Q)3 — <27 T (Ova- V@), 00x)

+C(1+ € +£2¢% +8¢°%) + (6 + C2@)3.
Appendix C. The estimate of 54(A1~7R, AQR). First note that
AOy+V-V) = (0 +¥-V)A + AV -V + 20,5 - VO;;

then from integration by parts we obtain
54<Af1, AQR> - —54J<A(8t 1 -V)(ve-VO), AQR>
d ~ ) ~ .
_ _ A7 . 4 .
=~ (AR VQ). AQr) + "I (A(vr - VQ). AQR)
—54J<(A\7 VY +20:% V) (vr - VQ), AQR>

C1

—54J<A(VR VQ), (AT -V + 20,7 - vai)QR> .

Ca

It can be estimated by Lemma 3.1 that

C1 < Ce||vrllm2||AQRr| 2 < C€,
Co < CYvrllu2l|Qrllm2 < CE.

Keeping (3.2) in mind, we can deduce that
€4J<A(VR : VQ), AQR>
4 A * 4 ~ 1 c
=€ .U1<A(VR V@), AQR> —€ <A(VR VQ), Z A, (QR)>

Cs Cy

+ 54<A(VR -VQ), *%ADR + 1 AR, Q0]> +54<A(VR -VQ),AFp + Af‘R>-

Cs
Using Lemma 3.1, we have
Cs < Ce*|[vall w2 |AQR| L2 < C€,
Cs < C*||vr| g2 || VAVER[ 2 < Ce337,
Cy= 53<aiA(VR : V@)»ai%f(QR)>
< C®|vallus (10:76:(Qr) | L2 + €ll0:Z (Qr) | 12) < C(E + €2§2).
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Then we get
e . , o d . . I
=H(AF1,AQr) <~ (AW VQ),AQr) +HA(vr - V), AFr)
(C.1) + C€3||?AF || 12 + O (€ + €3F3).
Next, we estimate the quantity *(A(vg - V@), Af‘R). Direct calculations yield that
54<A(VR V), Aﬁ1>
d ~ ~ ~
=~ AVR - VQ)I}: — I (A(va - V@) AV V(va - VQ))
- €4J<A(VR VQ),20,% - V(v - v@)>
d ~
< —E4J&||A(VR VQ) |32 + Cé€.
Using integration by parts, we derive the following bound:
€4<A(VR -VQ), Af2>
7,d A 7 3 -
= —"J (AR VQ), AR VQr)) + "I (AVR - VQ),0,(vk - VQr))

Ce

+ €7J<(8t +v-V)A(VR - VQ),A(vg - VQR)>

S3

—67J<A(VR VO), (AV -V + 20,5 - V) (VR - VQR)>

Cr
+ 610J<8iA(VR VQ), (Ve -V(VR - VQR))> .

Cs

According to Lemma 3.1, we obtain
Co < C"|[Vallusllvrll | VQrm: < C(c€7 + c€57),
Cr < CET| VR34 | VQr = < Cee?,
Cs < C||vallms [Val}: [VQr|n2 < C(2€% +£2€353),
Then we have
E4<A(VR VQ), AfR>
< T SIARVQ)s — 1T (A V). Alvr - V@)
t dt
(C.2) + S5+ C(€ + €% 4 £2€% 4 £€F? +2€3F2).
Finally, it remains to estimate e*(AF, AQr). By integration by parts, we have
54<Aﬁ2,AQR>
- —67J<A(8t +9-V)(Vr - VQr), AQR> - €7J<A(VR VQnr), AQR>
- 610J<A(VR V(v -VQr)), AQR>
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_ —57J%<A(VR -VQr),AQr) + " I(A(vVR - VQr), AR )

- e7J<Ax7 V(vR-VQr), AQR> —57J<28ﬁ VOi(vr - VQr). AQR>
D1 Do

—TI{Avr - VQr), (AV -V + 207 - VO Qr)

D3

- €7J<AVR VQr +20;vg - VO;Qr, AQR>

Dy
—=1(A(va- V(vR-VQR), AQR).

Ds

Using Lemma 3.1, we get
Dy < Ce7|[vallp2 | VQrm | AQr 2 < C2€3,
Do < C™ VRl m2IVQr 12| AQr| 12 < Cee?,
Dy < C7|[Vall w2 | VQrll 2| Qrl w2 < Ce€?,
Dy < Ce"||vellus |Qrllu2 | AQR| 2 + CT|0iv Rl 2 IV QR 2 | AQR L2
< CO(e€? 4 e€F?)
and
D5 = — I (Avi - V(va - VQr), AQr) — I (20:vr - VO(VR - VQr), AQR )
(v V)A(VR- VQr), AQr )
W3
< = Wy + C\lvrlms Vel u I VQr| 2 | AQR]| 2
< — W3+ C (282 + 2¢352).
From (3.2), we obtain
57J<A(VR ' VQR)aAQR>

= < {A(vr - VQn). AQR) ' (Alv - V@Qn), LK Qr))
D¢ D~
+<"(A(va - VQr). ~ZADg + AR, Qo))+ (A(VR - VQr), AFR)
Ds Dy
+57<A(VR : VQR),Af‘R>.
Likewise, applying Lemma 3.1 leads to
Ds < C<™|val 2 IVQrl 2 |AQr| 12 < Ce€?,
Dy < C™|[Valu2 | VQrllr2 | VAVE|| 2 < Ce€F?,
Dy < Ce™||Vrllu2 |VQr a2 | AF | 2 < Ce€||?AFR]| 2.
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Notice that if we replace vo and @ with v and AQg in (2.36), respectively, then it
follows that

~"((vi- V)AQR, Z(AQR)) < C=T| VRl |AQr|}: < C (et + eFH).
Then we have
56< (Avg -V +20,ve - VO;)Qr, A (QR)>
—=((va V)AQR, A%a(Qn))
(o

+e7(0;(Avi -V + 20ivi - VO;)Qr, 0 .Z(QR)>

— (Vi V)AQR, Z(AQr))

< Ce°Vrllm= QI + Cellvallm= I VAQR| 12 |Qr | 2
+ CeT||VRllma | QrllYs + C(c€% + c€F?)

< O(e€3 +£€F%).

Thus the following bound holds:

_ . d ) _
54<AF2, AQR> < 757J—<A(vR VQr), AQR> + 57<A(VR VQr), AF> — W,
dt
(C.3) + O (€% 4 22 4 c€F? + 2€3F7) + Ce€l|2AFg| 2.
We next deal with the term e”(A(vg - VQg), AFg). It is easy to see that
&7 <A(VR VQr), Af‘1> — S, 67J<A(VR VQr), (AV - V + 20, - VO;) (v - v@)>
< =83+ CeT|[VRll7IVQr i
~S; + Ce€s.
By a straightforward computation, one checks that

e’ <A(VR -VQr), Aﬁ2>

- 10(2]d1f||A(sz VQnr)|l7- _510J<A(VR‘VQR)7A(VR'VQR)>

Dio

—610J<A(VR VQR), (AV -V + 20,5 - V) (VR VQR)>

D11
- 613J<A(VR VQr), A(vr - V(vg - VQR))> .

D12

Similarly, by Lemma 3.1 we have
Dyp = W3 — €1OJ<A(VR “VQRr),(Avg -V +20;vg - vai)QR>

< Ws + C'0|val m2[VQr| m2 |V el s || Qrll
< W; + O (%€ + 2¢1F1),
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Dll S OElOHVR”iIzHVQRH%IZ S 052@2,
Dyy = —613J<A(VR VQRr), (Avg -V +20;vR - V0;) (VR - VQR)>
< eB|VR2: IVQRIZ: [Vallas < C(e1€? +2€2F2).

Thus we get

= J d
E7<A(VR : VQR)a AFR> < _Eloia”A(VR . VQR)”%z - Sg + W3
(C4) + C(EG% 4 e2@2 p et 4 2B 4 53623%),

In conclusion, putting together these estimates (C.1)—(C.4) and discarding the can-
cellation terms, we obtain the following estimate:

4 _ 477 . g 2 _ 4 _ . £
€ <AFR,AQR> < et S AWR - VQ)Fe — e Jdt<A(vR VO ),AQR>

+C(1+E+e°¢ +%¢%) + (0 + CE*€)3.

Appendix D. Proof of (3.33). We first apply the derivative operator A on
(3.2), then multiply AQp and integrate the resulting identity on R? with respect to x.
Again applying the operator A on (3.3) and taking the L-inner product with Avg
enable us to derive the following equality:

=(0(AvR), Avi) +=47(0,(AQR), AQR)

= - €4<A(51Q0(Q0 :Dr)+ BsDr+ BsDr - Qo + BsQo - DR) ; VAVR>

K1
~'8:(ADr- QF + Q3 - Dr), VAva)
K2
— 2 (AQr — (98, Qo). VAVR) ~<* 1 (A[Qo. (Qr — [, Qo)) VAVR )
K3 Ka

- 54<A{/ - VVR + 20, - VO,vR, AvR> - 54<AGR, VAVR> + 54<AG’R, AvR>

Ks
— 54%<ADR; AQR> —54/~L1<AQR — A[Q2r, Qo] AQR>2L2 _€4<§A‘%§;(QR)7 AQR>
Ko Kr Ks

- a4<m VO +20:% - VO,OR, AQR> +»34<AFR + AFp, AQR>.

Ko

The terms on the right-hand sides can be estimated as follows. By the analysis for
the construction of the terms K and Ko, we have

Ki+ K <— E4<51Q0(Q0 : ADR) + B4ADRr 4 B5ADR - Qo + B6Qo - ADRg, VAVR>

- a4<67(ADR Q%+ Qb - ADg), VAVR> + Ce*Vvr g1 | VAVER] 12
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< - E4<51Q0(Q0 : ADR) + B4ADRr + Bs ;ﬂﬁ (Qo - ADg + ADg - Qo), ADR>
- s4<57(ADR Q2+ Q2 ADp), ADR> + 54%<[ADR, Qol, VAVR> +oerge.

K1
It can be easy to observe that
K} + K + Ko < 22 ([ADR, Qo AR — £'12(AD R, AQR)
+ ' 2 (A0, Qo) ADR) + C[2VV | i1 [V AV 12
< —e' 12 (AQR — [AQR, Qo], ADR) + C€2 52
The terms K4 and K7 can be estimated as
Ky+ K7 < — €4M1<[Q07 (AQr — [AQR, Qo])], VAVR>
— i (AQr — [AQR. Qo] AQr)
+C(elleQrllan + 129V Rllm ) 2V AVA] 12
+ C|e2Vvr| a1 ||e2AQR]| L2
< — &' ||AQR — [ARR, Qo]|[2, + C (€352 + €).
Combining with the equality
— ' || AQR — [AQp, QO]Hiz — ' 12(AQR — [AQR, Qo], ADR)
= —c' 11 ||AQR — [AQR, Qo] + %ADRH; + i|ADR|%2,
and by using the dissipation relation (2.22), we have the following estimate:
Ki+ Ko+ Ks+Ks+ Ks + Kr

s(Ps + 2
< —=455% nn s ADg - < (54 A the) 96732> |ADxI;

2 .
—et (8(55 + B6) + 35782> [n-ADgl|j2: — e*ua(AQr — [AQR, Qo], ADR)
— || AQR — (AR, Qol|[2. + C(E3F? + €)
< —eBi||nn : ADg|2. — 35| ADR||2: — e*Bs|n - ADg|2.
— 4¢%5| ADg |22 + C (€237 + @)
< —4£*§|VAvVE|2: + C€ + 63,

where § > 0 is small enough, such that the coefficients f; (i =1,2,3) given by (2.39)
satisfy the relation (2.23). As for the estimates of the terms K5 and Ko, it is easy to
obtain

Ks + Ko < C(IIE29vRll 1 [2Avl 2 + [*AGR |12 |2V Avil 12
+ 2 AGH| 2 |2 Ava] 2 + €2V Qrllm | AQx] 12

<ce+C (He?AGRHng% + ||52AG/R||L293%) .
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Similar to the derivation of (3.31), the term Kg can be handled as

3

e’ d
Ks < —?&<%ﬂﬁs(AQR)v AQRr) + 65 + C¢€.

As a consequence, from the above estimates, we can conclude that
54<8t(AvR), AvR> + 54J<8t(AQR), AQR>
e’ d = 4 2
+ = (I (AQR), AQR) + 4e76||VAVE]|7.
< c(us?AGRung% +||E2AG |12 € + ||52AFR||LZG%)
+ Y (AFR, AQR) + C€ + 63.
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