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ABSTRACT

Bilayer membranes self-assembled from amphiphilic molecules are ubiquitous in biological and soft matter systems. The elastic properties
of bilayer membranes are essential in determining the shape and structure of bilayers. A novel method to calculate the elastic moduli of the
self-assembled bilayers within the framework of the self-consistent field theory is developed based on an asymptotic expansion of the order
parameters in terms of the bilayer curvature. In particular, the asymptotic expansion method is used to derive analytic expressions of the
elastic moduli, which allows us to design more efficient numerical schemes. The efficiency of the proposed method is illustrated by a model

system composed of flexible amphiphilic chains dissolved in hydrophilic polymeric solvents.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009734

I. INTRODUCTION

The self-assembly of amphiphilic molecules to form cellu-
lar membranes is a fundamental process in biological systems.
At the same time, self-assembled bilayer membranes and poly-
mersomes"” from amphiphilic macromolecules are abundant in
soft matter systems. In particular, the self-assembled bilayers from
amphiphilic polymers such as block copolymers could act as mimet-
ics to biological membranes. Because there are virtually no lim-
its to the combinations of monomers, polymeric hybrid materials
show great promise for applications in biomedicine and biotech-
nology.” Phenomenologically, a membrane could be modeled as
a two-dimensional surface S, whose mechanical properties could
be used to understand the formation and stability of membrane
morphologies. When the curvature of the membrane is small, its
deformation energy could be described by Helfrich’s linear elasticity
theory.]“: However, when the curvature is large, higher-order
contributions to the membrane’s free energy become significant.

Specifically, the elastic energy includes fourth-order contributions
of a closed membrane and is given by

F= f[y + 2xm(M — co)2 + kGG + ki M* + 1, M*G + K3G2]dA, (1)
s

where M = (c + ¢/)/2 and G = ¢’ are the local mean and Gaussian
curvatures of a deformed bilayer, respectively (c and ¢’ are the two
principal curvatures). The linear elastic energy of a bilayer is spec-
ified by the elastic constants, y, co, km, and kg, corresponding to
the surface tension, spontaneous curvature, bending modulus, and
Gaussian modulus, respectively. In addition, «i, 3, and «3 are the
fourth-order curvature moduli. It should be noted that the sponta-
neous curvature cy is zero and the third-order terms are not included
in Eq. (1) due to the symmetry of the bilayers. Usually, the expansion
of free energy is truncated to second-order in curvatures, which is
the so-called Helfrich model.*” In contrast, the fourth-order terms
are less considered since they are relevant to each other, and in turn,
it is more difficult to determine their coefficients, x1, k2,and «3.
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In the last few decades, a number of experimental techniques,”’
simulation methods,”'" and theoretical methods'>'* have been
developed to obtain the elastic constants of bilayer membranes. The-
oretically, the elastic constants can be obtained by studying bilay-
ers in different geometries (e.g., planes, cylinders, and spheres) and
then comparing the free energy of membranes with the correspond-
ing expressions derived from elasticity theories."” The elastic con-
stants could then be extracted by fitting the theoretical expressions
to the computed free energy curves. This approach can be imple-
mented quite naturally in theoretical studies. However, this numeri-
cal approach requires an accurate computation of the free energy of
curved membranes.

Among the different theoretical frameworks developed for
amphiphilic molecules, the self-consistent field theory (SCFT) pro-
vides a versatile platform for the study of the self-assembled bilayer
membranes. Several studies using the SCFT have been carried out
to study the elastic properties of bilayers,"”'”"'” where the polymers
are assumed to be flexible, and the Gaussian polymer model is used
to describe the blocks. Using similar theoretical approaches, Ref. 18
compared the elastic properties between the triblock membranes
and the diblock membranes, and Ref. 19 extended this approach
to the semiflexible chain model described by the wormlike-chain
to study the elastic properties of semiflexible bilayers. These pre-
vious studies firmly established that the SCFT provides a flexible
and accurate framework for the study of inhomogeneous poly-
meric systems, including different micelle structures”””' and bilayer
membranes.'” "

In previous studies,’” '” the excess free energy of the bilayer
membrane in different geometries, such as infinite planar, cylindri-
cal and spherical bilayers with different curvatures, was computed.
The excess free energy of the three geometries, which is denoted
by F°, F¢, and F® for the planar, cylindrical, and spherical bilay-
ers, respectively, was then used to extract the elastic constants of
the membranes. Specifically, the expressions of the free energy of
the membranes with different shapes are obtained from the Hel-
frich model [Eq. (1)]. In particular, the free energies, FC and FS,
are polynomials with respect to the principal curvature c, where the
coefficients are combinations of the elastic constants. As a result, the
elastic moduli, such as xy and xg, could be obtained by quadratic
polynomial fitting F© and F° as functions of c. However, there are
two drawbacks of this strategy: (i) the fitting range of ¢ € (0, ¢max)
should be carefully chosen since higher-order energies are not neg-
ligible when c is large and (ii) accurate fitting requires the compu-
tation of the bilayer energy as a function of curvature, which, in
turn, requires solving the self-consistent field (SCF) equations many
times. In order to overcome these drawbacks, new methods to obtain
elastic moduli are desirable.

In this paper, we propose an asymptotic expansion method
within the SCFT framework to calculate the elastic moduli of the
self-assembled bilayer membranes. It should be noted that general-
ization of the expansion method to other free energy functionals is
straightforward. Similar expansions had been derived for free energy
functionals based on the packing constraints,”” Ginzburg-Landau
model,”’ and van der Waals ‘[heory.l1 Specifically, we treat the cur-
vature of cylindrical and spherical bilayers as a small parameter and
carry out an asymptotic expansion of the free energy in terms of the
curvature. Analytical expressions of the free energy at each order
are obtained, so they could be computed separately. In particular,
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computation of the elastic moduli only requires the solution of a
few SCF equations. Besides, more accurate numerical schemes could
be developed to solve the SCF equations. Numerically, the elastic
moduli obtained by using the asymptotic expansion method are
consistent with those obtained by the fitting method. From the the-
oretical viewpoint, the asymptotic expansion results directly relate
the elastic moduli to the equilibrium distribution of the amphiphilic
molecules, thus providing an understanding of the dependence of
elastic properties on molecular details.

The remainder of this paper is organized as follows: Section 11
describes the SCFT model of bilayer membranes and the geometric
constraints used in this study. Section I1I gives the asymptotic expan-
sion method where the corresponding modified diffusion equations
(MDEs) and SCF equations are given. Section I'V gives the numerical
method for solving the whole SCFT model. Our results on the elas-
tic properties of the membranes are presented in Sec. V, including
the influence of microscopic parameters of the flexible-flexible sys-
tem on the elastic properties. Finally, Sec. VI concludes with a brief
summary.

Il. THEORETICAL MODEL AND GEOMETRY
CONSTRAINTS

A. Molecular model

The molecular model used in this study is a binary mixture
of AB-diblock copolymers and A-homopolymers. This is a generic
model in which the amphiphilic molecules are modeled by the
AB-diblock copolymers, whereas the amphiphilic solvent molecules
are modeled by the A-homopolymers. Furthermore, the polymeric
species are modeled as flexible Gaussian chains. We assume that
the A/AB blend is incompressible, and both monomers (A and B)
have the same monomeric density po (or the hardcore volume per
monomer is py'). The diblock copolymers and homopolymers are
characterized by their degrees of polymerization, N and N, = f;N,
respectively. The volume fraction of the A- and B-blocks in the
copolymers is denoted by fa and fp = 1 — fa, respectively. The

radius of gyration of A and B blocks is denoted by R? = \/faNE/6
and Rg =4/ fBNl§/6, where [, and [, are the statistical segment

length of A and B monomers, respectively. We set R, := \/NI2/6
as the unit spatial length in nondimensionalization and define
a =1la/ls =1 as a constant and b = [,/], as the geometrical parame-
ter describing the conformational asymmetry of the A and B blocks.
The interaction between the A and B monomers is described by a
Flory-Huggins parameter”’ y. Finally, the chemical potential of the
copolymers ., or the corresponding activity z. = exp(uc), is used to
control the average concentration of the diblock copolymers in the
blends.

Within the SCFT framework formulated in the grand canonical
ensemble, *"** the free energy of the binary mixture is given by

kBNiTJ; = f dr[yN¢a(r)¢s(r) — wa(r)da(r) — wp(r)¢ds(r)
=&(r)(pa(r) + ¢5(r) = 1) + YGe(r — 1) (¢a(r) - ¢5(r))]

= z:Qc — Qs (2)
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where ¢q(r) and wa(r) are the local concentration and the mean field
of the a-type monomers (« = A, B), respectively. The local pressure
&(r) is a Lagrange multiplier introduced to enforce incompressibility
of the system. A second Lagrange multiplier, v, is used to ensure the
constraints for stabilizing the bilayer in different geometries, where
a sharp Gaussian function, G¢(r — r1), is used to ensure that the
y field only operates near the interface at a prescribed position r;.
The last two terms in Eq. (2) are the contributions from the single-
chain partition functions of the two polymers, Q. and Q. Note that,
in previous studies,'””” a constraint term, 8(r — r1)(¢a(r) — ¢s(r)),
has been included in the free energy functional to stabilize a bilayer
in different geometries. In this study, we replace the delta func-
tion &(r) by the Gaussian function, resulting in the constraint term,
Ge(r — r1)(¢a(r) — ¢5(r)), in Eq. (2). This modification could make
numerical schedules more robust and have negligible effects on the
numerical results.

The fundamental quantities to be calculated in the SCFT are the
probability distribution functions (or the propagators) of the poly-
mers, i.e.,qi’,(r,s) for the A-homopolymers and g (r,s), g5 (1, s) for
the AB-diblock copolymers. These propagators are obtained as solu-
tions of the modified diffusion equations (MDEs)” in the presence
of the mean fields (w4 and wp),

%qﬁ(r,s) = (azvf - wA(r))qZ(r,s), s€(0,f,), 3)

LG9 = (@ e, se0f) @

%qﬁ(r,s) = (b’Vi - ws(r))qs (r,s), s e (0,f) (5)

with the initial value conditions,

44 (1,0) = g4 (1,0) = g5 (r,0) = 1,
ga(1,0) = g5 (r,f3),

q5(r,0) = qa(r.fa).

In terms of the chain propagators, the single-chain partition func-
tions are given by

Q= [ drgi(rfo). ©)

Q= [ drgi(nfi). @)

Furthermore, the local concentrations of the A and B monomers are
obtained from the propagators as

6a () = g+ 6 = [ dsah(r )i (e -9

fa
vz [T dpraimhi-o,  ®

b
op(r) =z fo dsqg (r, s)qE(r,fB -s). 9)

The rest of the SCF equations concerning the mean fields to the local
concentrations are
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FIG. 1. Profile of the bilayer structure. The computation domain is truncated to
make sure that the order near the boundary is close to the bulk phase.

wa(r) = YN¢p(r) - §(r) + yGe(r —11), (10)
wp(r) = YN$a(r) = &(r) - yGe(r - 1), (11)
¢a(r) +¢p(r) =1, (12)

[ dxGtr = 11) (9 (6) - pu() =0. (13)

The set of Egs. (2)-(13) form the self-consistent theory of the model.
It should be noted that the SCF equations are highly nonlinear and
nonlocal; thus, they could have many solutions. In this study, we
will focus on the solutions corresponding to a bilayer whose profile
is shown in Fig. 1. Furthermore, we are interested in the free energy
of a system containing a bilayer membrane compared to that of the
homogeneous bulk phase .%,, which can be computed analytically
using the constant solution of the SCF equations.'”** The free energy
difference (.# — Fp,i ) is proportional to the area of the membrane
A; therefore, we can define an excess free energy density by

_ N(F - Fpur)

Fex = 14
kBTpoA ( )

The corresponding free energy density for the bulk phase is given by

Nﬂu 1 1- iz
bk _ —(ln(%) + Poulk — 1) + NS5 Bouik — Poutis
(15)

ksTpoV ~ f,
where the bulk copolymer concentration ¢, is determined by the
following equation:

fbulk =

1 1 — dpuix
c=Indp — = In
U Boulk 7 ( 7

Equation (16) for ¢y, has at least one solution. In cases where it has
more than one solution, the one with the lowest free energy density
is chosen as the bulk phase.

) + xNfB(1 = 2fpPpun)- (16)

B. Geometric constraints and the polynomial
fitting method

In order to extract the elastic constants, such as the bending
modulus and Gaussian modulus, of the self-assembled bilayers, one
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could calculate the excess free energy of a bilayer membrane in three
geometries:' """ an infinite planar bilayer, a cylindrical bilayer with
a radius r (or a mean curvature M = ¢/2 = 1/2r), which is extended
to infinity in the cylindrical direction, and a spherical bilayer with a
radius r (or a mean curvature M = ¢ = 1/r). In the cylindrical and
spherical geometries, the constraint yGe(r — r1) in Eq. (2) is applied
to the outer monolayer where r, is set to control the curvature of the
self-assembled bilayer. One advantage of those geometries is that the
simulation of bilayers with these geometries can be reduced to one-
dimensional problems in their corresponding coordinate systems.
Specifically, the MDEs (3)-(5) in one-dimensional planar, cylindri-
cal, and spherical coordinate systems could be written in a unified
form,

B »# nd
55d(rs) = “z(ﬁ " %E)Q(ns) —w(nq(rs), (7

where n =0, 1, and 2 for planar, cylindrical, and spherical coordinate
systems, respectively.

The next step of the calculation is to compare the excess free
energies, F, FC(c), and FS(C), of the bilayers with the expressions of
the Helfrich model in the corresponding geometries,

F = y+ 2KMC3,
K
Fc(c) = F° ~ 2ipcoc + 7M62 + Bedt,

Fs(c) = F° — duprcoc + (2xm + Kc)c2 + Bgc?,

where the parameters B¢ := x1/16 and Bs := k1 + k> + k3 are combina-
tions of the fourth-order moduli. In previous studies,” " the bend-
ing modulus xy;, Gaussian modulus xg, and higher order moduli B¢
and Bg are obtained by a polynomial fitting method. In detail, a series
of curvatures {c;} are chosen and then the SCF equations are solved
for each curvature ¢; to get the energies {F%(c))} and {F3(c;)}. After
that, the polynomial fitting method is used to obtain the polynomial
coefficients, which, in turn, gives the elastic moduli.

While the polynomial fitting method is fine for determining
the second-order moduli, it becomes inaccurate when trying to
extract higher-order moduli. Specifically, during the polynomial fit-
ting process, two factors will affect the results. The first factor is
the size of the set {c;}. Since the energies, F°(¢;) and F5(c;), are
numerically calculated, which must contain inaccuracies, one needs
to choose a large number of ¢; (for example, 50 different ¢;) to
make sure that the fitted higher-order moduli are accurate. This, in
turn, requires that one must solve the SCF equations many times
(for example, 2 x 50 times). The second factor is in the range of
{ci} © (0, cmax). The numerical errors prevent one from choosing
small ¢imax since that is where the energies are very close. However,
if Cmax is large, the higher-order terms are not negligible. There-
fore, it is not straightforward to choose cjax and the number of
¢i to make the fitting results reasonable. Those drawbacks of the
polynomial fitting method motivated us to develop new schemes
to obtain the elastic moduli, especially the higher-order moduli. In
Sec. 111, we propose a new scheme, based on the asymptotic expan-
sion theory, which not only overcomes the drawbacks of the fit-
ting method but also gives the polynomial coefficients directly and
efficiently.
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I1l. ASYMPTOTIC EXPANSION METHOD

Since the curvature of cylindrical and spherical bilayers is
assumed to be small, we can regard it as a small parameter for the
. . . . 28,29 . .
application of the asymptotic expansion theory. In this section,
we show that analytic expressions of the MDE, SCF equations, and

free energy at each order could be obtained separately.

A. MDE at each order

When the curvature ¢ is small, i.e., r is large, we can perform
asymptotic expansions of the MDE with respect to the bilayer cur-
vature. The expansion starts from the coordinate transformation,
r=x- % With this transformation, we can formally write down

the functions w(r), q(r, s), and % as expansions in terms of the
curvature ¢,

w(r) = wo(x) + cwi (x) + czwz(x) +oen v

q(r,5) = go(,8) + cq1 (%, 5) + 2 (%,5) + -+,

1 1 c

2, .23
=—0= =Cc—XCHXC + e
r x+1/c l+cx

Substitute these expressions in the MDE [Eq. (17)], we obtain
(a’V* = w(1)q(r.s)

2
= (az&r + %Br - wo(x) — cw1 (x) = Cw(x) +)

% (q0(x,5) + g (5) + g2 (,5) + )

= (0% — wo)qo + [(a° 0% — wo)qu + (na’dy — w1)qoc
+ [(“Zaix —wo)q2 + (nd*Ox — 1)
+ (—na’xd, - wz)qo]cz $oe

Comparing the terms with different order of ¢, we can write down
the MDE at each order as

05qi(x,s) = Zqui_j(x, s), i=0,1,2,..., (18)
=0

where L; are derivative operators defined by
Ly = aza,%x -wo, Lj= naz(—x)jflc’)x -—wj, j>1 (19)
In particular, the MDEs up to the second-order in c are given by
Bsqo = (0% — wo) o,
Oy = (a° 0%, — wo)q1 + (na’ O — w1)qo,

qs = (a° 0% — wo)qa + (na*dy — w1)q1 + (—na’x0x — w2)qo.

B. SCF equations at each order

Operating the MDE on the propagators and employing the
following initial conditions:
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i (%,0) = qai(x,0) = gi(x,0) = dos,
44i(%,0) = qgi(x, f3),
35i(%,0) = qui(x.fa), i=0,1,2,...,

we can get the expansion for the propagators ¢, g%, and g3,

gi(xs) = D qhi(xs),

i>0

gi(x.5) = Y- gai(xs),

>0

qs (%) = Zciqf;,v(x,s).

i>0

Here, d;; is the Kronecker delta function, i.e., §o; = 1 for i = 0 and
8oi = 0 for i > 1. These expressions can then be used to calculate the
order parameters expansion at each order,

¢ (x) = ZO Phi(x)
= ZO /‘fh dquA](x,s)qA i—j (% fr = 5), (20)
$5(x) = 3 gu(x)

i>0

_ Z cz f ds Z(:) qgj(x,s)qf;),-,j(x,fA -s), (21)
i=

i>0

$5(x) = > c'¢mi(x)

i>0

=y 2 f ds 2 5 (%, 5) qp,i—j (%, f5 — 5). (22)
=

i>0

In addition, ¢ai(x) = ¢%;(x) + ¢%(x).

The expansion of the SCF equations can be carried out sim-
ilarly. In the cylindrical and spherical geometries, the constraint
YGe(r — r1) is applied to the outer monolayer only. It allows the
bilayer to optimize its thickness or position h and indirectly set the
curvature radius of the membrane. The constraint position r; can be
characterized by two quantities: one is the curvature radius 1 and
another is the relative constraint position h := r; — %, which is a
function of c. Let h = Zizocihi, then using the Taylor expansion, we
have

(ho *)
Ge(r—r11) =Ge(x—h) =) ~—— G (x = ho)

k>0

_ Z ( Zz>lCh) G(k)(X*h())
k>0

=: Z CiGg,i(x - ho),

i>0
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where the leading terms are

GE,()(X* h()) = Gg(x - ho),

Ge1(x = ho) = =G (x - hy),

Gea(x—ho) = —1aGV (x = hy) + -+ G<2)(x ho)s

Ges(x = ho) = —h3G (x = o) + hiha G (x — ho)

HD)
_EG‘S (x = ho),

Gs,4(x - hO) = —h4G§1)(x - ho) +

2
Zhlh;+ h; ng) (X _ ho)

2 4
- Lghzcg”(x_ o) + %Gg‘”(x— o).

Considering the expansion of &(r) = SisocEi(x), V= Zizociv/i and
then comparing the SCF equations (10)-(13) at each order, we get
the SCF equations at each order,

wai(x) = XNesi(x) - fz(X)+Z%Gsz—J(x ho),  (23)
=

(%) = NGas() () - X wiGuri (= ho), (4)

j=0

$ai(x) + ¢gi(x) = dois (25)

J 3 ) 3210 e (5) 13 = 0. 29
j=0 =0

Finally, the SCF equations are closed after we specify a crite-
rion for the measurement of the bilayer curvature c. For a curved
bilayer with a finite thickness, the definition of the interface position
involves a certain degree of arbitrariness. In previous works,'” " the
bilayer interface, r, is defined to be the midpoint of the two positions
where A- and B-segment concentrations are equal, i.e., ¢4 = ¢p. In
this paper, for mathematical simplicity, we define the curvature of
cylindrical and spherical bilayers as ¢, which satisfies the following

equation:
f(|r| - %)P(l‘)df = fom r"(r— %)p(r)dr =0, (27)

where p(r) is regarded as a probability density function whose expec-
tation is 1/c. The choice of p(r) is not unique. In this paper, we chose
p(r) o< ¢p(r) — fBPpui. It is worth noting that the definition of the
interface affects the energy curve FC(c) and F%(c). We will discuss
this effect in Sec. V A. Expanding p(r) as p(r) = Zizocipi(x), we have
the following constraints:

Iji=Y" /w xpj(x)pij(x)dx =0, i=0,1,2,..., (28)
j0 I

where po(x) = 1,p1(x) = nx, pa(x) = @xz,pbz(x) =0.
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In summary, the self-consistent field equations at ith order con-
tains (23)-(26) and (28). It is worth noting that there is no need to
apply a constraint to stabilize the planar bilayers; hence, we have
Yo = 0. Consequently, /o can be directly determined by Eq. (26), i.e.,
2% Geo(x = ho)(pao(x) — ¢po(x))dx = 0. Furthermore, the value
of h; for i > 1 can be directly determined by (26) once the SCF equa-
tions at jth order, j < i, are solved. The numerical method to solve
the SCF equations will be introduced in Sec. I'V.

C. Asymptotic expansion of the free energy

Once we solved the SCF equations at each order, the free energy
of a bilayer can be calculated directly. Denote the semi-local excess
energy density by f(r),

f(r) Zfbilayer(r) _fbulk = thﬁ(x);

i>0

where f;(x) can be expressed as
ORI ILONCTE
—0
= WAk (%) Pai-k(x) — wpx(x)Ppik(x)
= §(5) (Pai-k(x) + B,k (x) = So,i-1) ]
~ zegai(%.fa) = qai (% fi) = Soifoutis

then the excess energy density Fex becomes
Fex = % fvf(r)drz c [;w "f(r)dr
:/7 (1+cx)"(fo(x) + cfi (x) + o) +--)dx
-1/c

-y [T dx Y py(2)fics(x) =t 3 CE.
j=0

i>0 i>0

Here, the integration domain is changed from (-1/c, c0) to (o0, c0)
since c is small, the energy density decays very fast, and this modi-
fication only introduces negligible errors. In particular, we have the
first three terms from the free energy expansion,

Fy = [:fo(x)dx,

F = [:(ﬁ(x)+nxﬁ)(x))dx,

n(n

F, = [: (fz(x) + nxfi (x) + %l)xzfo(x))dx

Denote the free energies of cylindrical and spherical bilayers
(corresponding to = 1 and 1 = 2, respectively) at ith order as Ff and
Fis , respectively, then the elastic moduli can be directly calculated,
Bc=F{, Bs=F, (29)

kv = 2FS, kg =Fs — 4F§,

co = —FIC/(ZKM) = —Ff/(4KM), y=Fo— ZKMcg. (30)

ARTICLE scitation.org/journalljcp

It is worth noting that F° = F§ = F; since they all correspond to the
same SCF system related to the planar bilayers and 2F{ = F; since
the corresponding SCF systems only have a difference on the value
n. However, there are no simple relations between the free ener-
gies at higher-orders, F;, i > 2, because of nonlinearity. In addition,
since we are considering bilayers consisting of two identical leaflets,
the odd-order free energies are expected to be zeros, implying the
spontaneous curvature ¢y = 0, due to the symmetry of the bilay-
ers. Although the introduced constraint term G¢(r — r;) will break
this symmetry, its influence is limited, i.e., the odd-order energies F;
are small and negligible (less than 107> for the numerical results in
Sec. V).

IV. NUMERICAL METHOD

Schematics of the numerical procedure to solve the SCF equa-
tions are shown in Fig. 2. For a given set of control parameters, the
SCF equations are solved sequentially to obtain the structure and
free energy of the bilayers at each order. Numerically, the SCF equa-
tions can be solved by iteration (Sec. IV B) during which one must
compute the propagators by solving the modified diffusion equa-
tions (Sec. IV A) and store those propagators for more higher-order
calculations.

Specifically, the computation domain is one-dimensional and
limited to x € [-L, L], where the size L is determined by ensuring
that the concentration profiles at the boundaries approach to the
values of the bulk phase. We determine the length L via the decay
length of ¢} (x) as shown in Fig. 1, where Ly denotes the growth
length, L, is the half-value length, and L, is the decay length at
which the profile approaches its bulk value. The computation box
size is then L = Lo + L,, which is large enough such that L, > AL,
where A = 4.5 is chosen for our numerical examples. Besides, the
MDEs are supplemented with reflecting boundary conditions. The
number of spatial grid points is changed over 500-1000, and the
number of time grid points is changed over 800-2000 under dif-
ferent model parameters to make sure that the free energy is con-
verged in the order of 107° and the fields are self-consistent with
L*-norm error [the L*-norm of the difference between the left-hand
and right-hand sides of Eqs. (23)—(28)] less than 10™%. We noted that
the calculated elastic moduli (up to four orders) are not sensitive to
the specific choices of the constraint width e. The variances are less
than 107* for & changing from 0 Q to 0.5 Q, where Q is the thick-
ness of the bilayers. Therefore, in most of the calculations, we fix
e=0.25Q.

A. Solve the MDEs

The MDEs [Eq. (18)] to be solved for the asymptotic expansion
method are in the following generic form:

éq(x s) = aza—zq(x s) — w(x)q(x,s) + g(x,s) (31)
Os 7 ox2 17 ’ e

1(50) = (). 2q(+L.9) =0, 62)

where g(x, s) is a given source term. Since the fields and order-
parameters change quickly near the bilayer interface and slowly near
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the domain boundary, non-uniform grids for x are used to capture
the details of the interfaces. The employed non-uniform grids cor-
respond to a given transformation x = #(£). With a proper change in
variables, the MDE is changed but has the same form as Eq. (31),
except with variable coefficients and the source term. In fact, let

t(+L) = +L, t"(+L) = 0 and q(x,s) = \/t'({)u(&,s), we have

() = () pu(69) - o(OU(ED +EE) (I

u(£,0) = 1 (6), %u(iL,s) -0, (34)

where the new variables are

2

TO " mEy

o(6) = olu(©) - 5y (1O - 37(0)),

t(§)
(&)

8(65) = g(t(§),5).

A valid transformation t(£) is
HE) = E+ kL(% sin(2nE/L) - % cos(s/L) sin(mz/L)),

where &, corresponds to the position of the bilayer interface, and k is
a small positive number, such that k < 1/(2 + 4 cos*(néy/L)), which

1
I
1
I
1
]
I
:
I
! Y Solve the SCF for i = 4 —|
I
I
I
I
I
1
I
I
I

controls the non-uniform degree of the grid. A larger k results in a
larger non-uniform degree, which means that more nodes are near
the interface.

Using the Strang split method,” one can obtain the following
two-order semi-discrete scheme for the differential equation (33):

W3 (E) = exp(=0(§) 5)[u" () + F (38 (& 5m) +&(&5min))],

u* (&) = exp(~a” () Asd})u™ 1 (E),

W™ (8) = exp(-@(8) 5)u" (§) + F (@(& sm) + 38(& 5me)),
where u"(¢) is the numerical approximation of u(&, sm), sm
= mAs, and u” () can be solved by the well-known Crank-Nicolson
scheme.”’

It should be noted that the differential equations (31) and (33)
could also be solved by using higher-order numerical schemes such
as the compact finite-difference schemes.” In particular, if the par-
tial derivative operators about x or & are treated by fourth-order
compact finite-difference schemes, and the s dependence is dealt
with by fourth-order Runge-Kutta methods,” then one could obtain
fourth-order schemes finally.

B. Solve the SCF equations

Generally, the SCFT equations could be solved by using the
Picard-type iteration,”””" where the fields, w,,; and wg,;, are updated
according to Egs. (23) and (24), provided the Lagrange fields &;
and y; are given. In detail, with old fields w34(x), w34(x) [and its
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corresponding concentrations ¢%4%(x),$3%(x)] in hand, one can
update the fields by the iteration,

Wit (%) = (1 - Q)0 (x)
+ a| )NGE (x) = §(x) + 3 9 Geij(x — ho) |
j=0

wpi (x) = (1- oc)w%{?(x)

+ af xNGG (x) = E"(x) = 3 9 Geioj(x — ho)
j=0

where « is an update ratio that was chosen as « = 0.01 in our calcula-
tions. The Lagrange fields £ (x) and y?™ are given by, omitted the
superscript,

&i(x) = 3 (AN ($ai(x) + dpi(x)) = (wai(x) + wpi(x)))
— YN (¢ai(x) + ¢i(x) — oi)s

1

Vi = 2 [ xGe(x — ho)dx

x [[ x(wai(x) — wgi(x) — YN (¢pi(x) — dai(x))

i—1
23 YyGuiej(x — o) )dx - ByNIy |,
j=0

where y, 8 are numerical parameters, which are chosen as y = 0.6,
B = 0.4. Note that the term Iy; appeared in the iteration since the
constraint (28) corresponds to the Lagrange multiplier y;.

Although the Picard-type iteration is robust, it converges
slowly. Accelerated methods such as the Anderson iteration™ for the
general fixed point problem could be used to solve the SCF equa-
tions,”® resulting in the Anderson mixing technique. We start the
Anderson iteration after the fields have been updated by Picard-
type, with iterations reaching the point where the L*-error of the SCF
equations is less than 0.1.

V. RESULTS AND DISCUSSION

For simplicity, we focus on tensionless bilayer membranes
where the activity or the chemical potential of the copolymers, z,
is adjusted such that the excess free energy of a planar bilayer is
zero, i.e., F° = Y+ ZKMcé = 0, which is equivalent to y = 0 since the
spontaneous curvature ¢o is zero. Section V A presents numerical
examples illustrating the two advantages of the asymptotic expan-
sion method: (i) the consistency and efficiency compared to the
polynomial fitting method and (ii) the analytic decompositions of
the order-parameters. The analytic expressions of the asymptotic
method permit us to access the elastic constants directly. Therefore,
the proposed method provides an efficient method for the study of
the dependence of the elastic properties on the molecular details,
which is given in Sec. V B. Notably, in Sec. V C, we present a local
approximation result for the Gaussian modulus xg.
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A. The asymptotic expansion method

As the first step of our study, we compare the polynomial fit-
ting method with the asymptotic expansion method proposed in this
paper. Instead of directly comparing the elastic moduli, we compare
the free energy curves of the cylindrical and spherical bilayers since
the results of the polynomial fitting method will be affected by the
maximal curvature used. Figure 3(a) shows an example of the free
energy of the self-assembled tensionless cylindrical and spherical
bilayers as functions of the curvature c. For the asymptotic expan-
sion method, the second-order approximation F,¢? and the fourth-
order approximation F>c* + Fac* of the free energies are given. The
second-order approximation is not enough when c is large (such as
¢ = 0.25), where the fourth-order approximation is more close to the
free energy F... It is worth noting that the fourth-order contribution
to F5(c) is negative, while the overall contribution is small since there
is an intrinsic limit due to the bilayer thickness on how high the cur-
vature could be. In Fig. 3(b), we compare the fourth-order energy
to the second-order energy for cylindrical and spherical bilayers
with curvature ¢ = 0.15. It indicates that for cylindrical bilayers with
this mild curvature ¢, the fourth-order energy could be larger than
5% of the second-order energy, and this ratio is increasing with
XN increasing or fa decreasing. However, this ratio for spherical
bilayers is relatively small. The consistency between the free energy
Fer and the approximations given by the asymptotic expansion
method implies the efficiency of the asymptotic expansion method
because one only needs to solve the SCF equations five times (three
times memory) for the second-order free energies and additional
four times (additional two times memory) for the fourth-order free
energies.

Next, we illustrate another advantage of the asymptotic expan-
sion method by decomposing the concentrations of cylindrical or
spherical bilayers to each order. Figure 4 shows the profiles of the
concentrations of a spherical bilayer with curvature ¢ ~ 1.4 where the
asymptotic expansion at each order is compared. Within the spher-
ical bilayer, since the area of the inner interface is smaller than the
outer one, the hydrophilic monomers (A-blocks) in the inner leaflet
have to pack more closely and have a higher local concentration in
comparison to the outer leaflet. This mechanism can be revealed by
the trend of ¢} ;(x), which is almost an odd function and attains
its maximum at the left part. Furthermore, the numerical results
indicate that the odd-order terms are almost odd functions and the
even-order terms are almost even functions. As a result, the odd-
order energies such as F; and F3 are close to zeros since terms in
those integral are almost odd functions. For the example given in
Fig. 4, both |F;| and |Fs| are less than 107°.

It is worth noting that, in this paper, we adopt Eq. (27) to
determine the bilayer interface, which is different from previous
works."” " Using the definition in Refs. 17-19, the curvature of
cylindrical and spherical bilayers will have different values, denoted
by ¢. Our numerical results indicate that the difference ¢—c has order
¢ or,ie,t—c~ac ~ot’, where ais a constant that can be esti-
mated by remeasuring the interface. For example, for the spherical
bilayers in Fig. 3, the estimated constant is o ~ 0.84. In the asymptotic
expansion method, remeasuring the interface can be done by restor-
ing ¢ (r) and ¢p(r) from Egs. (20)-(22). As a result, the second- and
fourth-order energies of tensionless bilayers corresponding to ¢ are
F, = F,, Fy = F;, — 20F,, which indicate that the second-order moduli
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FIG. 3. [(a) and (b)] Comparison of the
free energy of cylindrical and spherical
bilayers. Fex are calculated by the orig-
inal constraint method, and F,, F4 are
calculated by the method in this paper. C
and S denote the cylindrical and spheri-
cal bilayers, respectively. The molecular
parameters are yN = 20, f4 = 0.5, f5 =1,
andb=1.
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are independent of the definition of interface, but the fourth-order
moduli are not.

B. Influence of interactions and amphiphilic
architecture on the elastic moduli

Used the polynomial fitting method, previous studies'’ exam-
ined the effect of YN and fa on the bending modulus xy and

Gaussian modulus x¢ for the cases where both the copolymers and
the homopolymers are assumed to have an equal chain length char-
acterized by the same degree of polymerization, and both monomers
(A and B) have the same statistical segment length, ie., f; = 1,
b = 1. Those effects are reproduced in Fig. 5(a) where not only the
second-order moduli (k) and xg) but also the fourth-order mod-
uli (B¢ and Bs) are given as functions of the hydrophilic fraction f 4.
The main results are are as follows: (i) The bending modulus «y is
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FIG. 4. (a) The order parameters of a spherical bilayer with curvature ¢ ~ 0.14. (b)
Decomposition of the order parameter ¢4. The molecular parameters are yN = 20,
fa=05,f,=1,andb=1.

not very sensitive to the amphiphilic architecture specified by f 4, and
xm exhibits a weak symmetry to f4 = 0.5 (we will see later that this
weak symmetry could be attributed to the assumption of equal sta-
tistical segment lengths of A and B). (ii) The Gaussian modulus x¢
is a monotonically decreasing function of f4, and its value changes
from positive to negative at around fa = 0.41. (iii) The fourth-order
modulus Bc is positive, but Bs is negative, and their magnitudes
(or absolute value) are decreasing functions of f4. (iv) The interac-
tion yN mainly affects the magnitude of the moduli, where stronger
interactions result in larger moduli, and this effect is almost linear
to yN.

Figure 5(b) illustrates the influence of f; on the elastic moduli
as functions of f4. The results are focused on four different val-
ues of fj, € {0.6, 0.8, 1, 2}. It could be concluded that the moduli
are less sensitive to the change in f,. When f}, increases, the bend-
ing modulus slightly decreases and the Gaussian modulus increases.
This weak influence of f), is expected because the solubility of the
amphiphilic molecules does not heavily depend on the length of the
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solvent homopolymers unless f}, is very small. In particular, shorter
solvent homopolymers could help the amphiphilic molecules to be
dissolved, resulting in a higher excess at the interface. The influence
of increasing f, on the fourth-order moduli is also small where the
weak trend is that Bc decreases and Bs increases.

The effect of varying the geometrical asymmetry parameter b
on the qualitative behavior of the elastic moduli is significant, as
shown in Fig. 5(c) for different values of b € {0.6, 0.8, 1, 1.2}. First
of all, when b deviates from 1, the weak symmetry of xy to fa = 0.5
is broken. When b increases, the magnitude of xa and x¢ increases
and the f4 corresponding to the maximum of xa decreases. On the
other hand, the increase in b will increase the magnitude of the
fourth-order moduli and change the monotonicity of the fourth-
order moduli with respect to f4. For large b, both B¢ and |Bs| are
monotonically decreasing with respect to f4. However, when b is
relatively small, the trend is similar to a unimodal function.

C. A local approximation for x¢

An interesting observation is that the Gaussian modulus g is
zero at f4 ~ 0.41, independent of the value of yN, as illustrated in
Fig. 5(a). We found that this phenomenon occurred in the cases of
other parameters, as shown in Fig. 6. Specifically, the data shown in
Fig. 6 by the gray thin curves revealed that, for a given set of param-
eters (f, and b), the Gaussian modulus as a function of f4 crossed
at a common point independent of the value of yN. Considering the
Gaussian modulus x¢ as a function of f4 and yN, ie., kg(fa, YN),
and assuming that f 4 is close to the crossover point f;, one obtains
the Taylor expansion with respect to f 4,

K6 (fas xN) = a(xN) (fa = fa ) + k6 (fa s xN)s

where a(yN) is the slope at the point that is a function of yN. The
results shown in Fig. 6 suggest that at the cross point specified by f,
the Gaussian modulus x¢(f;, YN) is a constant ¢, that is indepen-
dent of yN. Therefore, when f 4 is close to f4, one has the following
approximation:

k6 (fas xN) = a(yN)(fa — f ) + «&. (35)

We call (fy,«xg) the cross point and show the influence of f;, and
b on (fi,x¢) in Fig. 6. The circles in Fig. 6 are the cross points
corresponding to different parameters f), and b and are joined to
curves with the same f;, = 1 or b = 1. When f}, increases, both
fa and ¢ increase slightly. When b increases, f; decreases but g
increases. The range of & is large, which covers values from —1.1
to 6.2 in Fig. 6 where f), changes from 0.3 to 5 and b changes from
0.3 to 1.8.

It is worth noting that fa, f), and b are molecular parame-
ters that do not depend on the temperature of the system, while the
Flory-Huggins parameter y does. Therefore, the approximation (35)
suggests that we can control the molecular parameters to design a
bilayer membrane whose Gaussian modulus is given and insensitive
to the temperature. However, the planar bilayers are unstable if their
Gaussian moduli are positive."” Therefore, Fig. 6 also indicates that
large f; and large b are harmful to this property because of their
positive «¢.
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VI. CONCLUSION

In this paper, we proposed a novel method based on the asymp-
totic expansion theory using the curvature of the self-assembled
bilayers as the expansion parameter, resulting in more accurate and
efficient methods to calculate the elastic moduli of bilayer mem-
branes. The method is presented within the framework of the self-
consistent field theory, which is capable of accurately predicting the
mechanical parameters of the self-assembled bilayer membranes.
The curvature of the cylindrical and spherical bilayers is regarded
as the small parameter in the asymptotic expansion methodology.
The new method allows us to obtain analytic expressions of the
elastic moduli of the self-assembled bilayer membranes. Compared
with the existing polynomial fitting method, the asymptotic expan-
sion method could be used to directly compute the elastic moduli
by solving a series of self-consistent field equations. This allows
us to design efficient numerical methods and pave the way to fur-
ther understanding of the dependence of the elastic properties on
the molecular architecture and microscopic parameters. Numerical
examples verify the validity and efficiency of the proposed method.
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Although the examined model is restricted to a coil-coil
diblock system, it is straightforward to extend our method to other
molecular architectures of flexible polymers characterized by the
Gaussian-chain model, as well as non-polymeric systems. Future
research will explore the extension to non-Gaussian models such
as the wormlike-chain, which takes the orientational order into
account.
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