
Available online at www.sciencedirect.com
ScienceDirect

Journal of Differential Equations 366 (2023) 862–911
www.elsevier.com/locate/jde

Rigorous biaxial limit of a molecular-theory-based 

two-tensor hydrodynamics

Sirui Li a, Jie Xu b,∗

a School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China
b LSEC and NCMIS, Institute of Computational Mathematics and Scientific/Engineering Computing (ICMSEC), 

Academy of Mathematics and Systems Science (AMSS), Chinese Academy of Sciences, Beijing, China

Received 17 January 2023; accepted 13 May 2023
Available online 29 May 2023

Abstract

We consider a two-tensor hydrodynamics derived from the molecular model, where high-order tensors are 
determined by closure approximation through the maximum entropy state or the quasi-entropy. We prove 
the existence and uniqueness of local in time smooth solutions to the two-tensor system. Then, we rigorously 
justify the connection between the molecular-theory-based two-tensor hydrodynamics and the biaxial frame 
hydrodynamics. More specifically, in the framework of Hilbert expansion, we show the convergence of the 
solution to the two-tensor hydrodynamics to the solution to the frame hydrodynamics.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

Liquid-crystal theories are classified by how the local anisotropy is described. For the uni-
axial nematic phase formed by rod-like molecules, the local anisotropy can be described by an 
orientational density function, a second-order symmetric traceless tensor, or a unit vector. The re-
sulting hydrodynamics are molecular models (such as Doi–Onsager [7]), tensor models (such as 
Beris–Edwards [4] and Qian–Sheng [27]) and vector models (such as Ericksen–Leslie [8,9,16]), 
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respectively. The connections between theories at these three levels are studied extensively, both 
in the sense of formal expansion [15,10,13] and rigorous limit [38,21,39,20,24,40].

When the molecular shape becomes more complex, other types of nematic phases are also 
observed. For these phases, however, the connections between different level of theories are 
merely revealed. Let us focus on the biaxial nematic phase on which we will focus throughout 
this article. At the coarsest level, it needs to be described by an orthonormal frame field p(x) ∈
SO(3). Under this description, the form of orientational elasticity [29,11,33] and hydrodynamics 
[29,23,6,28,12,17] has been proposed, which we would call frame models. On the other hand, 
most molecular models and tensor models (typically with two tensors) are only built for spatially 
homogeneous cases, no matter for equilibria [34,26,1,5,35] and hydrodynamics [30–32]. Under 
this circumstance, it is not the timing to study the connections between these models.

A couple of recent works construct the spatially inhomogeneous free energy [45] and hydro-
dynamics [49] for bent-core molecules that exhibit the biaxial nematic phase. The free energy 
is a functional of three tensors and is derived from molecular interactions, based on which the 
molecular model and tensor model for hydrodynamics are built. When we restrain our interest to 
the biaxial nematic phase, the order parameters in these models can be reduced to two second-
order tensors. With these models, the very recent work [22] formally derive a biaxial limit of 
a molecular-theory-based hydrodynamics [49] using the Hilbert expansion. The biaxial limit 
model, written in the coordinates of the frame, is just the frame hydrodynamics given previously. 
In the frame model, the numerous coefficients are expressed by those in the tensor model that 
have been derived as functions of molecular parameters, and the energy dissipation law is main-
tained in the frame model. The Ericksen–Leslie model can also be recovered as a special case. 
Furthermore, armed with the form of frame hydrodynamics in [22], its well-posedness of smooth 
solutions in Rd(d = 2, 3) and the global existence of weak solutions in R2 are shown [18]. The 
uniqueness of global weak solutions is also established using the Littlewood–Paley theory [19].

The main goal of this paper is to prove the local well-posedness of smooth solutions to 
the molecular-theory-based two-tensor hydrodynamics, and to rigorously justify the connection 
between the two-tensor hydrodynamics and the frame hydrodynamics in the sense of smooth 
solutions. The main framework of our proof is constructing approximate solutions near the so-
lution to frame hydrodynamics using the Hilbert expansion, then deriving the uniform estimates 
for the difference between the exact and the approximate solution. Some new issues arise in 
the estimates compared with the uniaxial limit for one-tensor hydrodynamics, which we outline 
below.

The molecular-theory-based tensor model requires a stabilizing entropy term in the bulk en-
ergy. The model also involves many high-order tensors. They need to be expressed by the two 
order parameter tensors in some way, which is called the closure approximation. In this paper, 
we consider two different approaches, that is, using the maximum entropy state [45] and the 
quasi-entropy [42] to give the entropy term and the closure approximation. The maximum en-
tropy state is a somewhat standard approach, but is expensive in computation. The quasi-entropy 
is proposed as a elementary function substitution for the entropy term derived from the maximum 
entropy state, which we will explain in the following section. In several simple cases discussed 
in [42], the physics given by the quasi-entropy is consistent with that given by the maximum 
entropy state. In the light of proposing a model with adequate computational complexity, it is 
significant to discuss closure approximation using the quasi-entropy. Concerning the estimates 
for the rigorous biaxial limit, we shall see these two approaches will lead to the same arguments, 
so that the derivations afterwards can be handled in a unified manner.
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To recognize the biaxial limit, it is necessary to comprehend the biaxial minimizer of the bulk 
energy. The rotational invariance of the bulk energy leads to the fact that the minimizer is actually 
a three-dimensional manifold. The tangent vectors of this manifold are zero-eigenvectors of the 
Hessian that is usually called in terms of ‘the linearized operator’ in previous works. A basic 
assumption is that the tangent vectors exactly span the kernel of the Hessian. This assumption 
implies that the biaxial minimizer is nondegenerate, which physically means that the coefficients 
in the bulk energy are not at the critical values of phase transitions. We will give some numerical 
evidences to this assumption.

The kernel of the linearized operator plays a key role in the analysis of the Hilbert expansion. 
In particular, we can use this kernel to decouple the Hilbert expansion at different orders by pro-
jecting the tensors according to the kernel and its orthogonal complement. As for the estimates, 
an essential difference from the previous works is that the projection and high-order tensors are 
noncommutative. To deal with it, we will give a new and general way to obtain the desired es-
timates. This is also the case for the singular term in the remainder equation, where we shall 
utilize the eigen-decomposition of the linearized operator. We will clarify these two points after 
we write down the model and the main results.

To our knowledge, this is the first time a rigorous biaxial limit of hydrodynamics from a 
molecular-based model is established. Moreover, it is possible that the minimizer of the bulk 
energy is uniaxial. In this case, the limit model will be the Ericksen–Leslie model (see Section 5 
in [22]). When attempting to establish the uniaxial limit of two-tensor hydrodynamics, one will 
also face the issues described in the paragraphs above. In other words, those approaches in the 
previous works on the uniaxial limit of the one-tensor hydrodynamics are special cases that 
cannot be extended naturally. Instead, we need to follow the approach for the biaxial case. We 
shall explain this at the end of this article.

In the rest of this section, let us introduce the notations, followed by the tensor and frame 
hydrodynamics. Then, we state the main results.

1.1. Preliminaries

We begin with notations of orthonormal frames and tensors. In a system composed of identi-
cal non-spherical rigid molecules, we need to describe its orientational distribution. To this end, 
on each molecule we anchor a right-handed orthonormal frame (m1, m2, m3) to express its ori-
entation. If we write out the coordinates of the body-fixed frame in the right-handed reference 
frame, it gives a rotation matrix q ∈ SO(3), where qij is the ith coordinate of mj . We need an-
other orthonormal frame to represent the local orientation of the nematic phase. To distinguish, 
we shall use the notation p = (n1, n2, n3).

For an n-th order tensor U in R3, its coordinates in the reference frame are denoted by Ui1...in . 
The dot product U · V of two tensors of the same order is defined by summing up the product of 
the corresponding coordinates,

U · V = Ui1···inVi1···in , |U |2 = U · U,

where we have adopted the Einstein summation convention on repeated indices and will assume 
it throughout the article.

An n-th order tensor U is said to be symmetric, if its coordinates satisfy Uiσ(1)...iσ (n)
= Ui1···in

for arbitrary permutation σ of {1, . . . , n}. A tensor U can be symmetrized as
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(Usym)i1···in = 1

n!
∑
σ

Uiσ(1)···iσ (n)
,

where the sum is taken over all the permutations. For any n-th order symmetric tensor U , its 
trace is an (n − 2)th-order tensor defined by the contraction of two coordinates,

(trU)i1...in−2 = Ui1...in−2kk.

If a symmetric tensor U satisfies trU = 0, we say that U is symmetric traceless. If we express a 
tensor by its coordinates in another right-handed orthonormal frame, the symmetric and traceless 
properties are maintained, i.e. they are intrinsic properties of a tensor.

To express the symmetric tensors conveniently, we introduce the monomial notation,

mk1
1 mk2

2 mk3
3 =

(
m1 ⊗ · · · ⊗ m1︸ ︷︷ ︸

k1

⊗m2 ⊗ · · · ⊗ m2︸ ︷︷ ︸
k2

⊗m3 ⊗ · · · ⊗ m3︸ ︷︷ ︸
k3

)
sym

.

In this way, any homogeneous polynomical of mi represents a symmetric tensor. The 3 × 3
identity matrix i can be written as a polynomial i = m2

1 + m2
2 + m2

3. For clarity, several simple 
examples are given below:

m1m2 = 1

2
(m1 ⊗ m2 + m2 ⊗ m1), m2

1 = m1 ⊗ m1,

m1m2m3 = 1

6

(
m1 ⊗ m2 ⊗ m3 + m2 ⊗ m3 ⊗ m1 + m3 ⊗ m1 ⊗ m2

+ m1 ⊗ m3 ⊗ m2 + m2 ⊗ m1 ⊗ m3 + m3 ⊗ m2 ⊗ m1
)
,

m1m2
2 = 1

3

(
m1 ⊗ m2 ⊗ m2 + m2 ⊗ m1 ⊗ m2 + m2 ⊗ m2 ⊗ m1

)
.

The definition above also works for p = (n1, n2, n3).
The order parameters to depict the local anisotropy are defined from the moments of mi of 

the density function ρ(q, x),

〈
mi1 ⊗ · · · ⊗ min

〉= ∫
SO(3)

mi1(q) ⊗ · · · ⊗ min (q)ρ(q,x)dq, i1, . . . , in = 1,2,3,

where 〈·〉 is a short notation for the average under ρ(q, x). To extract the linearly independent 
components from these moments, it turns out that order parameters shall be chosen from averaged 
symmetric traceless tensors (see [41,44,43] for details).

The hydrodynamics involves differential operators on SO(3). For any frame p = (n1, n2, n3) ∈
SO(3), the tangential space TpSO(3) at a point p can be spanned by the orthogonal basis

V1 = (0,n3,−n2), V2 = (−n3,0,n1), V3 = (n2,−n1,0).

The differential operators Lk(k = 1, 2, 3) are defined by taking the dot products of Vk and 
∂/∂p = (∂/∂n1, ∂/∂n2, ∂/∂n3),
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⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L1
def=V1 · ∂

∂p
= n3 · ∂

∂n2
− n2 · ∂

∂n3
,

L2
def=V2 · ∂

∂p
= n1 · ∂

∂n3
− n3 · ∂

∂n1
,

L3
def=V3 · ∂

∂p
= n2 · ∂

∂n1
− n1 · ∂

∂n2
.

(1.1)

The operator Lk actually gives the derivative along the infinitesimal rotation about nk. Acting 
the operators Lk(k = 1, 2, 3) on ni , we can verify that Lkni = εijknj with εijk being the Levi-
Civita symbol. The operator Lk can also be acted on a functional, where ∂/∂p shall be replaced 
by the variational derivative δ/δp.

1.2. Two-tensor hydrodynamics

In this paper, we focus on a two-tensor hydrodynamics considered in [22] for biaxial nematics, 
which is reduced from the model proposed in [49].

The order parameters are given by two second-order symmetric traceless tensors,

Q1 = 〈m2
1 − i/3〉, Q2 = 〈m2

2 − i/3〉.

We denote Q = (Q1, Q2)
T in short. A projection map S is defined for second-order tensor,

(S R)ij = 1

2
(Rij + Rji) − 1

3
Rkkδij ,

giving a symmetric traceless one. It can also be imposed on an array of second-order tensors, i.e.,

S (R1, · · · ,Rk) = (S R1, · · · ,S Rk).

Denote by Q the linear space formed by a pair of second-order symmetric traceless tensors

Q= {Q = (Q1,Q2)
T : Qi second-order symmetric traceless

}
.

Its dimension is ten, since each second-order symmetric traceless tensor contributes five.
Now we are in the position of writing down the tensor hydrodynamics. We shall adopt the form 

in [22] that would clearly reflect its structure. To simplify the presentation, throughout the paper, 
we assume that the concentration of rigid molecules at each point x, the product of the Boltzmann 
constant and the absolute temperature, and the density of the fluid ρs are all equal to one, so that 
they will not appear in the model compared with those given previously. Such simplifications 
make no difference in the structure of the model and the estimates to be established.

We begin with the free energy

F[Q,∇Q] =
∫
R3

(1

ε
Fb(Q) + Fe(∇Q)

)
dx. (1.2)

The energy density is divided into the bulk part Fb and the elastic part Fe. The bulk energy 
density Fb contains an entropy term and quadratic terms of Q,
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Fb(Q) =Fentropy + 1

2

(
c02|Q1|2 + c03|Q2|2 + 2c04Q1 · Q2

)
. (1.3)

The entropy term requires detailed discussion, which will be presented in Section 2. The elastic 
energy density Fe, penalizing spatial inhomogeneity, consists of quadratic terms of ∇Q,

Fe(∇Q) = 1

2

(
c22|∇Q1|2 + c23|∇Q2|2 + 2c24∂iQ1jk∂iQ2jk

+ c28∂iQ1ik∂jQ1jk + c29∂iQ2ik∂jQ2jk + 2c2,10∂iQ1ik∂jQ2jk

)
. (1.4)

To ensure the lower-boundedness of the free energy, we assume that the coefficients of the elastic 
energy satisfy positive definite conditions

c22, c23, c28, c29 > 0,

c2
24 < c22c23, c2

28 < c29c2,10.

In the above, the coefficients cij of the quadratic terms in (1.3) and (1.4) can be derived as 
functions of the molecular parameters (see [46,45] for details). In particular, it has been verified 
that these derived coefficients indeed satisfy the positive definite conditions given above (cf. 
[45]). The small parameter ε in (1.2) can be viewed as the squared relative scale L̃ between the 
rigid molecule and the domain of observation by a change of variable x̃ = x/L̃.

We write the variational derivative of the free energy (1.2) as

μQ = δF(Q,∇Q)

δQ
= S

(1

ε

∂Fb(Q)

∂Q
− ∂i

(∂Fe(∇Q)

∂(∂iQ)

))
def= 1

ε
J (Q) + G(Q), (1.5)

where μQ = (μQ1, μQ2)
T , J (Q) = (J1(Q), J2(Q)

)T and G(Q) = (G1(Q), G2(Q)
)T are calcu-

lated as

μQ1 = 1

ε
J1(Q) + G1(Q)

= 1

ε

(
S

∂Fentropy

∂Q1
+ c02Q1 + c04Q2

)
− c22�Q1jk − c24�Q2jk − S (c28∂j ∂iQ1ik + c2,10∂j ∂iQ2ik), (1.6)

μQ2 = 1

ε
J2(Q) + G2(Q)

= 1

ε

(
S

∂Fentropy

∂Q2
+ c04Q1 + c03Q2

)
− c24�Q1jk − c23�Q2jk − S (c2,10∂j ∂iQ1ik + c29∂j ∂iQ2ik). (1.7)

Before we present the hydrodynamics, we explain some physical parameters that will appear 
below, for which we refer to [49,22]: Iii(i = 1, 2, 3) are diagonal elements of the moment of 
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inertia for a molecule; 	i = m0
ζ Iii

(i = 1, 2, 3) are the diffusion coefficients, where m0 is a mass 

unit and ζ is a friction constant; ei(i = 1, 2) are defined as e1 = 1 − e2 = I22
I11+I22

.
In addition, we define some fourth-order tensors:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

R1 = 〈(m2
1 − i/3

)⊗ (m2
1 − i/3

)〉
, R2 = 〈(m2

2 − i/3
)⊗ (m2

2 − i/3
)〉
,

R3 = 4〈m1m2 ⊗ m1m2〉, R4 = 4〈m1m3 ⊗ m1m3〉, R5 = 4〈m2m3 ⊗ m2m3〉,
VQ1 = 2

(
〈m1m3 ⊗ (m1 ⊗ m3)〉 + e1〈m1m2 ⊗ (m1 ⊗ m2)〉 − e2〈m1m2 ⊗ (m2 ⊗ m1)〉

)
,

VQ2 = 2
(
〈m2m3 ⊗ (m2 ⊗ m3)〉 − e1〈m1m2 ⊗ (m1 ⊗ m2)〉 + e2〈m1m2 ⊗ (m2 ⊗ m1)〉

)
.

(1.8)

These tensors need to be specified as functions of Q, which is the so-called closure approximation 
to be discussed in Section 2. The closure approximation is the origin of strong nonlinearity in the 
hydrodynamics. We then define some operators from these tensors,

MQ =
(M11 M12

M12 M22

)
def=
(

	2R4 + 	3R3 −	3R3

−	3R3 	1R5 + 	3R3

)
, (1.9)

VQ
def=
( VQ1

VQ2

)
, NQ

def= (NQ1,NQ2) = (VT
Q1

,VT
Q2

), (1.10)

PQ
def= ζ

(
I22R1 + I11R2 + e1I11R3

)
. (1.11)

Let us explain some short notations concerning the tensor contraction. We regard fourth-order 
and second-order tensors as matrices and vectors, respectively. Then, we make use of matrix-
matrix and matrix-vector multiplications, such as

(VQ1)ijklκkl = (VQ1κ)ij ,

where κij = ∂j vi is the gradient of the fluid velocity field v. Thus, the transpose of a fourth-order 
tensor can be defined, such as (VT

Q1
)ijkl = (VQ1)klij . Again, MQμQ is carried out by matrix-

vector multiplication,

MQμQ =
(M11μQ1 +M12μQ2

M12μQ1 +M22μQ2

)
.

Now, let us write down the two-tensor hydrodynamics,

∂Q
∂t

+ v · ∇Q = −MQμQ + VQκ, (1.12)(∂v
∂t

+ v · ∇v
)

i
= − ∂ip + η�vi + ∂j (PQκ +NQμQ)ij + μQ · ∂iQ, (1.13)

∇ · v =0. (1.14)

Here, p is the pressure imposing the incompressibility (1.14) on v; η is the viscous coefficient of 
the fluid; μQ = ε−1J (Q) + G(Q); J (Q) and G(Q) can be rewritten as
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f

J (Q) =S
∂Fentropy

∂Q
+ D0Q, (1.15)

G(Q)jk = − D1(�Q)jk − D2S (∂j ∂iQik), (1.16)

where the constant coefficient matrices Di(i = 1, 2, 3) are expressed as, respectively,

D0 =
(

c02 c04
c04 c03

)
, D1 =

(
c22 c24
c24 c23

)
, D2 =

(
c28 c2.10
c2.10 c29

)
.

To comprehend the model (1.12)–(1.14), MQμQ is the rotational diffusion term; VQκ is the 
rotational convection term, where the corresponding elastic stress is NQμQ; PQκ is the extra 
viscous stress induced by rigid molecules; and μQ · ∂iQ is the external force due to the presence 
of rigid molecules.

It is crucial that the fourth-order tensors Ri(i = 1, · · · , 5) are all positive definite, in the 
sense that for any second-order symmetric traceless tensor Y , we have Y · RiY ≥ 0 and the 
equality implies Y = 0. This can be guaranteed by the closure approximation to be introduced in 
Section 2, which has been discussed in [22]. As a result, the operators MQ and PQ are positive 
definite.

The energy dissipation is given by

d

dt

(
1

2
‖v‖2

L2 +F[Q,∇Q]
)

= −(μQ,MQμQ) − η‖κ‖2
L2 − (κ,PQκ). (1.17)

1.3. Biaxial frame hydrodynamics

The local orientation of the biaxial nematic phase needs to be described by an orthonormal 
frame p = (n1, n2, n3) ∈ SO(3). The biaxial frame hydrodynamics can be derived formally from 
the tensor hydrodynamics above. In this case, the frame p is that in the minimizer of the bulk 
energy Fb, written as

Qi = si

(
n1 ⊗ n1 − i

3

)
+ bi(n2 ⊗ n2 − n3 ⊗ n3), i = 1,2. (1.18)

We will discuss it more in Section 2. Here, we focus on writing down the biaxial hydrodynamics.
We write the biaxial orientational elasticity in the form

FBi[p] =
∫
R3

fBi(p,∇p)dx. (1.19)

The elastic energy density fBi can be given by (see [33,11,48], where other equivalent forms are 
provided):

Bi(p,∇p) = 1

2

( 3∑
i=1

Ki(∇ · ni )
2 +

3∑
i,j=1

Kij (ni · ∇ × nj )
2 +

3∑
i=1

γi∇ · [(ni · ∇)ni − (∇ · ni )ni]
)
,

which consists of twelve bulk terms and three surface terms. The coefficients Ki and Kij of bulk 
terms shall all be positive. They can be derived from c2j in the tensor model (cf. [48]).
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To present the frame hydrodynamics more conveniently, we introduce a set of local basis 
generated by nine second-order tensors: the identity tensor i, five symmetric traceless tensors,

s1 = n2
1 − 1

3
i, s2 = n2

2 − n2
3, s3 = n1n2, s4 = n1n3, s5 = n2n3,

and three asymmetric traceless tensors,

a1 = n1 ⊗ n2 − n2 ⊗ n1, a2 = n3 ⊗ n1 − n1 ⊗ n3, a3 = n2 ⊗ n3 − n3 ⊗ n2.

The frame hydrodynamics is a coupled system between the evolution equation of the orthonormal 
frame field p = (n1, n2, n3) ∈ SO(3) and the Navier-Stokes equations. We write down the form 
given in [22]:

χ1ṅ2 · n3 − 1

2
χ1� · a3 − η1A · s5 + L1FBi = 0, (1.20)

χ2ṅ3 · n1 − 1

2
χ2� · a2 − η2A · s4 + L2FBi = 0, (1.21)

χ3ṅ1 · n2 − 1

2
χ3� · a1 − η3A · s3 + L3FBi = 0, (1.22)

p = (n1,n2,n3) ∈ SO(3), (1.23)

v̇ = −∇p + η�v + ∇ · σ + F, (1.24)

∇ · v = 0, (1.25)

where we use the notation ḟ = ∂tf + v · ∇f to represent the material derivative, and recall that 
LkFBi is the variational derivative along the infinitesimal rotation round nk . The divergence of 
the viscous stress σ is defined by (∇ · σ)i = ∂jσij . To express the stress, let us denote by A and 
� the symmetric and skew-symmetric parts of the velocity gradient κij = ∂j vi , respectively, i.e.,

A = 1

2
(κ + κT ), � = 1

2
(κ − κT ).

The viscous stress σ is given by

σ(p,v) =β1(A · s1)s1 + β0(A · s2)s1 + β0(A · s1)s2 + β2(A · s2)s2

+ β3(A · s3)s3 − η3

(
ṅ1 · n2 − 1

2
� · a1

)
s3

+ β4(A · s4)s4 − η2

(
ṅ3 · n1 − 1

2
� · a2

)
s4

+ β5(A · s5)s5 − η1

(
ṅ2 · n3 − 1

2
� · a3

)
s5

+ 1

2
η3(A · s3)a1 − 1

2
χ3

(
ṅ1 · n2 − 1

2
� · a1

)
a1

+ 1
η2(A · s4)a2 − 1

χ2

(
ṅ3 · n1 − 1

� · a2

)
a2
2 2 2
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+ 1

2
η1(A · s5)a3 − 1

2
χ1

(
ṅ2 · n3 − 1

2
� · a3

)
a3, (1.26)

where the viscous coefficients satisfy the following nonnegative definiteness conditions:{
βi ≥ 0, i = 1, · · · ,5, χj > 0, j = 1,2,3, η > 0,

β2
0 ≤ β1β2, η2

1 ≤ β5χ1, η2
2 ≤ β4χ2, η2

3 ≤ β3χ3.
(1.27)

Again, such conditions are indeed met when the coefficients are derived from the tensor hydro-
dynamics as functions of molecular parameters (see [22] for details). The external force F is 
defined by

Fi = ∂in1 · n2L3FBi + ∂in3 · n1L2FBi + ∂in2 · n3L1FBi. (1.28)

It can also be regarded as a elastic stress (see Eq. (1.17) in [19]).
The relations between coefficients (1.27) guarantee that the frame hydrodynamics (1.20)–

(1.25) fulfills the following energy dissipation law [18]:

d

dt

(1

2

∫
R3

|v|2dx +FBi[p]
)

= −η‖∇v‖2
L2 −

3∑
k=1

1

χk

‖LkFBi‖2
L2

−
(

β1‖A · s1‖2
L2 + 2β0

∫
R3

(A · s1)(A · s2)dx + β2‖A · s2‖2
L2

)

−
(
β3 − η2

3

χ3

)
‖A · s3‖2

L2 −
(
β4 − η2

2

χ2

)
‖A · s4‖2

L2 −
(
β5 − η2

1

χ1

)
‖A · s5‖2

L2 . (1.29)

Concerning the well-posedness results of the system (1.20)–(1.25), we refer to [18] for details.

1.4. Main results

The first result is the local well-posedness of the tensor hydrodynamics. Let Qδ be defined in 
(2.14), which is related to the physical range of two tensors.

Theorem 1.1. Let s ≥ 2 be an integer. Assume that p∗ = (n∗
1, n

∗
2, n

∗
3) ∈ SO(3) is a constant 

orthonormal frame, and that Q∗ = (Q∗
1, Q

∗
2)

T takes the biaxial minimizer of the bulk energy Fb

in the form

Q∗
i = si

(
n∗2

1 − 1

3
i

)
+ bi(n∗2

2 − n∗2
3 ), i = 1,2.

If the initial data satisfies

QI (x) − Q∗ ∈ Hs+1(R3), vI (x) ∈ Hs(R3),

with QI (x) ∈ Qδ for all x ∈ R3, then there exists T > 0 and a unique solution (Q, v) to the 
two-tensor system (1.12)–(1.14) on [0, T ], such that Q(x, 0) = QI (x), v(x, 0) = vI (x) and
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Q(x, t) − Q∗ ∈ C([0, T ];Hs+1(R3)),

v(x, t) ∈ C([0, T ];Hs(R3)) ∩ L2(0, T ;Hs+1(R3)),

with Q(x, t) ∈Qδ/2.

This result mainly depends on the estimates involving fourth-order tensors given by closure 
approximation. Once the basic estimates are established (see Section 2), the proof is quite stan-
dard, which we present in Section 3.

We now state the main result. To emphasize the dependence of the solution on ε, we use the 
notations such as Qε , vε and MQε . Let HQ be the Hessian of the bulk energy Fb at Q, and the 
projections P in and Pout be defined in (2.11) concerning the kernel of HQ.

Theorem 1.2. Assume that Q(0)(x, t) = (Q
(0)
1 , Q(0)

2 )T with Q(0)
i = si

(
n2

1 − i/3
)+ bi

(
n2

2 − n2
3

)
(i = 1, 2) is the biaxial minimizer of the bulk energy Fb(Q). Let (p(x, t), v(x, t)) be a smooth 
solution to the frame hydrodynamics (1.20)–(1.25) on [0, T ], which satisfies

(∇p,v) ∈ C([0, T ];H�), for the integer � ≥ 20.

Suppose that the initial data (Qε
I , v

ε
I ) takes the form

Qε
I (x) =

3∑
k=0

εkQ(k)(x,0) + ε3Qε
I,R(x), vε

I (x) =
2∑

k=0

εkv(k)(x,0) + ε3vε
I,R(x),

where the functions 
(
Q(1), Q(2), Q(3), v(1), v(2)

)
are determined by Proposition 4.1, and

(Qε
I,R, vε

I,R) fulfills

‖vε
I,R‖H 2 + ‖Qε

I,R‖H 3 + ε−1‖Pout(Qε
I,R)‖L2 ≤ E0.

Then, there exists ε0 > 0 and E1 > 0 such that for all ε < ε0, the system (1.12)–(1.14) has a 
unique solution (Qε(x, t), vε(x, t)) on [0, T ] that possesses the following Hilbert expansion:

Qε(x, t) =
3∑

k=0

εkQ(k)(x, t) + ε3QR(x, t), vε(x, t) =
2∑

k=0

εkv(k)(x, t) + ε3vR(x, t),

where, for any t ∈ [0, T ], the remainder (QR, vR) satisfies

E
(
QR(t),vR(t)

)≤ E1.

Here, E
(
Q, v

)
is defined by

E
(
Q,v

) def= 1

2

∫
R3

[(
|v|2 + (M−1

Q(0)Q) · Q + 1

ε

(
Hε

Q(0)Q
) · Q

)

+ ε2
(
|∇v|2 + 1

ε

(
Hε

Q(0)∂iQ
) · ∂iQ

)
+ ε4

(
|�v|2 + 1

ε

(
Hε

Q(0)�Q
) · �Q

)]
dx,
872



S. Li and J. Xu Journal of Differential Equations 366 (2023) 862–911
where Hε
Q(0)Q = HQ(0)Q + εG(Q), and the constant E1 is independent of ε.

To illustrate the idea of the proof Theorem 1.2, we give a short overview. To begin with, we 
make the Hilbert expansion of the solutions (Qε, vε) with respect to the small parameter ε:

Qε(x, t) =Q(0)(x, t) + εQ(1)(x, t) + ε2Q(2)(x, t) + ε3Q(3)(x, t) + ε3QR(x, t),

vε(x, t) =v(0)(x, t) + εv(1)(x, t) + ε2v(2)(x, t) + ε3vR(x, t).

Substituting the above expansions into the system (1.12)–(1.14) and collecting the terms with the 
same order of ε, we obtain a series of equations for (Q(k), v(k); Q(3))(0 ≤ k ≤ 2) (see Subsec-
tion 4.1). The O(ε−1) equation requires that J (Q(0)) = 0, indicating that Q(0) is the stationary 
point of the bulk energy Fb(Q), which is assumed to be the biaxial minimizer. The O(1) system 
(4.6)–(4.8) gives the biaxial frame hydrodynamics (1.20)–(1.25).

To show Theorem 1.2, we need to take care of two points below.

• The existence of smooth solutions to the equations of (Q(k), v(k); Q(3))(0 ≤ k ≤ 2).
• Uniform boundedness of the remainder.

The first point relies on the local existence of smooth solutions to the frame hydrodynamics 
(1.20)–(1.25) on [0, T ], which has been established in a recent work [18]. It then requires to solve 
Q(1). From the work for rod-like molecules [39,21,20], the basic approach is to decompose Q(1)

into two parts: one in the kernel space KerHQ(0) and the other in its orthogonal complement. The 
latter can be obtained from the equation of Q(0), so that we need to derive an equation for the 
former from the O(ε) system. The O(ε) system has the following abstract form:

∂Q(1)

∂t
+ v(0) · ∇Q(1) = −M(0)

(
HQ(0)Q(2) + G(Q(1)) + J1

)+ · · · ,

∂v(1)

∂t
+ v(0) · ∇v(0) =∇ ·N (0)

(
HQ(0)Q(2) + G(Q(1)) + J1

)+ · · · ,

where the operator M(0) is a short notation for MQ(0) , and J1 is a nonlinear term. Here comes 
a major difficulty: we can not directly project the nonlinear system of (Q(1), v(1)) into the kernel 
space KerHQ(0) , since P in and M(0) are noncommutative, i.e., P inM(0) �= M(0)P in. However, 
by carefully investigating the intrinsic structure of the system, we could eventually derive a linear 
system (4.20)–(4.22) for the KerHQ(0) -projection of Q(1), which guarantees the existing time to 
be [0, T ]. It requires a clear characterization of the space KerHQ(0) , which will be discussed in 
Section 2. The O(ε2) system for (Q(2), v(2); Q(3)) is solved similarly.

The system for (QR, vR) takes the form

∂tQR = −MQ(0)

(1

ε
HQ(0)QR + G(QR)

)
+ VQ(0)κR + · · · ,

∂tvR = − ∇pR + ∇ ·
(
NQ(0)

(1

ε
HQ(0)QR + G(QR)

))
+ · · · .
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The main obstacle towards the uniform estimate comes from the singular term 1
ε
HQ(0)QR . We 

introduce a suitable energy functional E(t) in (4.42) to handle it. Since the operator HQ(0) de-

pends on the time t , we have to control the singular term 1
ε

〈
QR, ∂t (HQ(0) )QR

〉
. This takes tedious 

calculations for rod-like molecules [39]. However, we point out in this work that it can be done 
by the eigen-decomposition of the Hessian (see (2.10)) straightforwardly.

The proof of Theorem 1.2 is presented in Section 4. Throughout the proof, the estimates on 
fourth-order tensors still play a key role.

The bulk minimizer of the two-tensor model might also be uniaxial, for which we briefly 
discuss in Section 5. As we have discussed in [22], the limit model is the Ericksen–Leslie model. 
The whole procedure is the same as how we deal with the biaxial nematic phase, only to notice 
a slight difference in the structure of HQ(0) . Despite the limit model is the same as that of one-
tensor models, it shall be clear that the derivation in the previous works is special and not suitable 
for the uniaxial limit of the two-tensor model.

2. Entropy, stationary points and closure approximation

In this section, we introduce the entropy term and some crucial results relevant to it, as well 
as how to use the entropy to define the closure approximation.

We consider two types of the entropy terms, which we call the original entropy and the quasi-
entropy. The original entropy is defined implicitly by minimizing 

∫
SO(3)

ρ lnρdq with Q fixed, 
which is a standard approach that has been utilized in different cases [14,3,13,45,36,41]. The 
quasi-entropy refers to a class of elementary functions as a substitution of the original entropy 
[42]. The quasi-entropy significantly simplifies the hydrodynamics, especially in the view of 
numerical simulations. Yet it has been proved that the original entropy and the quasi-entropy 
share several essential properties and display very close results on homogeneous phase transitions 
for various molecules [42]. Therefore, it is of great worthiness to discuss both of them. In the 
formal derivation of the biaxial hydrodynamics [22], it has been seen that the original entropy and 
the quasi-entropy lead to the models of the identical form, with differences only in the specific 
values of coefficients.

In what follows, apart from specifying their definitions and the corresponding closure ap-
proximations, we shall discuss the stationary points of the bulk energy and the structure of the 
Hessian at these points. In addition, we write down some basic estimates to be utilized in the 
establishment of the rigorous biaxial limit. As it turns out, on the above aspects, the original en-
tropy and the quasi-entropy lead to similar results, which will be convenient for the derivations 
in the forthcoming sections.

2.1. Original entropy and quasi-entropy

Let us begin with defining the original entropy for Q (for general cases, see Section 5 of [41]). 
On minimizing 

∫
SO(3)

ρ lnρdq, we obtain the maximum entropy state

ρ(q) = 1

Z
exp(B1 · m2

1 + B2 · m2
2), (2.1)

where Z is the normalizing constant, and two second-order symmetric traceless tensors B1 and 
B2 are Lagrange multipliers for the constraints on Q,
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Z =
∫

SO(3)

exp(B1 · m2
1 + B2 · m2

2)dq,

Qi = 1

Z

∫
SO(3)

(
m2

i − 1

3
i

)
exp(B1 · m2

1 + B2 · m2
2)dq. (2.2)

The original entropy Forig is obtained by taking (2.1) into 
∫
SO(3)

ρ lnρdp,

Forig = B1 · Q1 + B2 · Q2 − lnZ. (2.3)

Proposition 2.1. The original entropy has the following properties:

• B is uniquely determined by Q, where B = (B1, B2)
T .

• ∂Forig/∂Q = B.
• ∂Q/∂B is positive definite.

Proof. The uniqueness of B is shown in Theorem 5.1 in [41].
For the second property, from (2.3) we have

∂Forig

∂(Q1)ij
= (B1)ij + ∂(B1)kl

∂(Q1)ij
(Q1)kl + ∂(B2)kl

∂(Q1)ij
(Q2)kl − ∂ lnZ

∂(Q1)ij

= (B1)ij + ∂(B1)kl

∂(Q1)ij

(
∂ lnZ

∂(B1)kl

− δkl

3

)
+ ∂(B2)kl

∂(Q1)ij

(
∂ lnZ

∂(B2)kl

− δkl

3

)
− ∂ lnZ

∂(Q1)ij

= (B1)ij .

Similar arguments hold for ∂Forig/∂Q2.
For the third property, direct calculation gives

∂Q
∂B

=
( 〈(m2

1 − i/3) ⊗ (m2
1 − i/3)〉 〈(m2

1 − i/3) ⊗ (m2
2 − i/3)〉

〈(m2
2 − i/3) ⊗ (m2

1 − i/3)〉 〈(m2
2 − i/3) ⊗ (m2

2 − i/3)〉
)

−
(
〈m2

1 − i/3〉, 〈m2
2 − i/3〉

)T (〈m2
1 − i/3〉, 〈m2

2 − i/3〉
)
,

which is a covariance matrix. �
The quasi-entropy is defined by the log-determinant of a covariance matrix. It depends on 

the truncation order of the tensors, which we need to specify (see [42] for details). For Q, we 
truncate at second order to arrive at

�2
(
Q
)= − ln det

(
Q1 + i

3

)
− ln det

(
Q2 + i

3

)
− ln det

( i
3

− Q1 − Q2

)
, (2.4)

where i denotes the second-order identity tensor (3 × 3 matrix). The domain of �2 is restrained 
in those Q such that the three matrices are positive definite:
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dom(�2) =
{

Q : Q1 + i

3
, Q2 + i

3
,
i

3
− Q1 − Q2 are positive definite

}
.

To carry out closure approximation by the quasi-entropy, we need the one truncated at fourth 
order. For the high-order tensors appearing in the tensor hydrodynamics, they can be expressed 
linearly by Q1, Q2 and several symmetric traceless tensors of third- and fourth-order. The rele-
vant expressions can be found in [41,42,22]. Here, since these expressions are unused, we choose 
not to write them down explicitly. Instead, we denote in short these third- and fourth-order sym-
metric traceless tensors as H.

Now, let us write down the quasi-entropy truncated at fourth order. We introduce a few short 
notations:

• For a second-order tensor U , we define a 1 × 5 row vector as

�2(U)j = (U · sj ).

• For a third-order tensor U , we define a 3 × 5 matrix,

�3(U)ij = (U · ni ⊗ sj ).

• For a fourth order tensor U , we define a 5 × 5 matrix,

�4(U)ij = (U · si ⊗ sj ).

The quasi-entropy at fourth-order is given by

�4(Q,H) =

− ln det

⎛⎜⎜⎝
1 �2(〈m2

1 − i
3 〉) �2(〈m2

2 − m2
3〉)

�2(〈m2
1 − i

3 〉)T �4
(〈(m2

1 − i
3 ) ⊗ (m2

1 − i
3 )〉) �4

(〈(m2
2 − m2

3) ⊗ (m2
1 − i

3 )〉)
�2(〈m2

2 − m2
3〉)T �4

(〈(m2
2 − m2

3) ⊗ (m2
1 − i

3 )〉)T �4
(〈(m2

2 − m2
3) ⊗ (m2

2 − m2
3)〉
)
⎞⎟⎟⎠

− ln det

(
�2(〈m2

1〉) �3(〈m1 ⊗ m2m3〉)
�3(〈m1 ⊗ m2m3〉)T �4(〈m2m3 ⊗ m2m3〉)

)

− ln det

(
�2(〈m2

2〉) �3(〈m2 ⊗ m1m3〉)
�3(〈m2 ⊗ m1m3〉)T �4(〈m1m3 ⊗ m1m3〉)

)

− ln det

(
�2(〈m2

3〉) �3(〈m3 ⊗ m1m2〉)
�3(〈m3 ⊗ m1m2〉)T �4(〈m1m2 ⊗ m1m2〉)

)
. (2.5)

The domain of �4 is given by those (Q, H) such that the matrices above are all positive definite.

Proposition 2.2. The domains of Forig, �2, �4 are bounded, convex open sets. Each of the three 
functions is strictly convex on the corresponding domain.

Proof. They are special cases of Section 3 and 4 in [42]. �
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Furthermore, if the tensors in �2 (resp. �4) are given by some density in (2.1), they must lie 
within the domain of �2 (resp. �4), since the covariance matrix of a density function is positive 
definite. A short remark is given here that it is still open whether the inverse of the above claim 
holds. However, in the current work we could keep our discussion within the domain of Forig, 
which we will explain later in this section.

Proposition 2.3. The functions Forig and �2 are C∞ with respect to Q in the corresponding 
domain. The function �4 is C∞ with respect to (Q, H) in its domain.

Proof. For �2 and �4, the result is obvious because they are elementary functions. For the 
original entropy Forig, notice that ∂Forig/∂Q = B and that ∂Q/∂B is positive definite. It is easy 
to verify by direct calculation that Q is smooth with respect to B, so that B is smooth with respect 
to Q, which already gives the smoothness of Forig. �
2.2. Stationary points and the linearized operator

Let us look into the bulk energy (1.3). Now, we can specify the entropy term Fentropy. It may 
take the original entropy Forig or the quasi-entropy ν�2. The free parameter ν is introduced to 
attain a match between the original entropy and the quasi-entropy. We choose ν = 5/9 here, 
which is proposed in Section 6.1.2 in [42].

To study the limit ε → 0, we need to characterize the minimizer of the bulk energy. The 
up-to-date theoretical result [47,42] is given below.

Proposition 2.4. Assume that the matrix 
(

c02 c04
c04 c03

)
is not negative definite, or is negative but 

c2
04/c03 − c02 ≤ 2. For the bulk energy Fb given in (1.3), where the entropy term Fentropy takes 

either Forig or ν�2 with ν = 5/9, at the stationary points Q1 and Q2 have a shared eigenframe.

In the cases where the eigenframe of Q1 and Q2 are identical, they can be written in the form

Qi = si

(
n2

1 − i

3

)
+ bi(n2

2 − n2
3), i = 1,2. (2.6)

Numerical studies [34,25,46,45,42] indicate that even if the conditions of Proposition 2.4 do not 
hold, at each local energy minimizer (i.e. not saddle points) Q1 and Q2 still have an identical 
eigenframe. Furthermore, depending on the coefficients, the global energy minimum could be ei-
ther uniaxial (where bi = 0) or biaxial (where at least one bi �= 0). To fix the idea, we assume that 
under certain coefficients c02, c03, c04, we have a biaxial global minimum Q(0) = (Q

(0)
1 , Q(0)

2 )T

of the form (2.6).
With the form (2.6), the scalars si and bi shall satisfy

2

3
si + 1

3
> 0,

1

3
− 1

3
si ± bi > 0, i = 1,2,3, (2.7)

where we define s3 = −s1 − s2 and b3 = −b1 − b2. This requirement originates from the domain 
of the entropy term, which has been discussed previously [45].

It is significant to notice that the bulk energy is rotational invariant. Thus, when changing the 
frame p = (n1, n2, n3) in the biaxial minimizer Q(0), it still gives a minimizer. Therefore, the 
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biaxial equilibrium state is not a single point, but a three-dimensional manifold. We would like 
to write this manifold as Q(0)(p). The tangential space of this manifold at certain p is spanned by 
ξ k � LkQ(0)(p), k = 1, 2, 3. The three ξk lie within the kernel of the Hessian

HQ(0) = ∂2
QFb|Q(0) . (2.8)

This can be recognized by J (Q(0)(p)) = 0, because Q(0)(p) is a minimizer of Fb. Acting the 
operator Lk on it, we obtain

0 = LkJ (Q(0)(p)) = HQ(0)ξ k. (2.9)

On the other hand, since Q(0) is a minimizer, the eigenvalues of the Hessian HQ(0) are non-
negative. Therefore, we have the following results.

Proposition 2.5. For a given stationary point Q(0) = Q(0)(p), the linearized operator HQ(0) sat-
isfies the following properties:

• It holds HQ(0)Q ∈ (KerHQ(0) )⊥;
• There exists a constant C0 > 0 such that for any Q ∈ (KerHQ(0) )⊥,

(HQ(0)Q) · Q ≥ C0|Q|2.

• HQ(0) is a one to one map on (KerHQ(0) )⊥ and its inverse H−1
Q(0) exists.

Proof. We may choose a basis of (KerHQ(0) )⊥ as e1, · · · , el . The operator HQ(0) can be written 
as

HQ(0) =
l∑

j=1

λj ej ⊗ ej , λj > 0. (2.10)

The three statements can be deduced easily using the above representation. �
To fully characterize the Hessian, we adopt the assumption below.

Assumption 1. KerHQ(0) = span{ξ1, ξ2, ξ3}.

Actually, we have proved that ξk ∈ KerHQ(0) . The meaning of this assumption is that the three-
dimensional biaxial minimizer manifold will not lose its stability when the coefficients in the bulk 
energy are perturbed. This assumption certainly does not always hold, as it will be broken in the 
case of phase transitions. In other words, by adopting this assumption we consider the coefficients 
far from the critical values that give rise to phase transitions. In Appendix, we provide a simple 
numerical example as an evidence for this assumption to hold for biaxial minimizers.

Under Assumption 1, we have l = dim(KerHQ(0) )⊥ = dimQ − dim(KerHQ(0) ) = 7 in (2.10). 
Another thing to be noticed is that ξk and ek depend on the frame p. Later, we will need their 
derivatives.
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Define

P inQ =
3∑

j=1

Q · ξ j

ξ j

|ξ j |2
, PoutQ =

7∑
j=1

Q · ej

ej

|ej |2 , (2.11)

which are the projections onto the space KerHQ(0) and (KerHQ(0) )⊥, respectively.

2.3. Closure by entropy minimization

Corresponding to the choice of the entropy term Fentropy, the closure approximation can also 
be done in two ways. To avoid ambiguity, we assume that Q lies within domForig. The closure 
approximation aims to calculate the high-order tensors H from Q.

If the entropy term is given by Forig, one could use the maximum entropy state (2.1) to calcu-
late H.

Proposition 2.6. If H is calculated from (2.1), it is C∞ with respect to Q.

Proof. It can be verified easily that H is C∞ with respect to B. Proposition 2.3 tells us B is C∞
with respect to Q. �

The closure approximation by (2.1) can be equivalently formulated as a constrained mini-
mization [42]. Based on this formulation, one can naturally define the closure approximation by 
the quasi-entropy. Specifically, when Fentropy takes ν�2, we use �4 for closure approximation. 
The high-order tensors are solved through

min�4(Q,H), s.t. Q given. (2.12)

From Proposition 2.2 and the discussion below it, the solution exists and is unique. Because of 
strict convexity, it equivalently demands

∂H�4 = 0. (2.13)

The smoothness statement still holds.

Proposition 2.7. When H is solved from (2.13), it is C∞ with respect to Q.

Proof. Taking derivative with respect to Q on (2.12), we obtain

∂H
∂Q

= −(∂2
H�4)

−1∂Q∂H�4.

Since �4 is C∞ and ∂2
H�4 is positive definite, the smoothness is immediately obtained. �

We define Qδ as all Q in the domain of Forig whose distance to the boundary is at least δ.

Qδ = {Q ∈ Q : d(Q, ∂domForig) ≥ δ
}
. (2.14)
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It gives a bounded closed set, which is compact. Therefore, for any δ, uniform estimates hold for 
derivatives of H.

Proposition 2.8. For arbitrary small enough δ > 0 and nonnegative integer k, there exists Cδ,k >

0 such that |∂k
QH| ≤ Cδ,k for Q ∈Qδ .

Proof. It is deduced immediately from smoothness and the fact that Qδ is compact. �
Below, we list some basic estimates derived from the properties we stated above. We denote 

the derivative of the entropy term with respect to Q by S(Q) = ∂QFentropy, in which Fentropy can 
be taken as the original entropy or the quasi-entropy. Lemma 2.9 and Lemma 2.10 are direct 
consequences of Proposition 2.8, Lemma B.2 and Lemma B.4.

Lemma 2.9. For any δ > 0, k ∈ N and constant tensor Q∗ = (Q∗
1, Q

∗
2)

T , there exists a positive 
constant Cδ depending on δ such that if Q(x) ∈Qδ , then

‖S(Q) − S(Q∗)‖Hk ≤ Cδ‖Q − Q∗‖Hk .

Lemma 2.10. For any δ > 0, there exists a positive constant Cδ depending on δ such that

|S(Q′) − S(Q′′)| ≤ Cδ|Q′ − Q′′|,

where Q′ = (Q′
1, Q

′
2)

T , Q′′ = (Q′′
1, Q

′′
2)

T ∈Qδ . Consequently, it follows that

|∂iS(Q)| ≤ Cδ|∂iQ|.

Further, for any k ∈N , there exists a constant C = C(δ, ‖Q′ −Q∗‖Hk , ‖Q′′ −Q∗‖Hk ), such that

‖S(Q′) − S(Q′′)‖Hk ≤ C(δ,‖Q′ − Q∗‖Hk ,‖Q′′ − Q∗‖Hk )‖Q′ − Q′′‖Hk .

Lemma 2.11 and Lemma 2.12 are direct corollaries of Lemma 2.10, Lemma B.1 and 
Lemma B.3.

Lemma 2.11. For any δ > 0, there exists a positive constant Cδ depending on δ such that if 
Q(x) ∈ Qδ and U ∈R3×3, then for any multiple index α, it follows that

‖∂α(YQU) −YQ∂αU‖L2 ≤ Cδ(‖∇Q‖L∞‖U‖H |α|−1 + ‖∇Q‖H |α|−1‖U‖L∞).

Furthermore, if |α| ≥ 2, it holds

‖∂α(YQU) −YQ∂αU‖L2 ≤ Cδ‖∇Q‖H |α|‖U‖H |α|−1 .

Here, the operator YQ can be taken as MQ, VQ, NQ and PQ, respectively.
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Lemma 2.12. For any δ > 0 and k ∈ N , there exist positive constants C1 = C1(δ) and C2 =
C2(δ, ‖Q′ − Q∗‖Hk , ‖Q′′ − Q∗‖Hk) such that

‖YQ′U −YQ′′U‖Hk ≤ C1‖U‖Hk‖Q′ − Q′′‖L∞ + C2‖U‖L∞‖Q′ − Q′′‖Hk .

Furthermore, if 0 ≤ k ≤ 2, there exists a positive constant C = C(δ, ‖Q′ − Q∗‖H 2, ‖Q′′ −
Q∗‖H 2) such that

‖YQ′U −YQ′′U‖Hk ≤C‖U‖H 2‖Q′ − Q′′‖Hk ,

‖YQ′U −YQ′′U‖Hk ≤C‖U‖Hk‖Q′ − Q′′‖H 2 .

Here, the operator YQ can be taken as MQ, VQ, NQ and PQ, respectively.

3. Local well-posedness of smooth solutions

This section is devoted to studying the local well-posedness of smooth solutions to the system 
(1.12)–(1.14). The major estimates come directly from the basic estimates in Section 2.

For the integer s ≥ 2, we define the space X as follows:

X(δ, T ,C0)
def=
{
(Q,v) : Q ∈Qδ/2, ‖Q − Q∗‖Hs+1 + ‖G(Q)‖L2

t H
s
x

+ ‖v‖Hs + ‖∇v‖L2
t H

s
x

≤ C0, a.e. t ∈ [0, T ]
}
.

If the solution (Q, v) ∈X, then by the Sobolev imbedding theorem, it follows that

‖Q‖L∞ + ‖∇Q‖L∞ + ‖v‖L∞ ≤ C(C0).

The proof of Theorem 1.1 is mainly based on the iterative argument and the closed energy esti-
mate.

3.1. Linearized system and iteration scheme

In order to define a sequence {(Q(n), v(n))}n∈N of approximate solutions to the system 
(1.12)–(1.14), we follow an iterative scheme. First, we set(

Q(0)(x, t),v(0)(x, t)
)= (QI (x),vI (x)) ∈ X(δ, T ,C0).

Assume that (Q(n), v(n)) ∈ X(δ, T , C0). We construct (Q(n+1), v(n+1)) by solving the following 
linearized system:

∂Qn+1

∂t
+ v(n) · ∇Q(n+1) = −MQ(n)

(1

ε
J (Q(n)) + G(Q(n+1))

)
+ VQ(n)κ

(n+1), (3.1)(∂v(n+1)

∂t
+ v(n) · ∇v(n+1)

)
i
= −∂ip

(n+1) + η�v
(n+1)
i + ∂j

(
PQ(n)κ

(n+1)
)
ij

+ ∂jNQ(n)

(1J (Q(n)) + G(Q(n+1))
)

+
(1J (Q(n)) + G(Q(n+1))

)
· ∂iQ(n), (3.2)
ε ij ε
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∇ · v(n+1) = 0, (3.3)

where J (Q(n)) and G(Q(n+1))jk are given by, respectively,

J (Q(n)) =S S(Q(n)) + D0Q(n),

G(Q(n+1))jk = − D1(�Q(n+1))jk − D2S (∂j ∂iQ
(n+1)
ik ).

Furthermore, the initial data satisfies(
Q(n+1)(x, t),v(n+1)(x, t)

)= (QI (x),vI (x)).

The existence of the solution (Q(n+1), v(n+1)) to the linearized system (3.1)–(3.3) can be guar-
anteed by the classical parabolic theory (see [2] for instance). The next task is to prove local a 
priori estimates, that is, for some suitably chosen T > 0, it holds (Q(n+1), v(n+1)) ∈ X.

For the integer s ≥ 2, we define the following two energy functionals:

Es(Q,v)
def= 1

2
‖Q − Q∗‖2

L2 +Fe[∇Q] + 1

2
‖v‖2

L2 +Fe[∇s+1Q] + 1

2
‖∇sv‖2

L2,

Fs(Q,v)
def= ‖G(Q)‖2

L2 + ‖∇sG(Q)‖2
L2 + ‖∇v‖2

L2 + ‖∇s+1v‖2
L2,

where Fe[∇Q] = ∫R3 Fe(∇Q)dx. It follows from Sobolev’s interpolation theorem that

Es ∼ ‖Q − Q∗‖2
L2 + ‖∇Q‖2

Hs + ‖v‖2
Hs , Fs ∼ ‖∇Q‖2

Hs+1 + ‖∇v‖2
Hs .

Assume that E(n)
s = Es(Q(n), v(n)). In order to prove (Q(n+1), v(n+1)) ∈ X, we need to establish 

the closed energy estimate

d

dt
E(n+1)

s + νF (n+1)
s ≤ C(δ,C0, ν)(1 + E(n+1)

s ),

for some small ν > 0. The proof is split into three steps.
Step 1. L2-estimate for Q(n+1) − Q∗. First of all, using the definition of J (Q) in (1.15) and 

Lemma 2.10, we deduce that

‖J (Q(n))‖L2 =‖S (S(Q(n)) − S(Q∗)
)+ D0(Q(n) − Q∗)‖L2

≤Cδ‖Q(n) − Q∗‖L2 ≤ C(δ,C0). (3.4)

Taking the L2-inner product on the equation (3.1) with Q(n+1) − Q∗ and using (3.4), we arrive 
at

1

2

d

dt
‖Q(n+1) − Q∗‖2

L2 = 〈∂tQ(n+1),Q(n+1) − Q∗〉

= −1

ε

〈
MQ(n)J (Q(n)),Q(n+1) − Q∗〉

− 〈MQ(n)G(Q(n+1)),Q(n+1) − Q∗〉+ 〈VQ(n)κ
(n+1),Q(n+1) − Q∗〉
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≤
(
C(δ,C0) + Cδ‖G(Q(n+1))‖L2 + Cδ‖∇v(n+1)‖L2

)
‖Q(n+1) − Q∗‖L2

≤ C(δ,C0)
(
(E(n+1)

s )1/2 + E(n+1)
s

)
. (3.5)

Step 2. L2-estimate for (∇Q(n+1), v(n+1)). Taking the L2-inner product on the equation (3.1)
with G(Q(n+1)), and noticing the fact that the operator MQ(n) is positive definite, we obtain

d

dt
Fe[∇Q(n+1)] = 〈∂tQ(n+1),G(Q(n+1))〉

= −〈v(n) · ∇Q(n+1),G(Q(n+1))〉 − 1

ε

〈
MQ(n)J (Q(n)),G(Qn+1)

〉
− 〈MQ(n)G(Q(n)),G(Qn+1)

〉+ 〈VQ(n)κ
(n+1),G(Qn+1)

〉
≤ ‖v(n)‖L∞‖∇Q(n+1)‖L2‖G(Qn+1)‖L2 + C(δ,C0)‖G(Q(n+1))‖L2

− ν‖G(Q(n+1))‖2
L2 + 〈VQ(n)κ

(n+1),G(Qn+1)
〉

≤ C(δ,C0, ν)(1 + E(n+1)
s ) − ν‖G(Q(n+1))‖2

L2 + 〈VQ(n)κ
(n+1),G(Qn+1)

〉
. (3.6)

On the other hand, taking the inner product on the equation (3.2) with v(n+1), noticing that MQ(n)

is positive definite, we deduce that

1

2

d

dt
‖v(n+1)‖2

L2 + η‖∇v(n+1)‖2
L2

= −〈PQ(n)κ
(n+1),∇v(n+1)

〉− 1

ε

〈
NQ(n)J (Q(n)),∇v(n+1)

〉
− 〈NQ(n)G(Q(n+1)),∇v(n+1)

〉+ 1

ε

〈
J (Q(n)) · ∂iQ(n), (v(n+1))i

〉
+ 〈G(Q(n+1)) · ∂iQ(n), (v(n+1))i

〉
≤ C(δ,C0)‖∇v(n+1)‖L2 − 〈NQ(n)G(Q(n+1)),∇v(n+1)

〉
+ C(δ,C0)‖∇Q(n)‖H 2‖vn+1‖L2 + C‖∇Q(n)‖H 2‖∇Q(n+1)‖L2‖∇v(n+1)‖L2

≤ C(δ,C0, ν)(1 + E(n+1)
s ) − 〈NQ(n)G(Q(n+1)),∇v(n+1)

〉+ δ‖∇vn+1‖2
L2, (3.7)

where δ represents a small positive constant to be determined later. Consequently, noticing 
NQ(n) = VT

Q(n) and combining (3.6) with (3.7), we arrive at

d

dt

(
Fe[∇Q(n+1)] + 1

2
‖v(n+1)‖2

L2

)
+ ν‖G(Q(n+1))‖2

L2

+ (η − δ)‖∇v(n+1)‖2
L2 ≤ C(δ,C0, ν)(1 + E(n+1)

s ). (3.8)

Step 3. L2-estimate for (∇s+1Q(n+1), ∇sv(n+1)). We first consider the estimate of the higher 
order derivative for Q(n+1). Acting the differential operator ∇s on the equation (3.1) and taking 
the inner product with ∇sG(Q(n+1)), we get
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d

dt
Fe[∇s+1Q(n+1)] = 〈∇s∂tQ(n+1),∇sG(Qn+1)〉

= −〈∇s(v(n) · ∇Q(n+1)),∇sG(Q(n+1))
〉− 1

ε

〈∇s
(
MQ(n)J (Q(n))

)
,∇sG(Q(n+1))

〉
− 〈∇s

(
MQ(n)G(Q(n+1))

)
,∇sG(Q(n+1))

〉+ 〈∇s
(
VQ(n)κ

(n+1)
)
,∇sG(Q(n+1))

〉
def= I1 + I2 + I3 + I4. (3.9)

Now we estimate (3.9) term by term as follows. Using Lemma 2.10 and Lemma B.1, the terms 
I1 and I2 can be handled as

I1 ≤C‖v(n)‖Hs ‖∇Q(n+1)‖Hs ‖∇sG(Q(n+1))‖L2

≤C(δ,C0)
(
E(n+1)

s F (n+1)
s

)1/2
,

I2 ≤Cδ‖Q(n) − Q∗‖Hs+1‖∇s−1G(Qn+1)‖L2 ≤ C(δ,C0)
(
E(n+1)

s

)1/2
.

Moreover, taking advantage of Lemma 2.11, we derive that

I3 = − 〈MQ(n)

(∇sG(Q(n+1))
)
,∇sG(Q(n+1))

〉
− 〈[∇s ,MQ(n)]G(Q(n+1)),∇sG(Q(n+1))

〉
≤ − ν‖∇sG(Q(n+1))‖2

L2 + Cδ‖Q(n) − Q∗‖Hs ‖G(Q(n+1))‖Hs−1‖∇sG(Q(n+1))‖L2

≤ − ν‖∇sG(Q(n+1))‖2
L2 + C(δ,C0)

(
E(n+1)

s F (n+1)
s

)1/2
,

I4 =〈VQ(n)

(∇sκ(n+1)
)
,∇sG(Q(n+1))

〉
+ 〈[∇s ,VQ(n)]κ(n+1),∇sG(Q(n+1))

〉
≤〈VQ(n)

(∇sκ(n+1)
)
,∇sG(Q(n+1))

〉
+ Cδ‖Q(n) − Q∗‖Hs ‖∇v(n+1)‖Hs−1‖∇sG(Q(n+1))‖L2

≤〈VQ(n)

(∇sκ(n+1)
)
,∇sG(Q(n+1))

〉+ C(δ,C0)
(
E(n+1)

s F (n+1)
s

)1/2
.

Plugging the above estimates into (3.9) leads to

d

dt
Fe[∇s+1Q(n+1)] + ν‖∇sG(Q(n+1))‖2

L2

≤ 〈VQ(n)

(∇sκ(n+1)
)
,∇sG(Q(n+1))

〉+ C(δ,C0)
(
E(n+1)

s F (n+1)
s

)1/2
. (3.10)

We now turn to the estimate of the higher order derivative of v(n+1). Similarly, applying the 
equation (3.2), we deduce that

1

2

d

dt
‖∇sv(n+1)‖2

L2 + η‖∇s+1vn+1‖2
L2

= −〈∇s(v(n) · ∇v(n+1)),∇sv(s+1)
〉− 〈∇s(PQ(n)κ

(n+1)),∇s+1v(n+1)
〉
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− 1

ε

〈∇s
(
NQ(n)J (Q(n))

)
,∇s+1v(n+1)

〉− 〈∇s
(
NQ(n)G(Q(n+1))

)
,∇s+1v(n+1)

〉
+ 1

ε

〈∇s
(
J (Q(n)) · ∂iQ(n)

)
,∇s(v(n+1))i

〉+ 〈∇s
(
G(Q(n+1)) · ∂iQ(n)

)
,∇s(v(n+1))i

〉
def= I ′

1 + I ′
2 + I ′

3 + I ′
4 + I ′

5 + I ′
6. (3.11)

In virtue of Lemma 2.10 and Lemma B.1, the terms I ′
1, I

′
3 and I ′

5 can be estimated as follows:

I ′
1 ≤C‖v(n)‖Hs ‖∇v(n+1)‖Hs ‖∇sv(n+1)‖L2

≤C(δ,C0)
(
E(n+1)

s + (E(n+1)
s F (n+1)

s )1/2),
I ′

3 ≤Cδ‖∇Q(n)‖Hs ‖∇sv(n+1)‖L2 ≤ C(δ,C0)(E
(n+1)
s )1/2,

I ′
5 ≤C‖J (Q(n))‖Hs ‖∇Q(n)‖Hs ‖∇sv(n+1)‖L2 ≤ C(δ,C0)(E

(n+1)
s )1/2.

Applying Lemma 2.11 and Lemma B.3, along with the fact that PQ(n) is positive definite, we 
have

I ′
2 = − 〈PQ(n) (∇sκ(n+1)),∇s+1v(n+1)

〉
− 〈[∇s ,PQ(n)]κ(n+1),∇s+1vn+1〉

≤C(δ,C0)‖∇Q(n)‖Hs ‖∇v(n+1)‖Hs−1‖∇s+1v(n+1)‖L2

≤C(δ,C0)(E
(n+1)
s )1/2,

I ′
4 = − 〈NQ(n)

(∇sG(Q(n+1))
)
,∇s+1v(n+1)

〉
− 〈[∇s ,NQ(n)]G(Q(n+1)),∇s+1v(n+1)

〉
≤ − 〈NQ(n)

(∇sG(Q(n+1))
)
,∇s+1v(n+1)

〉
+ Cδ‖Q(n) − Q∗‖Hs ‖G(Q(n+1))‖Hs−1‖∇s+1v(n+1)‖L2

≤ − 〈NQ(n)

(∇sG(Q(n+1))
)
,∇s+1v(n+1)

〉+ C(δ,C0)(E
(n+1)
s F (n+1)

s )1/2

I ′
6 =
〈
∇s∂j

(∂Fe(∇Q(n+1))

∂(∂j Q(n+1))
· ∂iQ(n)

)
,∇sv

(n+1)
i

〉
= −

〈
∇s
(∂Fe(∇Q(n+1))

∂(∂j Q(n+1))
· ∂iQ(n)

)
, ∂j∇sv

(n+1)
i

〉
≤C‖∇Q(n)‖Hs ‖∇Q(n+1)‖Hs ‖∇v(n+1)‖Hs ≤ C(C0)(E

(n+1)
s F (n+1)

s )1/2,

where for the estimate of I ′
6 we have used the following identity:

G(Q) · ∂iQ = −∂j

(∂Fe(∇Q)

∂(∂j Q)
· ∂iQ

)
− ∂ip̃ (3.12)

with p̃ being an additional pressure term that can be adsorbed into the pressure p. Then, from 
the above estimates of I ′(i = 1, · · · , 6) and (3.11), it follows that
i
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1

2

d

dt
‖∇sv(n+1)‖2

L2 + η‖∇s+1vn+1‖2
L2

≤ −〈NQ(n)

(∇sG(Q(n+1))
)
,∇s+1v(n+1)

〉
+ C(δ,C0)(E

(n+1)
s )1/2

(
1 + (F (n+1)

s )1/2
)
. (3.13)

Therefore, combining (3.5), (3.8), (3.10) with (3.13), we arrive at

1

2

d

dt
E(n+1)

s + νF (n+1)
s ≤ C(δ,C0)(1 + E(n+1)

s ), (3.14)

for sufficiently small ν > 0. The Gronwall’s inequality implies that for any t ∈ [0, T ], there holds

E(n+1)
s (t) ≤(1 + E(n+1)

s (0)
)

exp
(
C(δ,C0)t

)− 1

=(1 + Es(QI ,vI )
)

exp
(
C(δ,C0)t

)− 1.

Consequently, if we take T0 > 0 such that

C(δ,C0)T0 ≤ ln(1 + C0) − ln
(
1 + Es(QI ,vI )

)
,

then it follows that sup
0≤t≤T0

E
(n+1)
s (t) ≤ C0.

On the other hand, using the equation (3.1) we derive

∥∥∥ t∫
0

∂tQ(n+1)(x, t)dt

∥∥∥
L∞ ≤

t∫
0

‖∂tQ(n+1)(x, t)‖H 2dt

≤ C(δ,C0)

t∫
0

(
‖G(Q(n+1))‖H 2 + ‖∇v(n+1)‖H 2 + ‖Q(n+1) − Q∗‖H 3 + 1

)
dt

≤ C(δ,C0)t,

which together with QI ∈ Qδ implies that Q(n+1) ∈ Qδ/2 for t ∈ [0, T0], if taking T0 > 0 suffi-
ciently small. Thus, we arrive at (Q(n+1), v(n+1)) ∈ X(δ, T , C0) for T ≤ T0.

3.2. Convergence of the sequence

The subsection will be devoted to showing that the approximate solution sequence
{(Q(�), v(�))}�∈N is a Cauchy sequence, and to finishing the proof of Theorem 1.1.

For this purpose, we define

δ�+1
Q = Q(�+1) − Q(�), δ�

M = MQ(�) −MQ(�−1) , δ�
V = VQ(�) − VQ(�−1) ,

δ�
N = NQ(�) −NQ(�−1) , δ�

P = PQ(�) −PQ(�−1) , δ�
J = J (Q(�)) −J (Q(�−1)),

δ�+1
v = v(�+1) − v(�), δ�+1

κ = κ(�+1) − κ(�), δ�+1
p = p(�+1) − p(�).
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Assume that (Q(�+1), v(�+1)) and (Q(�), v(�)) are two solutions to the linearized system 
(3.1)–(3.3) with the same initial data. Taking the difference between the equations for 
(Q(�+1), v(�+1)) and (Q(�), v(�)), we deduce that

∂δ�+1
Q

∂t
+ v(�) · ∇δ�+1

Q = MQ(�)G(δ�+1
Q ) + VQ(�)δ

�+1
κ + δF�

1, (3.15)(∂δ�+1
v

∂t
+ v(�) · ∇δ�+1

v

)
i
= − ∂iδ

�+1
p + η�δ�+1

vi
+ ∂j

(
PQ(�) δ

�+1
κ

)
ij

+ ∂j

(
NQ(�)G(δ�+1

Q )
)
ij

+ G(δ�+1
Q ) · ∂iQ(�) + ∂j (δF�

2)ij , (3.16)

∇ · δ�+1
v = 0, (3.17)

where δF�
1 and δF�

2 are given by

δF�
1 = − δ�

v · ∇Q(�) + 1

ε

(
MQ(�)δ

�
J + δ�

MJ (Q(�−1))
)+ δ�

MG(Q(�)) + δ�
Vκ(�),

∂j (δF�
2)ij = ∂j

(
− δ�

v ⊗ v(�) + δ�
Pκ(�) + 1

ε

(
NQ(�) δ

�
J + δ�

NJ (Q(�−1))
))+ δ�

NG(Q(�))

+ 1

ε

(
δ� · ∂Q� +J (Q(�−1)) · ∂iδ

(�)
Q

)
.

Using Lemma 2.12 and integrating by parts, we obtain

‖(δF�
1, δF�

2)‖L2 ≤C(δ,C0)(‖δ�
Q‖H 1 + ‖δ�

v‖L2).

Similar to the argument in (3.8), we can prove that there exist a sufficiently small ν > 0 and 
C(δ, C0, ν) > 0, such that

d

dt
Ẽ

(�+1)
0 (t) + η

2
‖∇δ�+1

v ‖2
L2 + ν‖G(δ�+1

Q )‖2
L2

≤ C(δ,C0, ν)
(‖δ�+1

v ‖2
L2 + ‖δ�+1

Q ‖2
H 1 + ‖δ�

v‖2
L2 + ‖δ�

Q‖2
H 1

)
, (3.18)

where

Ẽ
(�)
0 (t)

def= 1

2
‖δ�

Q‖2
L2 + 1

2
‖δ�

v‖2
L2 +Fe(∇δ�

Q).

Then, from (3.18) we know

d

dt
Ẽ

(�+1)
0 (t) ≤ C

(
Ẽ

(�)
0 (t) + Ẽ

(�+1)
0 (t)

)
,

which further implies that

Ẽ
(�+1)
0 (t) ≤ C

t∫
0

exp
(
C(t − τ)

)
Ẽ

(�)
0 (τ )dτ ≤ C

T∫
0

exp
(
C(T − τ)

)
dτ sup

t∈(0,T ]
Ẽ

(�)
0 (t).
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Thus, taking T < T0 small enough such that C
∫ T

0 exp
(
C(T − τ)

)
dτ ≤ 1

2 , we arrive at

sup
t∈(0,T ]

Ẽ
(�+1)
0 (t) ≤ 1

2
sup

t∈(0,T ]
Ẽ

(�)
0 (t).

This implies that {(Q(�), v(�))}�∈N is a Cauchy sequence. More precisely, there exists the limits 
Q − Q∗ ∈ C([0, T ]; H 1(R3)) and v ∈ C([0, T ]; L2(R3)) such that

Q(n) − Q∗ → Q − Q∗ ∈ C([0, T ];H 1(R3)),

v(n) → v ∈ C([0, T ];L2(R3)).

Applying the uniform bounds and the Sobolev’s interpolation theorem, there holds

Q(n) − Q∗ → Q − Q∗ ∈ C([0, T ];Hs′+1(R3)),

v(n) → v ∈ C([0, T ];Hs′
(R3)),

for any s′ ∈ (0, s). Therefore, the limit (Q, v) is just the classical solution to the system 
(1.12)–(1.14). Following the proof of convergence for the sequence {(Q(n), v(n))}n∈N , the 
uniqueness of the limit (Q, v) can be obtained by the similar energy estimate. Furthermore, by 
the standard regularity argument for parabolic system, we obtain

Q − Q∗ ∈ C([0, T ];Hs+1(R3)), v ∈ C([0, T ];Hs(R3)) ∩ L2([0, T ];Hs+1(R3)).

We omit the details here. This completes the proof of Theorem 1.1.

4. Rigorous biaxial limit of two-tensor hydrodynamics

In this section, based on the Hilbert expansion of solutions with respect to ε, we rigorously 
derive the biaxial frame hydrodynamics from the two-tensor hydrodynamics.

4.1. The Hilbert expansion

Let (Qε, vε) be a solution to the system (1.12)–(1.14). We make the following Hilbert expan-
sion:

Qε =
3∑

k=0

εkQ(k) + ε3QR
def= Q̃ + ε3QR, (4.1)

vε =
2∑

k=0

εkv(k) + ε3vR
def= ṽ + ε3vR, (4.2)

where Q(k)(0 ≤ k ≤ 3) and v(l)(0 ≤ l ≤ 2) are independent of ε, and (QR, vR) represent the 
remainder term depending upon ε.
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By the Taylor expansion, we obtain

J (Qε) =J (Q(0)) + εHQ(0)Q(1) + ε2(HQ(0)Q(2) + J1
)+ ε3(HQ(0)Q(3) + J2

)
+ ε3HQ(0)QR + ε4J ε

R, (4.3)

where J1, J2, J ε
R are given by

J1 =1

2

(
J ′′(Q(0))Q(1)

) · Q(1),

J2 =1

2

(
J ′′(Q(0))Q(1)

) · Q(2) + 1

2

(
J ′′(Q(0))Q(2)

) · Q(1)

+ 1

3!
(
J ′′′(Q(0))Q(1)Q(1)

) · Q(1),

J ε
R =1

2

∑
1 ≤ i, j ≤ 3
i + j ≥ 4

εi+j−4(J ′′(Q(0))Q(i)
) · Q(j)

+ 1

3!
∑

i + j + k ≥ 4
at least two of i, j, k are not zero

εi+j+k−4
(
J ′′′(Q(0))Q(i)Q(j)

)
· Q(k)

+ 1

4!J
(4)
(
Q(0) + θ1Q

ε)
(Q

ε
)4 + (J ′′(Q0 + θ2εQ

ε
)Q

ε) · QR

+ 1

2
ε2(J ′′(Q̃ + θ3ε

3QR)QR

) · QR, ∀ θl ∈ (0,1), l = 1,2,3,

with Q
ε = Q(1) + εQ(2) + ε2Q(3).

Since MQ, VQ, NQ and PQ are functions of Q, we have the following expansions:⎧⎪⎪⎪⎨⎪⎪⎪⎩
MQε =

3∑
k=0

εkM(k) + ε3MR + ε4RM, VQε =
3∑

k=0
εkV(k) + ε3VR + ε4RV ,

NQε =
3∑

k=0
εkN (k) + ε3NR + ε4RN , PQε =

3∑
k=0

εkP(k) + ε3PR + ε4RP ,

(4.4)

where M(k), V(k), N (k) and P(k)(k ≥ 0) are given by, respectively,

M(k) =
(
M(k)

11 M(k)
12

M(k)
12 M(k)

22

)
=
(

	2R(k)
4 + 	3R(k)

3 −	3R(k)
3

−	3R(k)
3 	1R(k)

5 + 	3R(k)
3

)
,

V(k) =
(
V(k)

Q1

V(k)
Q2

)
, N (k) = (N (k)

Q1
,N (k)

Q2
) = ((V(k)

Q1
)T , (V(k)

Q2
)T
)
,

P(k) = ζ
(
I22R(k)

1 + I11R(k)
2 + e1I11R(k)

3

)
.

Here, M(0), V(0), N (0), P(0) are those calculated from closure approximation at Q(0). Again, 
M(k), V(k), N (k), P(k)(1 ≤ k ≤ 3) merely depend on Q(k)(0 ≤ k ≤ 3) but are independent of 
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ε, and are polynomials of degree k with respect to Q(k)(1 ≤ k ≤ 3), respectively. Moreover, 
MR, VR, NR and PR depend on Q(k)(0 ≤ k ≤ 3) and QR , and are all linear with respect to QR . 
All higher order terms with respect to ε are contained in the terms ε4RM, ε4RV , ε4RN and 
ε4RP , respectively.

We are now in a position to write down the expansion of the system (1.12)–(1.14) with the 
small parameter ε and collect the terms (independent of the remainder term (QR, vR)) with the 
same order of ε. More specifically, we have the following:

• The O(ε−1) system:

M(0)J (Q(0)) = 0 ⇒ J (Q(0)) = 0, (4.5)

because M(0) is positive definite.
• Zeroth order term in ε:

∂Q(0)

∂t
+ v(0) · ∇Q(0) = −M(0)

(
HQ(0)Q(1) + G(Q(0))

)+ V(0)κ(0), (4.6)

(∂v(0)

∂t
+ v(0) · ∇v(0)

)
i
= − ∂ip

(0) + η�v
(0)
i + ∂j

(
P(0)κ(0)

)
ij

+ ∂j

(
N (0)

(
HQ(0)Q(1) + G(Q(0))

)
ij

)
+ (HQ(0)Q(1) + G(Q(0))

) · ∂iQ(0), (4.7)

∇ · v(0) = 0. (4.8)

• First order term in ε:

∂Q(1)

∂t
+ v(0) · ∇Q(1) = −M(0)

(
HQ(0)Q(2) + G(Q(1)) + J1

)+ V(0)κ(1) + F1, (4.9)

(∂v(1)

∂t
+ v(0) · ∇v(1)

)
i
= − ∂ip

(1) + η�v
(1)
i + ∂j

(
P(0)κ(1)

)
ij

+ ∂j

(
N (0)

(
HQ(0)Q(2) + G(Q(1)) + J1

)
ij

)
+ (HQ(0)Q(2) + G(Q(1)) + J1

) · ∂iQ(0) + G1, (4.10)

∇ · v(1) = 0, (4.11)

where F1 and G1 are given by

F1 = − v(1) · ∇Q(0) −M(1)
(
HQ(0)Q(1) + G(Q(0))

)+ V(1)κ(0),

G1 = − v(1) · ∇v(0) + ∂j

(
P(1)κ(0)

)
ij

+ ∂j

(
N (1)

(
HQ(0)Q(1) + G(Q(0))

)
ij

)
+ (HQ(0)Q(1) + G(Q(0))

) · ∂iQ(1).
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• Second order term in ε:

∂Q(2)

∂t
+ v(0) · ∇Q(2) = −M(0)

(
HQ(0)Q(3) + G(Q(2)) + J2

)+ V(0)κ(2) + F2, (4.12)(∂v(2)

∂t
+ v(0) · ∇v(2)

)
i
= − ∂ip

(2) + η�v
(2)
i + ∂j

(
P(0)κ(2)

)
ij

+ ∂j

(
N (0)

(
HQ(0)Q(3) + G(Q(2)) + J2

)
ij

)
+ (HQ(0)Q(3) + G(Q(2)) + J2

) · ∂iQ(0) + G2, (4.13)

∇ · v(2) = 0, (4.14)

where F2 and G2 are given by

F2 = − v(2) · ∇Q(0) − v(1) · ∇Q(1) −M(2)
(
HQ(0)Q(1) + G(Q(0))

)
−M(1)

(
HQ(0)Q(2) + G(Q(1)) + J1

)+ V(2)κ(0) + V(1)κ(1),

G2 = − v(2) · ∇v(0) − v(1) · ∇v(1) + ∂j

(
P(2)κ(0)

)
ij

+ ∂j

(
P(1)κ(1)

)
ij

+ ∂j

(
N (2)

(
HQ(0)Q(1) + G(Q(0))

)
ij

)
+ ∂j

(
N (1)

(
HQ(0)Q(2) + G(Q(1)) + J1

)
ij

)
+ (HQ(0)Q(2) + G(Q(1)) + J1

) · ∂iQ(1) + (HQ(0)Q(1) + G(Q(0))
) · ∂iQ(2).

The problem becomes how to solve (Q(k), v(k))(0 ≤ k ≤ 2) and Q(3) from the above system 
(4.5)–(4.14). First of all, the O(ε−1) system in (4.5) implies that J (Q(0)) = 0, which will be 
taken as the biaxial global minimum with the following form:

Q
(0)
i (x, t) = si

(
n2

1(x, t) − 1

3
i

)
+ bi

(
n2

2(x, t) − n2
3(x, t)

)
, i = 1,2, (4.15)

for some orthornomal frame p = (n1, n2, n3) ∈ SO(3).
It can be easily observed that the system of order O(εk)(k = 0, 1, 2) is not closed, since the 

evolution equations of the leading terms Q(k)(k = 0, 1, 2) contain the corresponding non-leading 
terms Q(k+1). However, the zero-eigenvalue subspace KerHQ(0) of the Hessian of the bulk energy 
can be utilized to cancel the non-leading terms, and thus closing the system of the leading order. 
In particular, the evolution equations of the frame p = (n1, n2, n3) are determined by the O(1)

system (4.6)–(4.8). To accompolish this, we take dot product with (M(0))−1ξ j on (4.6). Since 
ξ j ∈ KerHQ(0) , we obtain

0 = ξ j ·
[(
M(0)

)−1(Q̇(0) − V(0)κ(0)
)+ G(Q(0))

]
.

By letting Q(0) take (4.15), the biaxial frame hydrodynamics is deduced. This is exactly what has 
been done in [22].

On the other hand, assume that we have derived the equations for (p, v) as above. It implies 
that 

(
M(0)

)−1(Q̇(0) −V(0)κ(0)
)+G(Q(0)) belongs to (span{ξ1, ξ2, ξ3})⊥. By Assumption 1, this 

term belongs to (KerHQ(0) )⊥. Therefore, there exists Q(1) satisfying
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−HQ(0)Q(1) = (M(0)
)−1(Q̇(0) − V(0)κ(0)

)+ G(Q(0)). (4.16)

This observation is crucial for the construction of Q(1), which we will clarify later.

4.2. Existence of the Hilbert expansion

In this subsection, we show the existence of the Hilbert expansion. In other words, we will 
show how to solve (Q(k), v(k)), (1 ≤ k ≤ 2) and Q(3) from the system (4.9)–(4.14) and derive the 
corresponding estimates. To be more specific, we prove the following proposition.

Proposition 4.1. Let (p, v(0)) be a smooth solution to the biaxial frame system (1.20)–(1.25)
obtained from the system (4.6)–(4.8) on [0, T ], satisfying

(∇p,v(0)) ∈ C([0, T ];H�) for � ≥ 20.

Then, there exists the solution (Q(k), v(k))(k = 0, 1, 2) and Q(3) ∈ (KerHQ(0) )⊥ of the system 
(4.9)–(4.14) satisfying

(∇Q(k),v(k)) ∈ C([0, T ];H�−4k)(k = 0,1,2), Q(3) ∈ C([0, T ];H�−11).

Let us decompose Q(1) according to KerHQ(0) , i.e. Q(1) = Q(1)
� + Q(1)

⊥ with Q(1)
� ∈ KerHQ(0)

and Q(1)
⊥ ∈ (KerHQ(0) )⊥. Assume that we already have a smooth solution (Q(0)(p), v). Before 

showing Proposition 4.1, we present a lemma about the material derivative of Q(1). In what 
follows, L(·) represents a linear function with the coefficients belonging to C([0, T ]; H�−1) and 
R ∈ C([0, T ]; H�−3) some function depending only on p, v(0) and Q(1)

⊥ .

Lemma 4.2. It holds

Pout(Q̇(1)) =L(Q(1)
� ) + R, P in(Q̇(1)) = Q̇(1)

� + L(Q(1)
� ) + R,

where Q̇(1)
� = (∂t + v(0) · ∇)Q(1)

� .

Proof. Recall that

ξ k(p) = LkQ(0)(p), k = 1,2,3.

Then, for Q(1)
� ∈ KerHQ(0) , we have Q(1)

� =
3∑

k=1
ak(t)ξ k(p), from which we obtain

Q̇(1)
� =(∂t + v(0) · ∇)Q(1)

�

=
3∑

k=1

a′
k(t)ξ k(p) +

3∑
k=1

ak(t)(∂t + v(0) · ∇)ξ k(p),

which leads to
892



S. Li and J. Xu Journal of Differential Equations 366 (2023) 862–911
Pout(Q̇(1)
� ) =

3∑
k=1

ak(t)P
out
(
(∂t + v(0) · ∇)ξ k(p)

)
def= L(Q(1)

� ).

The reason why we can regard Pout(Q̇(1)
� ) as a linear term of Q(1)

� is that they are both linear 

with respect to the coefficients ak(t). Using Q(1) = Q(1)
� + Q(1)

⊥ , we deduce that

Q̇(1) =P in(Q̇(1)) + Pout(Q̇(1))

=P in(Q̇(1)
� + Q̇(1)

⊥ ) + Pout(Q̇(1)
� + Q̇(1)

⊥ )

=P in(Q̇(1)
� ) + L(Q(1)

� ) + R.

Thus, taking the projections Pout and P in, respectively, we have

Pout(Q̇(1)) =L(Q(1)
� ) + R,

P in(Q̇(1)) =Q̇(1) − Pout(Q̇(1)) = Q̇(1)
� + L(Q(1)

� ) + R. �
Proof of Proposition 4.1. Suppose that (p, v(0)) is a solution to the biaxial frame system 

(1.20)–(1.25) on [0, T ] and satisfy

(∇p,v(0)) ∈ C([0, T ];H�) for � ≥ 20.

Since Q(0) = Q(0)(p) is a function of the frame p and takes the form (4.15), it follows that 
Q(0) ∈ C([0, T ]; H�+1).

We solve Q(1)
⊥ by rewriting (4.16) as

Q(1)
⊥ = −H−1

Q(0)

((
M(0)

)−1(Q̇(0) − V(0)κ(0)
)+ G(Q(0))

)
∈ C([0, T ];H�−1).

Here, the inverse H−1
Q(0) is well-defined within (KerHQ(0) )⊥ due to Proposition 2.5. Thus, the exis-

tence of (Q(1), v(1)) can be reduced to solving (Q(1)
� , v(1)). The key observation is that (Q(1)

� , v(1))

satisfies a linear dissipative system, which we derive below, although the system seems nonlinear 
at first glance due to the term J1.

Note that M(1), V(1) are linear functions of Q(1). Consequently, using (4.16), the term F1 can 
be expressed by

F1(Q(1)) = L(Q(1)
� ,v(1)) + R.

Since J1 is a quadratic function of Q(1) and Q(1) = Q(1)
� + Q(1)

⊥ , there has

J1(Q(1)) = J1(Q
(1)
� ) + L(Q(1)

� ) + R.

We claim that J1(Q
(1)
� ) ∈ (KerHQ(0) )⊥. In fact, it suffices to prove that

J1(Q
(1)
� ) · LαQ(0) = 0, α = 1,2,3.
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By the definition of J1 and Q(1)
� ∈ KerHQ(0) , we deduce that

J1(Q
(1)
� ) · LαQ(0) =1

2
J ′′(Q(0))ijklpq(Q(1)

� )kl(Q
(1)
� )pqLαQ(0)

ij

=1

2
Lα

[
J ′(Q(0))klpq(Q(1)

� )kl

]
(Q(1)

� )pq − 1

2
J ′(Q(0))klpqLα(Q(1)

� )kl(Q
(1)
� )pq

=0.

We are now in a position to derive the system for (Q(1)
� , v(1)). By observing the equation (4.9), 

we find that HQ(0)Q(2) + J1(Q
(1)
� ) ∈ (KerHQ(0) )⊥. This motivates us to take use of the projection 

operator P in. However, we can not cancel non-leading terms by taking the projection P in on 
the equation (4.9) directly because of P inM(0) �= M(0)P in. Therefore, to obtain the closed 
linear system of leading terms, we need to investigate the intrinsic structure of the equations 
(4.9)–(4.11).

Let us denote

Q̇(1)
� = (∂t + v(0) · ∇)Q(1)

� , v̇(1) = (∂t + v(0) · ∇)v(1),

A1 = P in(G(Q(1)
� )), B1 = P in[(M(0))−1V(0)κ(1)

]
,

A2 = Pout(G(Q(1)
� )), B2 = Pout[(M(0))−1V(0)κ(1)

]
.

Acting (M(0))−1 on (4.9), we derive that

(M(0))−1Q̇(1)
� = − (HQ(0)Q(2) + G(Q(1)

� ) + J1(Q
(1)
� )
)+ (M(0))−1V(0)κ(1)

+ L(Q(1)
� ,v(1)) + R. (4.17)

Now we impose the projection P in on (4.17). Since HQ(0)Q(2) + J1(Q
(1)
� ) ∈ (KerHQ(0) )⊥, we 

derive from Lemma 4.2 that

P inQ̇(1)
� = P in(M̃(0))−1(−A1 + B1) + L(Q(1)

� ,v(1)) + R, (4.18)

where M̃(0) def= P in(M(0))−1P in is symmetric positive definite. On the other hand, we impose 
the projection Pout on (4.17) to obtain

Pout((M(0))−1Q̇(1)
�
)= −(HQ(0)Q(2) + J1(Q

(1)
� )
)− A2 + B2 + L(Q(1)

� ,v(1)) + R,

which, together with Pout(Q̇(1)
� ) = L(Q(1)

� ) and (4.18), implies that

μ̃Q(1)
�

def= HQ(0)Q(2) + G(Q(1)
� ) + J1(Q

(1)
� )

= A1 + B2 − Pout(M(0))−1P inQ̇(1)
� + L(Q(1)

� ,v(1)) + R

= A1 + B2 − Pout(M(0))−1P in(M̃(0))−1(−A1 + B1) + L(Q(1)
� ,v(1)) + R.

(4.19)
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Thus, substituting (4.19) into the equation (4.10), together with (4.18), we obtain the following 
closed linear system for (Q(1)

� , v(1)):

Q̇(1)
� = −M(0)μ̃Q(1)

�
+ V(0)κ(1) + L(Q(1)

� ,v(1)) + R, (4.20)

v̇
(1)
i = − ∂ip

(1) + η�v
(1)
i + ∂j

(
P(0)κ(1)

)
ij

+ ∂j

(
N (0)

(
μ̃Q(1)

�
+ L(Q(1)

� ,v(1)) + R
))

ij

+ μ̃Q(1)
�

· ∂iQ(0) + L(Q(1)
� ,v(1)) + R, (4.21)

∇ · v(1) = 0. (4.22)

In order to prove the unique solvability of the linear system (4.20)–(4.22), we establish an a 
priori estimate for the energy

E�(t)
def=

�−4∑
k=0

(
‖∂kv(1)‖2

L2 + 〈∂kQ(1)
� ,G(∂kQ(1)

� )
〉)+ ‖Q(1)

� ‖2
L2 .

Specifically, we show that there exists a positive constant C such that

d

dt
E�(t) ≤ C

(
E�(t) + ‖R(t)‖H�−3

)
, (4.23)

where the solution (Q(1)
� , v(1)) satisfies (∇Q(1)

� , v(1)) ∈ C([0, T ]; H�−4). It suffices to prove the 
case of k = 0 due to similar proof for the general case. The corresponding energy functional is 
defined as

E1(t) = ‖v(1)‖2
L2 + ‖Q(1)

� ‖2
L2 + 〈Q(1)

� ,G(Q(1)
� )〉.

To begin with, it follows from (4.20) and (4.19) that

1

2

d

dt
‖Q(1)

� ‖2
L2 =〈−M(0)μ̃Q(1)

�
+ V(0)κ(1),Q(1)

�
〉+ 〈L(Q(1)

� ,v(1)) + R,Q(1)
� 〉

≤δ‖∇v(1)‖2
L2 + Cδ‖Q(1)

� ‖2
H 1 + C(‖v(1)‖2

L2 + ‖R‖2
L2). (4.24)

Taking the inner product on (4.20) with μ̃Q(1)
�

, and on (4.21) with v(1), respectively, we deduce 

that

d

dt

(
〈Q(1)

� ,G(Q(1)
� )〉 + 1

2
‖v(1)‖2

L2

)
= 〈∂tQ

(1)
� ,G(Q(1)

� )〉 + 〈∂tv(1),v(1)〉

= −〈Q̇(1)
� ,HQ(0)Q(2) + J1(Q

(1)
� )
〉︸ ︷︷ ︸

J1

−〈v(0) · ∇Q(1)
� ,G(Q(1)

� )〉︸ ︷︷ ︸
J2

− 〈M(0)μ̃Q(1)
�

, μ̃Q(1)
�

〉+ 〈V(0)κ(1), μ̃Q(1)
�

〉
︸ ︷︷ ︸+

〈
L(Q(1)

� ,v(1)) + R, μ̃Q(1)
�

〉
︸ ︷︷ ︸
J3 J4

895



S. Li and J. Xu Journal of Differential Equations 366 (2023) 862–911
− η‖∇v(1)‖2
L2 − 〈P(0)κ(1), κ(1)〉−〈N (0)μ̃Q(1)

�
, κ(1)

〉
︸ ︷︷ ︸

J5

−〈N (0)
(
L(Q(1)

� ,v(1)) + R
)
, κ(1)

〉+ 〈μ̃Q(1)
�

· ∂iQ(0),v(1)〉︸ ︷︷ ︸
J6

+ 〈L(Q(1)
� ,v(1)) + R,v(1)

〉︸ ︷︷ ︸
J7

. (4.25)

It can be easily seen that J3 + J5 = 0. Using the definition of μ̃Q(1)
�

, we obtain

J2 + J4 + J6 + J7 ≤ δ‖∇v(1)‖2
L2 + Cδ(‖v(1)‖2

L2 + ‖Q(1)
� ‖2

H 1 + ‖R‖2
H 1),

where we have used the following fact: for any Q = (Q1, Q2)
T ∈ Q, it holds

− 〈v(0) · ∇Q,G(Q)〉
= −

∫
R3

v(0)
α ∂αQkl

(
D1�Qkl + D2S (∂k∂mQlm)

)
dx

=
∫
R3

(
− ∂mv(0)

α ∂αQjkD1∂mQjk − D2
(
∂lv

(0)
α ∂αQkl∂mQkm + ∂kv

(0)
α ∂αQkl∂mQlm

))
dx

≤ C‖Q‖2
H 1 .

It remains to estimate the term J1. Noting that HQ(0)Q(2) + J1(Q
(1)
� ) ∈ (KerHQ(0) )⊥ and using 

Lemma 4.2, we derive that

J1 = − 〈Pout(Q̇(1)
� ),HQ(0)Q(2) + J1(Q

(1)
� )
〉

= − 〈L(Q(1)
� ), μ̃Q(1)

�
− G(Q(1)

� )
〉

≤δ‖∇v(1)‖2
L2 + Cδ(‖v(1)‖2

L2 + ‖Q(1)
� ‖2

H 1 + ‖R‖2
L2).

Thus, plugging the above terms Ji(i = 1, · · · , 7) into (4.25) and using (4.24), we arrive at

d

dt
E1(t) ≤ C(E1(t) + ‖R‖2

H 1),

which implies the existence of the solution (Q(1)
� , v(1)).

Hence, the solution (Q(1), v(1)) can be uniquely determined. In a similar argument, we can 
solve (Q(2), v(2)) and Q(3) by the system (4.12)–(4.14). Here we omit the details.
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4.3. System for the remainder and uniform estimates

This subsection will be devoted to deriving the remainder system and the uniform esti-
mates for the remainder. Proposition 4.1 tells us that (∇Q(k), v(k)) ∈ C([0, T ]; H�−4k) for 
k = 0, 1, 2 and Q(3) ∈ C([0, T ]; H�−11). Hence, in what follows, Q(k) and v(k) will be treated as 
known functions. We denote by C a constant depending on 

∑2
k=0 supt∈[0,T ] ‖v(k)(t)‖H�−4k and ∑3

k=0 supt∈[0,T ] ‖Q(k)(t)‖H�+1−4k , and independent of ε.
Recall the definitions (4.1) and (4.2), the remainder is written as

QR = 1

ε
(Qε − Q̃), vR = 1

ε
(vε − ṽ), (4.26)

where QR and vR depend on ε. In order to derive the evolution equations of the remainder of 
(QR, vR), we express the system of (Qε, vε) in the abstract form below:

∂tQε = − 1

ε
MQεJ (Qε) + V(Qε,vε), (4.27)

∂tv
ε
i =Pdiv

[
∂j

(1

ε
NQεJ (Qε) + N(Qε,vε)

)
ij

+ K(Qε)i

]
, (4.28)

where Pdiv is a projection operator mapping a vector field into its solenoidal part, and V, N, K
are given by

V(Q,v) = −MQG(Q) + VQκ − v · ∇Q, K(Q)i = μQ · ∂iQ,

N(Q,v) = NQG(Q) − v ⊗ v + 2ηA +PQκ.

Consequently, we deduce that

∂tQR = − 1

ε4

(
MQεJ (Qε) −MQ̃J (Q̃)

)
+ 1

ε3

(
V(Qε,vε) − V(Q̃, ṽ)

)
+ R1(Q̃, ṽ),

(4.29)

(∂tvR)i = Pdiv∂j

[ 1

ε4

(
NQεJ (Qε) −NQ̃J (Q̃)

)
+ 1

ε3

(
N(Qε,vε) − N(Q̃, ṽ)

)]
ij

+ Pdiv
1

ε3

(
K(Qε) − K(Q̃)

)
i
+ R2(Q̃, ṽ), (4.30)

where Ri (Q̃, ̃v)(i = 1, 2) are expressed by

R1(Q̃, ṽ) = 1

ε3

(
− 1

ε
MQ̃J (Q̃) + V(Q̃, ṽ) − ∂t Q̃

)
,

R2(Q̃, ṽ) =Pdiv
1

ε3

[
∂j

(1

ε
NQ̃J (Q̃) + N(Q̃, ṽ)

)
ij

+ K(Q̃) − ∂t ṽi

]
.

There is no doubt that this is a rather tedious task if we want to precisely express the right-
hand terms of the system (4.29)–(4.30) due to its high nonlinearity derived from the closure 
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approximation. To simplify the presentation, we introduce a notation R, called good terms, to 
stand for terms satisfying

‖R‖L2 + ε‖∇R‖L2 + ε2‖�R‖L2 ≤ C(εE)(1 + E + εF ) + εf (E), (4.31)

where C(·) and f (·) : R+ ∪ {0} → R+ ∪ {0} are increasing functions. They may depend on 
‖Q(k)‖(k = 0, · · · , 3) and parameters of the system but is independent of ε. Here, E and F in 
(4.31) are defined as, respectively,

E
def=‖QR‖H 1 + ε‖�QR‖L2 + ε2‖∇�QR‖L2 + ‖vR‖L2 + ε‖∇vR‖L2

+ ε2‖�vR‖L2, (4.32)

F
def=ε‖∇G(QR)‖L2 + ε2‖�G(QR)‖L2 + ε2‖�∇vR‖L2 . (4.33)

Let us give some examples of good terms that can be absorbed into R. Using the Sobolev em-
bedding theorem, for k = 0, 1, 2 and some positive constant C, it follows that

εk‖QR‖Hk + εk‖vR‖Hk ≤ E, ε‖QR‖L∞ + ε2‖vR‖L∞ ≤ CE,

εk+1‖G(QR)‖Hk + ε3‖∇vR‖L∞ ≤ C(E + εF ).

In addition, since ‖Q(0) − Q∗‖Hk , ‖Q(i)‖Hk(k ≤ 3, 1 ≤ i ≤ 3) can be all controlled by a constant 
independent of ε, there holds

‖Qε − Q∗‖Hk ≤ C + ε3‖QR‖Hk ≤ C(εE), ‖vε‖Hk ≤ C(εE).

It should be emphasized that the key feature of the good terms R lies in the right-hand side being 
controlled by C(1 + E) as ε → 0. Thus, we can deduce a closed energy estimate uniformly in ε
(see Proposition 4.7 below).

Armed with the definition of good term R, let us derive the right-hand terms of the system 
(4.29)–(4.30). First of all, by means of the choices of Q(k)(0 ≤ k ≤ 3), v(l)(0 ≤ l ≤ 2) by its 
regularity in Proposition 4.1, it can be seen that ‖Rk(Q̃, ̃v)‖H 2(k = 1, 2) are all controlled by a 
constant uniformly in ε, thus can be absorbed into the good terms R.

For the remaining terms in the system (4.29)–(4.30), we have the following two lemmas:

Lemma 4.3. It holds

MQεJ (Qε) −MQ̃J (Q̃) =ε3MQ(0) (HQ(0)QR) + ε4R, (4.34)

NQεJ (Qε) −NQ̃J (Q̃) =ε3NQ(0) (HQ(0)QR) + ε4R. (4.35)

Proof. By the Taylor expansion, for any θ ∈ (0, 1), we have

‖J (Qε) −J (Q̃) − ε3J ′(Q̃)QR‖Hk

=
∥∥∥ε6

1∫
θJ ′′(Q̃ + θε3QR)QR · QRdθ

∥∥∥
Hk
0
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≤ ε6C(ε3‖QR‖H 2)‖QR‖Hk‖QR‖H 2 ≤ ε5C(εE)E‖QR‖Hk ,

which implies J (Qε) −J (Q̃) − ε3HQ̃QR = ε4R. Consequently, we derive that

MQ̃J (Qε) −MQ̃J (Q̃) =ε3MQ̃

(
HQ̃QR

)+ ε4R

=ε3MQ(0)

(
HQ(0)QR

)+ ε4R.

On the one hand, we infer from Lemma 2.12 that

‖MQεJ (Q̃) −MQ̃J (Q̃)‖Hk

≤ C(‖ε3QR‖H 2)‖ε3QR‖H 1

∥∥J (Qε) −J (Q̃)
∥∥

H 2

≤ C(‖ε3QR‖H 2)ε
4‖QR‖Hk (1 + ‖ε2QR‖H 2) ≤ ε4C(εE)‖QR‖Hk (1 + εE),

which implies MQεJ (Q̃) −MQ̃J (Q̃) ∈ R. The other identity (4.35) is obtained with a similar 
argument. �
Lemma 4.4. For the terms V, N and K, it holds

V(Qε,vε) − V(Q̃, ṽ) =ε3(−MQ(0)G(QR) + VQ(0)κR

)+ ε3R, (4.36)

N(Qε,vε) − N(Q̃, ṽ) =ε3(NQ(0)G(QR) + 2ηAR +PQ(0)κR

)+ ε3R, (4.37)

K(Qε) − K(Q̃) =ε3∇ ·R, (4.38)

where κR = (∇vR)T and AR = 1
2 (κR + κT

R ).

Proof. To begin with, for 0 ≤ k ≤ 2, we have

εk‖vε · ∇Qε − ṽ · ∇Q̃‖Hk ≤εk‖vε · ∇Qε − vε · ∇Q̃‖Hk + εk‖vε · ∇Q̃ − ṽ · ∇Q̃‖Hk

≤ε3‖εkQR‖Hk‖vε‖L∞ + ε3‖εkvR‖Hk‖∇Q̃‖L∞

≤ε3C(1 + εE)E.

According to (4.26), we write

MQεG(Qε) −MQ̃G(Q̃) =MQεG(Q̃) −MQ̃G(Q̃)︸ ︷︷ ︸
M1

+ ε3(MQεG(QR) −MQ̃G(QR)
)︸ ︷︷ ︸

M2

+ ε3(MQ̃G(QR) −MQ(0)G(QR)
)︸ ︷︷ ︸

M3

+ε3MQ(0)G(QR).

Then, for 0 ≤ k ≤ 2, we derive from Lemma 2.12 that
899



S. Li and J. Xu Journal of Differential Equations 366 (2023) 862–911
‖M1‖Hk ≤C(‖Qε‖L∞,‖Q̃‖L∞,‖Qε − Q∗‖Hk ,‖Q̃ − Q∗‖Hk )‖ε3QR‖Hk‖G(Q̃)‖Hk+2 ,

‖M2‖Hk ≤ε3C(‖Qε‖L∞ ,‖Q̃‖L∞)‖G(QR)‖Hk‖ε3QR‖L∞

+ ε3C(‖Qε‖L∞ ,‖Q̃‖L∞,‖Qε − Q∗‖Hk ,‖Q̃ − Q∗‖Hk )‖G(QR)‖L∞‖ε3QR‖Hk ,

‖M3‖Hk ≤ε3C
(‖Q(0)‖L∞ ,‖Q̃‖L∞,‖Q(0) − Q∗‖Hk+2,‖Q̃ − Q∗‖Hk+2

)
· ‖Q̃ − Q(0)‖Hk+2‖G(QR)‖Hk .

Noting the following simple fact:

‖Q̃ − Q(0)‖Hk+2 = ε‖Q(1) + εQ(2) + ε2Q(3)‖Hk+2 ≤ CE,

we deduce that

εk‖M1 + M2‖Hk ≤ C(εE)ε3E + C(εE)ε4E(E + F),

εk‖M3‖Hk ≤ ε3C(E + εF ).

Thus, we obtain

−(MQεG(Qε) −MQ̃G(Q̃)
)= −ε3MQ(0)G(QR) + ε3R.

Those terms containing the operators VQ, NQ and PQ in (4.36)–(4.37) can be handled in similar 
arguments, since these operators share the same properties with MQ. Hence, we have shown 
(4.36) and (4.37).

Recalling (3.12), we have

K(Q)i = ∂j�ij (Q,Q) − ∂ip̃, �ij (Q, Q̂)
def= −∂Fe(∇Q)

∂(∂j Q)
· ∂iQ̂.

We complete the proof of the lemma by

εk‖�(Qε,Qε) − �(Q̃, Q̃)‖Hk =εk+3‖�(Qε,QR) + �(QR, Q̃)‖Hk

≤ε3C‖εk∇QR‖Hk (1 + ‖ε3∇QR‖L∞)

≤ε3C(1 + εE)E. �
Using Lemma 4.3 and Lemma 4.4, we arrive at the following remainder system:

∂tQR = −MQ(0)

(1

ε
HQ(0)QR + G(QR)

)
+ VQ(0)κR +R, (4.39)

∂tvR = − ∇pR + η�vR + ∇ · (PQ(0)κR)

+ ∇ ·
(
NQ(0)

(1

ε
HQ(0)QR + G(QR)

))
+ ∇ ·R+R, (4.40)

∇ · vR = 0. (4.41)
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It can be observed that the remainder system (4.39)–(4.41) involves the singular term ε−1HQ(0)QR

in ε. Therefore, as shown in [39,21,20], in order to obtain the uniform energy estimates, we con-
struct the following energy functionals:

E(t)
def= 1

2

∫
R3

[(
|vR|2 + (M−1

Q(0)QR

) · QR + 1

ε

(
Hε

Q(0)QR

) · QR

)

+ ε2
(
|∇vR|2 + 1

ε

(
Hε

Q(0)∂iQR

) · ∂iQR

)
+ ε4

(
|�vR|2 + 1

ε

(
Hε

Q(0)�QR

) · �QR

)]
dx, (4.42)

F(t)
def=
∫
R3

[(
η|∇vR|2 + 1

ε
MQ(0)

(
Hε

Q(0)QR

) · (Hε
Q(0)QR

))

+ ε2
(
η|�vR|2 + 1

ε
MQ(0)

(
Hε

Q(0)∂iQR

) · (Hε
Q(0)∂iQR

))
+ ε4

(
η|∇�vR|2 + 1

ε
MQ(0)

(
Hε

Q(0)�QR

) · (Hε
Q(0)�QR

))]
dx, (4.43)

where η > 0 and Hε
Q(0)QR = HQ(0)QR + εG(QR).

Using the fact that HQ(0) is positive semi-definite and M−1
Q(0) is positive definite, we immedi-

ately obtain the following lemma (cf. [39,21]).

Lemma 4.5. There exists a positive constant C, such that

‖QR‖H 1 + ‖(ε∇2QR, ε2∇3QR)‖L2 + ‖(vR, ε∇vR, ε2∇2vR)‖L2 ≤CE
1
2 ,∥∥(ε−1Hε

Q(0)QR,∇Hε
Q(0)QR, ε�Hε

Q(0)QR

)∥∥
L2 ≤C(E+ F)

1
2 ,∥∥(ε∇G(QR), ε2�G(QR))

∥∥
L2 + ∥∥(∇vR, ε∇2vR, ε2∇3vR)

∥∥
L2 ≤C(E+ F)

1
2 .

Corollary 4.6. Let E and F be defined by (4.32) and (4.33), respectively. Then it follows that

E ≤ CE
1
2 , F ≤ C(E+ F)

1
2 .

The a priori estimate for the remainder (QR, vR) is stated as follows.

Proposition 4.7. There exist two functions C and f depending on (Q(k), v(k)) and the parameters 
of the system (but independent of ε), such that if (QR, vR) be a smooth solution to the system 
(4.39)–(4.41) on [0, T ], then for any t ∈ [0, T ], it satisfies

d
E(t) + F(t) ≤ C(εE)(1 +E) + εf (E) + C(εE)εF.
dt
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To ensure the closure of energy estimates, we need to control the singular term
1
ε

〈
QR, ∂t

(
HQ(0)

)
QR

〉
, which comes from the L2-inner product 1

ε
d
dt

〈
QR, Hε

Q(0)QR

〉
. The singu-

lar term possesses a good upper bound as a result of the eigen-decomposition (2.10), given in the 
following lemma.

Lemma 4.8. For any δ > 0, there exists a positive constant C = C(δ, ‖∇t,xp‖L∞, ‖∇∂tp‖L∞)

such that for any Q ∈Q, it follows that

1

ε

〈
Q, ∂t

(
HQ(0)

)
Q
〉≤ δ

∥∥∥1

ε
Hε

Q(0)Q
∥∥∥2

L2
+ Cδ

(1

ε

〈
Hε

Q(0)Q,Q
〉+ ‖Q‖2

L2

)
,

where Hε
Q(0)Q = HQ(0)Q + εG(Q).

Proof. Recall the decomposition Q = Q� + Q⊥ with Q� ∈ KerHQ(0) and Q⊥ ∈ (KerHQ(0) )⊥. 
Then, we obtain

1

ε

〈
Q, ∂t

(
HQ(0)

)
Q
〉=1

ε

〈
Q�, ∂t

(
HQ(0)

)
Q�
〉+ 2

ε

〈
Q⊥, ∂t

(
HQ(0)

)
Q�
〉

+ 1

ε

〈
Q⊥, ∂t

(
HQ(0)

)
Q⊥
〉
. (4.44)

We deal with three terms on the right-hand side, respectively. From (2.10), we deduce that

∂t

(
HQ(0)

)= 7∑
k=1

λk

(∂ek

∂p

∂p

∂t
⊗ ek + ek ⊗ ∂ek

∂p

∂p

∂t

)
. (4.45)

Due to the orthogonality 〈ek, Q�〉 = 0, the first term on the right-hand side of (4.44) vanishes. 
For the second term, we derive from Proposition 2.5 that

1

ε

〈
Q⊥, ∂t

(
HQ(0)

)
Q�
〉= 〈H−1

Q(0)

(
∂t

(
HQ(0)

)
Q�
)
,

1

ε
HQ(0)Q

〉
=
〈
H−1

Q(0)

(
∂t

(
HQ(0)

)
Q�
)
,

1

ε
Hε

Q(0)Q
〉
− 〈H−1

Q(0)

(
∂t

(
HQ(0)

)
Q�
)
,G(Q)

〉
≤ C‖∂tp‖L∞‖Q�‖L2

∥∥∥1

ε
Hε

Q(0)Q
∥∥∥

L2
+ C1(‖∇Q‖2

L2 + ‖Q‖2
L2),

where C1 depends on ‖∇t,xp‖L∞ and ‖∇∂tp‖L∞ . Using Proposition 2.5 again, the third term on 
the right-hand side of (4.44) can be estimated as

1

ε

〈
Q⊥, ∂t

(
HQ(0)

)
Q⊥
〉≤C‖∂tp‖L∞

1

ε
‖Q⊥‖2

L2 ≤ C‖∂tp‖L∞
1

ε

〈
HQ(0)Q,Q

〉
≤C‖∂tp‖L∞

1

ε

〈
Hε

Q(0)Q,Q
〉
,

where we have used the fact that 〈Q, G(Q)〉 ≥ 0. This completes the proof of the lemma. �
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Proof of Proposition 4.7. The proof will be divided into four steps.
Step 1. L2-estimate. From the system of remainder (4.39)–(4.41) and Lemma 4.5, we deduce 

that 〈
∂tQR,M−1

Q(0)QR

〉+ 1

ε
〈(Hε

Q(0)QR),QR〉
= 〈M−1

Q(0) (VQ(0)κR),QR

〉+ 〈R,M−1
Q(0)QR〉

≤ C‖QR‖L2(‖∇vR‖L2 + ‖R‖L2) ≤ δ0F+ Cδ0E+ C‖R‖2
L2 , (4.46)

together with the following relation:

〈∂tvR,vR〉 +
〈
∂tQR,

1

ε
Hε

Q(0)QR

〉
+ η‖∇vR‖2

L2 + 1

ε

〈
MQ(0)

(
Hε

Q(0)QR

)
,Hε

Q(0)QR

〉
= −〈PQ(0)κR, κR

〉− 〈NQ(0)

(1

ε
Hε

Q(0)QR

)
, κR

〉
+ 〈∇ ·R+R,vR〉

+
〈
VQ(0)κR,

1

ε
Hε

Q(0)QR

〉
+
〈
R,

1

ε
Hε

Q(0)QR

〉
≤ δ0F+ Cδ0E+ C‖R‖2

L2, (4.47)

where we have used the relation NQ(0) = VT
Q(0) and the positive definiteness of PQ(0) .

Step 2. H 1-estimate. We apply the derivative ∂i on (4.39) and take the L2-inner product with 
1
ε
Hε

Q(0)∂iQR . Again by acting ∂i on (4.40) and taking the L2-inner product with ∂ivR , we deduce 
that

ε2〈∂t ∂ivR, ∂ivR

〉+ ε
〈
∂t∂iQR,Hε

Q(0)∂iQR

〉+ ε2η‖∇∂ivR‖2
L2

= −ε2〈∂i(PQ(0)κR), ∂iκR

〉− ε
〈
∂i

(
NQ(0) (Hε

Q(0)QR)
)
,∇∂ivR

〉
− 〈∂i

(
MQ(0)Hε

Q(0)QR

)
,Hε

Q(0)∂iQR

〉+ ε
〈
∂i

(
VQ(0)κR

)
,Hε

Q(0)∂iQR

〉
+ ε2〈∇ · ∂iR+ ∂iR, ∂ivR〉 + ε

〈
∂iR,Hε

Q(0)∂iQR

〉
def= I + II + III + IV + V + V I. (4.48)

The terms on the right-hand sides can be estimated as follows:

I ≤ − ε2〈PQ(0)∂iκR, ∂iκR

〉+ C‖ε∇vR‖L2‖ε∇∂iQR‖L2 ≤ δ0F+ CE,

I I ≤ − ε
〈
NQ(0) (Hε

Q(0) ∂iQR),∇∂ivR

〉
+ ε
〈
[MQ(0)HQ(0) , ∂i]QR + ε[MQ(0)G, ∂i]QR,∇∂ivR

〉
≤ − ε

〈
NQ(0) (Hε

Q(0) ∂iQR),∇∂ivR

〉+ C(‖QR‖L2 + ε‖QR‖H 2)‖ε∇∂ivR‖L2

≤ − ε
〈
NQ(0) (Hε

(0) ∂iQR),∇∂ivR

〉+ δ0F+ CE,
Q
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III ≤ − 〈MQ(0)

(
Hε

Q(0)∂iQR

)
,Hε

Q(0)∂iQR

〉+ 〈[MQ(0)Hε
Q(0) , ∂i]QR,Hε

Q(0)∂iQR

〉
≤ − 〈MQ(0)

(
Hε

Q(0)∂iQR

)
,Hε

Q(0)∂iQR

〉+ C(‖QR‖L2 + ε‖QR‖H 2)‖Hε
Q(0)∂iQR‖L2

≤ − 〈MQ(0)

(
Hε

Q(0)∂iQR

)
,Hε

Q(0)∂iQR

〉+ δ0F+ CE,

IV ≤ε
〈
VQ(0)∂iκR,Hε

Q(0)∂iQR

〉+ ε‖∇vR‖L2‖Hε
Q(0)∂iQR‖L2

≤ε
〈
VQ(0)∂iκR,Hε

Q(0)∂iQR

〉+ δ0F+ CE,

V ≤‖ε∂iR‖L2‖ε∇∂ivR‖L2 + ‖ε∂iR‖L2‖ε∂ivR‖L2

≤δ0F+ CE+ C‖ε∂iR‖2
L2,

V I ≤‖ε∂iR‖L2‖Hε
Q(0)∂iQR‖L2 ≤ δ0F+ C‖ε∂iR‖2

L2 .

Consequently, substituting the above estimates into (4.48) and using the cancellation relation 
yields

ε2〈∂t ∂ivR, ∂ivR

〉+ ε
〈
∂t ∂iQR,Hε

Q(0)∂iQR

〉
+ ε2η‖∇∂ivR‖2

L2 + 〈MQ(0)

(
Hε

Q(0)∂iQR

)
,Hε

Q(0)∂iQR

〉
≤ δ0F+ CE+ C‖ε∂iR‖2

L2 . (4.49)

Step 3. H 2-estimate. Similar to Step 2, we first apply the derivative operator � on (4.39), 
then multiply with 1

ε
Hε

Q(0)�QR and integrate the resulting identity on R3. Again applying the 

operator � on (4.40) and taking the L2-inner product with �vR enable us to derive the following 
equality:

ε4〈∂t�vR,�vR

〉+ ε3〈∂t�QR,Hε
Q(0)�QR

〉
= −ε4η‖∇�vR‖2

L2 − ε4〈PQ(0)�κR,�κR

〉− ε3〈NQ(0) (Hε
Q(0)�QR),�κR

〉
− ε2〈MQ(0) (Hε

Q(0)�QR),Hε
Q(0)�QR

〉+ ε3〈VQ(0)�κR,Hε
Q(0)�QR

〉
−ε4〈[�,PQ(0) ]κR,�κR

〉+ ε3〈[�,VQ(0)]κR,Hε
Q(0)�QR

〉︸ ︷︷ ︸
I1

−ε3〈[�,NQ(0)Hε
Q(0) ]QR,�κR

〉− ε2〈[�,MQ(0)Hε
Q(0) ]QR,Hε

Q(0)�QR

〉︸ ︷︷ ︸
I2

+ ε4〈∇ · �R+ �R,�vR

〉+ ε3〈�R,Hε
Q(0)�QR

〉︸ ︷︷ ︸
I3

. (4.50)

For the terms Ii (i = 1, 2, 3), using Lemma 2.11 and Lemma 4.5, we derive that

I1 ≤C‖ε2κR‖H 1‖ε2�κR‖L2 + C‖ε2κR‖H 1‖εHε
Q(0)�QR‖L2 ≤ δ0F+ CE,

I2 ≤C(‖εQR‖H 1 + ‖ε2G(QR)‖H 1)
(‖ε2�κR‖L2 + ‖εHε

(0)�QR‖L2

)≤ δ0F+ CE,
Q
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I3 ≤C
(‖ε2∇�vR‖L2 + ‖ε2�vR‖L2 + ‖εHε

Q(0)�QR‖L2

)‖ε2�R‖L2

≤δ0F+ C(E+ ‖ε2�R‖2
L2).

Combining the above estimates with (4.50) yields

ε4〈∂t�vR,�vR

〉+ ε3〈∂t�QR,Hε
Q(0)�QR

〉
≤ −ε4η‖∇�vR‖2

L2 − ε2〈MQ(0) (Hε
Q(0)�QR),Hε

Q(0)�QR

〉
+ δ0F+ C(E+ ‖ε2�R‖2

L2). (4.51)

Step 4. Closure of error estimates. Recall the definition of Hε
Q(0)QR and Lemma 4.8. It follows 

that

1

ε

d

dt

〈
QR,Hε

Q(0)QR

〉=2

ε

〈
∂tQR,Hε

Q(0)QR

〉+ 1

ε

〈
QR, ∂t

(
HQ(0)

)
QR

〉
≤2

ε

〈
∂tQR,Hε

Q(0)QR

〉+ δ

∥∥∥1

ε
Hε

Q(0)QR

∥∥∥2

L2

+ Cδ

(1

ε

〈
Hε

Q(0)QR,QR

〉+ ‖QR‖2
L2

)
,

which further implies that

1

2ε

d

dt

〈
QR,Hε

Q(0)QR

〉≤ 1

ε

〈
∂tQR,Hε

Q(0)QR

〉+ δF+ CE.

In a similar argument, we obtain the following inequalities:

ε

2

d

dt

〈
∂iQR,Hε

Q(0)∂iQR

〉≤ε
〈
∂t ∂iQR,Hε

Q(0)∂iQR

〉+ δF+ CE,

ε3

2

d

dt

〈
�QR,Hε

Q(0)�QR

〉≤ε3〈∂t�QR,Hε
Q(0)�QR

〉+ δF+ CE.

Therefore, together with (4.46)–(4.47), (4.49) and (4.51), by using the property of good terms R
and Corollary 4.6, we arrive at

1

2

d

dt
E(t) + F(t) ≤δF+ CδE+ ‖R‖2

L2 + ‖ε∇R‖2
L2 + ‖ε2�R‖2

L2

≤δF+ CδE+ C(εE)(1 + E + εF ) + εf (E)

≤δF+ CδE+ C(ε2E)(1 +E+ ε2F) + ε2f (E),

which concludes the proof of Proposition 4.7 by taking δ enough small. �
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4.4. Proof of Theorem 1.2

Given the initial data (Qε(x, 0), vε(x, 0)) ∈ H 3 × H 2, Theorem 1.1 tells us that there exists a 
maximal time Tε > 0 and a unique solution (Qε, vε) to the system (1.12)–(1.14) such that

Qε ∈ C([0, Tε);H 3), vε ∈ C([0, Tε);H 2) ∩ L2(0, Tε;H 3).

From Proposition 4.7, we have

d

dt
E(t) + F(t) ≤ C(εE)

(
1 +E

)+ εf (E) + C(εE)εF,

for any t ∈ [0, Tε]. Under the assumptions of Theorem 1.1, it follows that

E(0) ≤ C1

(
‖vε

I,R‖H 2 + ‖Qε
I,R‖H 3 + ε−1‖Pout(Qε

I,R)‖L2

)
≤ C1E0.

Let E1 = (2 + C1E0)e
T − 2 > E(0), and

T1 = sup{t ∈ [0, Tε] : E(t) ≤ E1}.

If we take ε0 small enough such that

C(ε0E1) ≤ 1, ε0f (E1) ≤ 1, ε0 ≤ 1

2
.

Then, for t ≤ T1, it holds d
dt
E(t) ≤ 2 + E. Hence, by means of a continuous argument we con-

clude that T ≤ Tε and E(t) ≤ E1 for t ∈ [0, T ]. This completes the proof of Theorem 1.2.

5. Rigorous uniaxial limit of two-tensor hydrodynamics

We have mentioned that the minimizer of the bulk energy Fb may be uniaxial. In this case, 
under the limit ε → 0 the two-tensor hydrodynamics is reduced to the Ericksen–Leslie model, for 
which the formal derivation is given in [22]. Following the procedure in this work, the rigorous 
uniaixal limit can also be established. In what follows, we point out the main differences from the 
biaxial limit, with comparison with previous works on the uniaxial limit of one-tensor models.

The uniaxial minimizer has the following form:

Q
(0)
i = si

(
n2

1 − i

3

)
, i = 1,2, (5.1)

where si(i = 1, 2) are two scalars, and n1 may take any unit vector. Thus, the uniaxial minimizer 

(5.1) determines a two-dimensional manifold. Let us denote Hn1

def= HQ(0) = J ′(Q(0)). Analo-
gous to (2.9), the tangential space of the manifold at n1 gives belongs to the zero-eigenvector 
space of the Hessian of Hn1 . Here, we still assume that the tangential space and the zero-
eigenvalue space are identical (cf. Assumption 1). In other words, KerHn1 is a two-dimensional 
subspace of Q. It is worth noting that KerHn1 depends on si . This is different from one-tensor 
models, where such kernel is independent of the scalar, given by {n1 ⊗ n′ + n′ ⊗ n1 : n′ ⊥ n1}.
1 1 1
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The kernel space KerHn1 is used to cancel the non-leading terms in the Hilbert expansion (cf. 
the discussion below (4.15)). Then, the uniaxial version of the O(1) system (4.6)–(4.8) can be 
reduced to the Ericksen–Leslie model.

The solvability of the Q(k)(k = 1, 2, 3) and v(k)(k = 1, 2) is also handled by projecting Q(k)

into the two spaces KerHn1 and (KerHn1)
⊥ by P in and Pout, respectively. Taking the solv-

ability of the O(ε) system (4.9)–(4.11) as an example, the key ingredient is to derive a closed 
system for (Q(1)

� , v(1)) and to show that such a system is linear and has a closed energy esti-
mate. However, in the uniaxial case, we still suffer from the difficulty that the projection P in

and the operator M(0) are noncommutative. Actually, the commutativity in the previous works 
[39,21,20] for one-tensor models is a special result from the fact that their kernel is indepen-
dent of scalar order parameters. This implies that the method by directly taking the projection 
P in on the O(ε) system will no longer be available, since M(0)HQ(0)Q(2) /∈ KerHQ(0) even 
if HQ(0)Q(2) ∈ KerHQ(0) . Thus, we here overcome the difficulty by the same way in Subsec-
tion 4.2. The only difference is that the kernel space KerHQ(0) is a two-dimensional but not a 
three-dimensional subspace.

For the system for the remainder, we also need to deal with the singular term
1
ε

〈
QR, ∂t

(
HQ(0)

)
QR

〉
in ε. In the uniaxial case, we still have the eigen-decomposition in the 

form (4.45), but the number of the ek is now eight instead of seven. The other estimates are 
established identically.
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Appendix A. Biaxial minimizer and its Hessian

We give one numerical example to illustrate why we can claim Assumption 1. In the bulk 
energy Fb, we take the entropy term as the quasi-entropy ν�2, and the coefficients as

c02 = −35ν, c03 = −20ν, c04 = −20ν.

Numerical experiments indicate that the minimizer is biaxial with

s1 ≈ 0.6263, b1 ≈ −0.0526, s2 ≈ −0.2377, b2 ≈ 0.2890.

At this minimizer, let us look into the eigenvalues of the Hessian. There are three eigenvalues 
very close to zero (with absolute values < 10−8). The other eigenvalues are all positive, with the 
smallest one taking the value ≈ 8.4870.
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Appendix B. Some basic estimates in Sobolev spaces

The following product estimates and commutator estimates are well-known, see [37,2] for 
example, and frequently used in this paper.

Lemma B.1. Let s ≥ 0. Then for any multi-index α, β, γ, δ, it follows that

‖∂αf ∂βg‖Hs ≤ C
(‖f ‖L∞‖g‖Hs+|α|+|β| + ‖g‖L∞‖f ‖Hs+|α|+|β|

)
,

‖∂αf ∂βg‖Hs ≤ C‖f ‖Hs+|α|+|γ |‖g‖Hs+|β|+|δ| , if s + |γ | + |δ| ≥ 2.

In particular, there holds

‖fg‖Hs ≤ C
(‖f ‖L∞‖g‖Hs + ‖g‖L∞‖f ‖Hs

);
‖fg‖Hs ≤ C‖f ‖Hs ‖g‖Hs , if s ≥ 2;
‖fg‖Hk ≤ C min{‖f ‖Hk‖g‖H 2,‖f ‖H 2‖g‖Hk }, if 0 ≤ k ≤ 2.

Lemma B.2. Let s ≥ 0 and F(·) ∈ C∞(Rd) with F(0) = 0. Then we have

‖F(f )‖Hs ≤ C(‖f ‖L∞)‖f ‖Hs .

Lemma B.3. Assume that α is a multiple index. Then it follows that

‖[∂α, g]f ‖L2 ≤ C
(‖∇g‖L∞‖f ‖H |α|−1 + ‖∇g‖H |a|−1‖f ‖L∞

)
.

In particular, if |α| ≥ 2, there holds

‖[∂α, g]f ‖L2 ≤ C‖g‖H |α|+1‖f ‖H |α|−1, ‖[∂α+1, g]f ‖L2 ≤ C‖g‖H |α|+1‖f ‖H |α| .

Lemma B.4. Let � be a convex domain in Rd and k ≥ 0 be an integer. Assume F(·) ∈ C∞(�)

and k′ = max{k, 2}. Then it follows that

‖F(u) − F(v)‖Hk ≤ C(‖u‖L∞ ,‖v‖L∞)(1 + ‖u‖
Hk′ + ‖v‖

Hk′ )‖u − v‖Hk .

Proof. We may as well assume F ′(0) = 0, otherwise, we consider G(u) = F(u) − u · F ′(0). 
Choose any two points u, v ∈ Rd, u �= v. We have

F(u) − F(v) =
1∫

0

d

dt
F (v + t (u − v))dt

=(u − v) ·
1∫

0

F ′(v + t (u − v))dt.

Consequently, from the above equation, we can derive that
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‖F(u) − F(v)‖L2 ≤ ‖u − v‖L2 sup
t∈[0,1]

‖F ′(v + t (u − v))‖L∞

≤ C(‖u‖L∞ ,‖v‖L∞)‖u − v‖L2,

‖∇(F (u) − F(v))‖L2 ≤ ‖∇(u − v)‖L2 sup
t∈[0,1]

‖F ′(v + t (u − v))‖L∞

+ ‖u − v‖H 1 sup
t∈[0,1]

‖∇(F ′(v + t (u − v)))‖H 1

≤ C(‖u‖L∞ ,‖v‖L∞)(‖u‖H 2 + ‖v‖H 2)‖u − v‖H 1 .

Further, for k ≥ 2, we have

‖F(u) − F(v)‖Hk ≤ C
(
‖u − v‖L∞ sup

t∈[0,1]
‖F ′(v + t (u − v))‖Hk

+ ‖u − v‖Hk sup
t∈[0,1]

‖F ′(v + t (u − v))‖L∞
)

≤ C(‖u‖L∞ ,‖v‖L∞)(1 + ‖u‖Hk + ‖v‖Hk )‖u − v‖Hk .

In the above derivation, we have used the following estimate:

‖F ′(v + t (u − v))‖Hk ≤ C(‖v + t (u − v)‖L∞)‖v + t (u − v)‖Hk

≤ C(‖u‖L∞,‖v‖L∞)(‖u‖Hk + ‖v‖Hk ),

which can be induced by Lemma B.2. Thus, we conclude the proof of the lemma. �
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