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UNIQUENESS OF GLOBAL WEAK SOLUTIONS TO THE FRAME
HYDRODYNAMICS FOR BIAXIAL NEMATIC PHASES IN R?*

SIRUI LIt, CHENCHEN WANG!, AND JIE XUS$

Abstract. We consider the hydrodynamics for biaxial nematic phases described by a field of
orthonormal frame, which can be derived from a molecular-theory-based tensor model. We prove the
uniqueness of global weak solutions to the Cauchy problem of the frame hydrodynamics in dimension
two. The proof is mainly based on the suitable weaker energy estimates within the Littlewood—Paley
analysis. We take full advantage of the estimates of nonlinear terms with rotational derivatives on
SO(3), together with cancellation relations and dissipative structures of the biaxial frame system.
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1. Introduction

This paper is devoted to the uniqueness of weak solutions to the two-dimensional
hydrodynamics of biaxial nematic liquid crystals. Since its local anisotropy is non-
axisymmetric, the orientational order needs to be represented by an orthonormal frame
field pe SO(3) instead of a unit vector field for the uniaxial nematics. The biaxial
hydrodynamics is a coupled system between evolution of the frame field and the Navier—
Stokes equation.

The uniaxial hydrodynamics, i.e. the well-known Ericksen—Leslie model [6,7, 15],
has been studied extensively [2,23,31]. On the analytical aspect, the existence and
uniqueness of global weak solutions are established [11-13,17,20-22, 29, 30]; the well-
posedness of smooth solutions has also been studied, for the original model [10, 29, 32]
and an inertial analogue [4,14]. More results are summarized in several review articles
[2,23,31].

For the biaxial hydrodynamics [3,9,16,25-27], its form has been written using var-
ious variables, which should be equivalent. A recent work [19] derived its coefficients
from a molecular-theory-based two-tensor model [34] based on the Hilbert expansion, so
that they are expressed by molecular parameters. In the derivation, the energy dissipa-
tion is maintained, and the Ericksen—Leslie model is recovered if the local anisotropy is
uniaxial. The model in [19] can be formulated by all the components of the orthonormal
frame field, which turns out to be convenient for analyses. This formulation is utilized
to establish the well-posedness of smooth solutions in R%(d=2,3) and the global exis-
tence of weak solutions in R? [18], which, to our knowledge, is the first analytic work for
the full-form biaxial hydrodynamics, although an artificial simplified model has been
discussed [24].

The aim of this paper is to prove the uniqueness of the global weak solution estab-
lished in [18]. To this end, it requires to derive closed energy estimates for the system
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formed by the difference of two solutions. This is, however, difficult to be done in
the natural energy space because of some difficult nonlinear terms in the biaxial hy-
drodynamics. We shall apply the Littlewood—-Paley theory to consider weaker metrics
(see (3.6) and (3.7)), which has been succesfully carried out for the Ericksen—Leslie
model [5,17,30,35]. A major difficulty lies within the handling of the nonlinear rota-
tional derivatives on SO(3) in the energy dissipative law. To facilitate the analysis, it is
necessary to rewrite the orientational elasticity in an equivalent form (see (2.1)). More-
over, to obtain the dissipative estimates of higher-order derivative terms (see Lemma
3.1), a key ingredient is to employ the decomposition by the tangential space at a point
on SO(3) and its orthogonal complement. Such a decomposition has played a key role
in the preceding work [18].

Before we present the main result, we prepare some notations for orthogonal frames
and tensors that will be repeatedly used throughout our analysis, followed by writing
down the biaxial frame hydrodynamics.

1.1. Preliminaries. We denote by p=(nj,ns,n3)eSO(3) the orthonormal
frame, which is constituted by three mutually perpendicular unit vectors. The sym-
bol ® stands for the tensor product. For any two tensors U and V with the same
order, the dot product U -V is defined by summing up the product of the corresponding
coordinates, i.e.,

UV=U,.;Vi.i, A |U?=U-U.

Hereafter, the Einstein summation convention on repeated indices is assumed.
To express symmetric tensors conveniently, the monomial notation will be adopted
as follows:

ki ko Kk
1’1111’1221133: (n1®---®n1®n2®---®n2®n3®---®n3)
k1 ko ks

Sym

In other words, when the symbol ® is omitted in a product, it implies that the resulting
tensor has been symmetrized. For example, for the frame p=(ni,ns,n3) and «o,5=
1,2,3, we have

1
n? =n, ®n,, nan[;:i(na(@ng +ngen,), a#p.

In this way, the 3 x 3 identity tensor i can be expressed as a polynomial, i.e., i=n?+
n% + ng.

The differential operators on SO(3) will be involved when describing the frame
hydrodynamics. For any frame p=(n;,n2,n3) € SO(3), we denote by 7, SO(3) the tan-
gential space of SO(3) at a point p, which can be spanned by the orthogonal basis:

V1:(03n377n2)7 ‘/2:(7113707111)7 %:(1’12,7111,0).
Then, its orthogonal complement space (7, SO(3))* can be spanned by

W1 :(0,n3,n2)7 WQZ(n3707n1)7 W3:(n27n170)7
W4:(n17070); W5:(0an270)7 W6:(0703n3)'

Consequently, we define the differential operators Z3(k=1,2,3) on T,50(3)
by taking the inner products of the orthogonal basis {V;,V53,V3} and 9/0p=
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(0/0ny,0/0ns,0/0n3), that is,

def 0 0 0
AN 5T oy ™ oy
def 0 0 0
D‘ZQ —‘/Q'aip—nl'aim—ng'aim, (11)
def 87 o0 0
45 Vs gy =me g

where %, (k=1,2,3) are actually the derivatives along the infinitesimal rotation about
ny. Acting the operators % (k=1,2,3) on n, it follows that #n; =e*Pn, with €
being the Levi-Civita symbol. The operators %}, are also suitable for a functional if we
replace 0/0p by the variational derivative §/dp.

In order to deal with the estimate of the higher-order derivative terms with the
differential operators % (k=1,2,3), we will resort to the orthogonal decomposition
with respect to the tangential space T, SO(3). More specifically, for any two matrices
A,BcR3*3 the inner product A-B can be expressed as

3 6
1 1
A-B=Y " ——=(A-Vi)(B-Vi)+ Y  ———=(A-W;)(B-W). (1.2)
= Vil = Wl
On the other hand, for any frame p=(nj,ns,n3) € S0O(3), any first-order differential
operator D, and «,5=1,2,3, it holds that

'Dnl = (Dnl . ng)IIQ + (Dnl ‘N3 )ns,

)
DI’IQ = (Dl’lg . nl)nl —|— (Dl’lg . 1’13)1137
)

Dnz=(Dns-ns)ns+ (Pns-np)ny, (1.3)
Dn,-ng+Dng-n,=D(n, ng)=0,
Weo-Dp=0,

where we reiterate that {W,}5_, is the orthogonal basis of (T, SO(3))*.

1.2. Frame hydrodynamics. The local orientation of biaxial nematic phases is
described by an orthonormal frame p=(ni,ns,n3) € SO(3). The corresponding orien-
tational elasticity can be written as

Foulel= [ Fr(r.Vp)ax (1.4

where the deformation free energy density fp; has the following form [8,28,33]:

fBi(p,Vp) :%(Kl(V-n1)2+K2(V~ng)2+K3(V-n3)2
+K4(n; -V xnp)?+ Ks(ny-V xng)? + Kg(ns -V x ng)?
+ K7(ng-V x n1)2—|—K8(n1-V X n2)2+K9(n2~V X ng)2
+ Ki1o(ny-V xnp)2+ K11 (n3-V xny)? + Ki5(n; -V x ng)?
+7 V- [(n1-V)ng — (V-ni)ni [ +92 V- [(n2- V)ns — (V- n2)ny]
+95V+[(n3- V)03 — (V-1ng)ns) ).
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The elastic energy density fp; is composed of twelve bulk terms and three surface terms.
The coeflicients K;(i=1,---,12) of bulk terms are all positive. Each surface term is a
null Lagrangian, so that the coefficients 7, >0(:=1,2,3) will be determined later as
needed. We remark that the above form should be the most convenient one for our
analysis later, although other equivalent forms are available.

In order to formulate the frame hydrodynamics, we introduce a set of local ba-
sis formed by nine second-order tensors, that is, the identity tensor i, five symmetric
traceless tensors,

2 1. 2 2
S1=1ny — 317 S2 =N, —1N3, S3=N1N2, S4=N1N3, S;=1I213,
and three asymmetric traceless tensors,
=1 ®¥N—Ne®nN;, a=n3®Nn; —N;P¥N3, az=nPng—n3Pns.

The frame hydrodynamics for biaxial nematic phases consists of evolution equations
for the orthonormal frame field p = (ny,n2,n3) € SO(3), coupled with the Navier-Stokes
equations for the fluid velocity field v. The biaxial hydrodynamics has various equivalent
forms [3,9,16,19,25-27]. To be convenient for analyses, armed with the relation (1.3)
we express equivalently the biaxial frame system by the equations for all coordinates of
p=(n1,n2,n3), where the orthonormal constraint p=(ny,ns,n3) € SO(3) is implied by
the equations themselves. These equations are given by (see [18,19] for details):

1 1 1 1
n; :<fQ-a1 + niA'Sg — 7$3.FBZ'>112 — (*Q-ag-i- @A'SLL_ fgngi)l’l;g, (15)

2 X3 X3 2 X2 X2
flz :—(%Q'al + %A'Sg— %gngi)nl + (%Qag—‘r %A‘S5 — %jlf3i>n3, (16)

. 1 1 1 1
ns :(fﬂ-ag—l— @A~S4 — —32f3i>n1 — (fﬂ-ag-i- EA-S5 — 751].‘32,)1,12, (17)

2 X2 X2 2 X1 X1
V=—Vp+nAv+V.oc+7F, (1.8)
V-v=0, (1.9)

where we use the dot derivative to denote the material derivative 0;+v-V. In the
equation of v = (vy,v9,v3)7, the pressure p ensures the incompressibility (1.9), and 7
is the viscous coefficient. The divergence of the stress o should be comprehended as
(V-0)i=0;0;. Now let us specify o, for which we introduce A and € to represent the
symmetric and skew-symmetric components of the velocity gradient x;; =0;v;, respec-
tively, i.e.,

1 1
A= §(I€+I€T), Q= 5(/{—/{T).

Then, the stress o =o(p,v) is given by
J(p,v):,Bl(A-sl)sl —i—ﬁo(A-Sg)Sl +ﬂ0(A-Sl)SQ—|—BQ(A'Sz)SQ
. 1 . 1
+ﬂ3(A~Sg)S3 —n3 (Ill ‘Ng — §Q-a1)S3 +[‘34(A~S4)S4 — N2 (ng ‘np — §Q~a2)54

. 1 1 1 . 1
+B5(A-s5)s5 —m (ng-ngf §Q-a3)55+§n3(A~53)a1 — 5)(3 (n1 ‘ng — 59'31)511

1 1 . 1 1 1 . 1
+§772(A'S4)a2— §X2 (ns ‘ny — 59'32)82+§7]1(A'55)83— §X1 (n2~n3— 59'33)83,
(1.10)
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where the coefficients in (1.10) are derived from molecular parameters and satisfy the
following conditions (see [19] for details):

{6120, i=1,--,5, x;>0, =123, >0, w1
B3 <Br1B2, i <Psx1, m5<Paxz, 13 <Paxs.
The body force § is defined by

§i=0in1 N2 L3Fp; +0;in3 11 %2 Fpi+0ing 132 Fp, (1.12)

For convenience, we also rewrite the body force:

- 0B
(&) Zajaflj +0;p, o= Ie

i - '87;,
A TERS

where p can be absorbed into the pressure term p (see Lemma 2.5 for details).
The relations between coefficients (1.11) will guarantee that the biaxial hydrody-
namics (1.5)—(1.9) has the following basic energy dissipation law [18]:

3

1
(5 [ WPt Zuulel) ==nl Vvt = 30—l

k=1

- (ﬁlnA-slnimﬁo / <A~sl><A-sQ>dx+ﬁ2||A-sQ||i2>

d
dt

(ﬁg——)nA sal3— (8 4——)||A a3 — (8 5——)HA ssllfe (113)

To simplify the presentation, compared with the original model derived by [19], we
have assumed that the concentration of rigid molecules, together with the product of
the Boltzmann constant and the absolute temperature, are all equal to one.

1.3. The main result. For any given constant orthonormal frame p*=
(n},n},n3) € SO(3), we denote

HL. (R?,50(3)) ' {p=(n1,n5,m3) : p—p* € H (RLR?), [n;|=1 ae. in R?,i=1,2,3}.

Given two constants 7 and T with 0 <7< T, two spaces V(7,T) and H(7,T) are defined
by

V(r,T) d:ef{p: (n1,n2,n3) :R* x [1,T] —>SO(3)’p(t) €H,- (RQ,SO(S)) for a.e. t€[r,T]

T<t<T

3 3
where [Vp(-, \*Z\Vnz, VPP =) VP |atp|2:Z|atni\2},
=1 =1

H(7,T) def{ :R? x [r,T] = R? )v is measurable and satisfies

T
and satisfies esssup \Vp(v,t)|2dx+/ / (IV?p]? + |84p|?)dxdt < oo,
R2 T R2

T
esssup |v(-,t)|2dx+/ / |VV\2dxdt<oo}.
R2 T R2

T<t<T

Let us introduce the global existence result of weak solutions of the frame hydro-
dynamics for biaxial nematics in dimension two, which is established in [18].
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THEOREM 1.1 (see [18]).  Let (po,vo) € Hp. (R?,SO(3)) x L*(R?,R?) be given ini-
tial data with V-vog=0 and pg= (n1(X,O),ng(x,O),ng(x,O)) €S50(3). Then there ex-
ists a global weak solution (p,v):R? x [0,4+00) — SO(3) x R? of the biazial frame system
(1.5)-(1.9) such that the solution (p,v) is smooth in R? x ((0,400)\{T}}£,) for a finite
number of times {Tz}lL:l- Furthermore, there exist two constants eg >0 and Ry >0 such
that each singular point (:I:ﬁ,Tl) s characterized by the condition

3
timsup [ (VB V) (o)t 0, (V=D Vnif,
t Ty JBg(z!) i=1

for any R>0 with R< Ry.

The solution constructed in Theorem 1.1 is also called the Struwe-type weak solu-
tion. In the following, we will show the uniqueness of the weak solution in the class
V(0,T)x H(0,T) for arbitrary T > 0.

THEOREM 1.2. Assume that the assumptions in Theorem 1.1 are satisfied. Let
(P, v and (p@,vP)) be two weak solutions of the frame hydrodynamic system (1.5)—
(1.9) determined by Theorem 1.1, subject to the same initial data (po,vo). Then we have
(b (1), v (1)) = (52) (1), v)(¢)) for any ¢ €[0,+00).

To show the above theorem, we introduce suitable weaker metrics to arrive at a
closed energy estimate. The main obstacle is to control the higher-order derivative
terms involving HkA"(k::LZS) (see (3.11) for the definitions). We overcome it by
utilizing the orthogonal decomposition (1.2) to obtain the following dissipative estimate
(see Lemma 3.1):

3
1 v 2+2

g —||7-[kAJ 72> iHAAj(SpHQH +lower order terms,
k X

k=1

where y=min{vy1,7v2,73}, x =max{x1,x2,x3}, Op =pM —p® and A, is the Littlewood—-
Paley operator defined in Subsection 2.1.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
Littlewood—Paley theory and some useful lemmas to be utilized subsequently. Section 3
is devoted to the proof of the uniqueness of weak solution to the frame hydrodynamics.
The dissipative estimate of higher-order derivative terms, which ensures the closure of
energy estimates, will be discussed.

2. Littlewood—Paley theory and some useful lemmas
In this section, we introduce the Littlewood-Paley theory (see [1] for more details)
and some useful lemmas on nonlinear and commutator estimates. Algebraic structures

of L. ;‘“ are also discussed.

2.1. Littlewood-Paley theory. We denote by S(RY) the Schwartz space. Let
C be the annulus {{€R?: 2 <[¢|< 2} and B the ball {£¢€R?:[¢|< 3}, There exist two
nonnegative radial functlons X, € S(RY) supported in B and C, respectively, such that

O+ p(277¢)=1, VEeR?,

j>0

5 —4'|>2=Supp ¢(277€) NSupp (277€) =0.
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Denoting by .# and .# ~! the Fourier transform and its inverse, respectively, the fre-
quency localization operators A; and S; can be defined by

A EF o2 F 1) =2 [ Wy)fx—y)dy, for 20

SiEFINEIOFN = Y A= [ ey fx-y)dy,

—1<k<j—1

Aflf :S()f, Ajf:(), fOI‘ ]S —2,
where h=.Z"1p and h=.Z'x. By the choice of ¢, it can be proved that

AjALF=0, if [j—k[>2,
Aj(Sk—1fARf)=0, if [j—Fk|>5.

Let seR and 1<p,g<oco. By the operator A;, we can define the norm of an
element f in the nonhomogeneous Besov space By , as

def

B def is
1£1Bs., S {27214, Flliediz—1llpes 1FIBs. = _S>11P1{2J 1A fllLe}.
P

In particular, a function f € H? is characterized as follows:

£ lzzs ~ {27118 fll 22}z 1] o-

For two smooth functions v and v, the Bony’s paraproduct decomposition in non-
homogeneous case is defined by

w=T,v+Tyu+ R(u,v),

where
Tuv=ZSj_1uAjv, R(u,v)= Z Ajuliv.
J li—3"1<1
2.2. Some useful lemmas. Let us now introduce some useful lemmas which

will be frequently used later.

LEMMA 2.1 (Berstein’s inequalities [1]).  Assume that 1 <p<q<oc and f € LF (R?).
Then it follows that

Supp f € {[¢] <027} = 0% f 1o <CP1HIG=3) | £ 1,

—~ 1 . . .
Suppfc {2 <I¢| <02} = |flir €27 sup |71,

1B]=lex
where the constant C' is independent of f and j.
LEMMA 2.2 ([30]). Let s€(0,1). For any j>—1, it follows that
(s41)j

1 1
gllg +C272 ||g||L4||fH2;s > oA Lz,
i —i1<4

12 (9l L2 <C2°(If |

12;(fgh)llze <C2* ([ fll oo + IV £llz2) |l 53—z 12l 22,
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18579 2 <C2 gl ga—s (1Al ow [l + 19 7ol o + [ V2] 122
. 1 ‘]+9 1 1
+C2= [ fllrellhllzellgll s - > 22| AVyllZ..
T i=j-9

The proof of Lemma 2.2 mainly relies on Bony’s paraproduct decomposition in
nonhomogeneous case. We can refer to [30] for details.

LEMMA 2.3 (commutator estimate [30]). Let s€(0,1). For any j > —1, it follows that

1[4, fVgl . <C2%

1 i’ 1
Vgl Y 27 Ayllz

i —jl<a
+02]5||9||B;;(||f\\Lw+||V2f||L2)~

For the sake of analysis, we need to rewrite the orientational elasticity in (1.4). For
any frame p=(nj,ns,n3) € SO(3), we have the following simple identity relations:

=(ny-Vxni)*+(n3-Vxnp)?,
n;-Vxny)?+(n3-Vxny)?,
Ing x (V x n3 n;-Vxn3)?+(ny-V xn3)?,
|Vn,|>=(V-n;)? +(n;- Vxn;)? +|n; x (Vxn)?
+V-[(n;-V)n;—(V-n;)n;], i=1,2,3.

Iny x (V xny)|?
|n2 X (VXD2)|2:(
( )?=(

With the aid of the above identity relations, the density fz;(p,Vp) can be rewritten as

3
fBi(P,VP)Z%Z%‘WHHQ-FW(%VP) (2.1)

i=1

Here, the coefficients 7;(i =1,2,3) are taken as, respectively,

7 :min{Kl,K4,K7,K10}>O, Y2 :min{Kg,K5,K8,K11}>O, (2 2)
3 =min{ K3, K¢, Ko, K12} >0, '
and W (p,Vp) is expressed by
1,3 3
W(p,vp)=§(2ki(v-ni)2+ Z kij(ni'vxnj)Q)a
i=1 Q=1
where the coefficients k; >0,k;; >0(4,j =1,2,3) are given by
ki=Ki—v, ko=Ky—, k3=K3—13,
kii=Ki—7v1, koa=Ks—7, k33=K5—73,
11 4—N 22 572 33 673 (2.3)

k3s1=Kr—v1, kia=Kg—2, koz=Kg—1s3,
kor=Kio—71, kaa=Ki1—72, kiz=Ki2—n3.
For simplicity, we define

] ] ] def 0J Bi 0J Bi 0J Bi 0J Bi
( LR 3) (5[]1 ’ 5112 ’ 5[]3 )

—Vv. 9fBi _afBi
op a(Vp)  Op
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Similar to Lemma 2.3 in [29], we also introduce the algebraic structures of the
variational derivative with regards to the frame field p=(n1,ns,n3) € SO(3).

LEMMA 2.4 ([18]). For the terms h;(i=1,2,3), we have the following representation:

3
h; =y An; + k;Vdivn; — > ki V x (V xn; -

Jj=1 Jj=1

Mu

kij(n;-V xn;)(Vxn;),

where n3 =n; @0y and the coefficients are expressed by (2.2) and (2.3).

To handle the body force § in analysis more conveniently, it is necessary to rewrite
§ in an equivalent form. More specifically, we have the following lemma.

LEMMA 2.5.  For any frame p=(n1,n2,n3) € SO(3), it follows that

3

0FBi d
(g)izzaina Jni Efaj z] +61p7

a=1

where p can be absorbed into the pressure term p in (1.8) and the elastic energy Fp; is

given by (1.4), and the stress O'Zdj 86(‘3’;%) -0ip.

Proof.  'We will use the Kronecker ¢ symbol. Recalling the definitions of £} Fp; (k=
1,2,3) and using (1.3), together with the relation i =n?+n3+n3, we can derive that

5]:31' (5.7:31') 5]:Bi (5.7:31‘
.=0in, - } - dns - ( ) -
(3)i =0 n2(n2 on; n; o1y +9;n3-ny (M o ng o, )
0FB; 0FB;
+ain2'n3<n3'76n2 —ny- 5n3)
0FB;
=0in1k(narnar +nagna) +3 Nak (N1kN1 + N3En3y) ——
(5 5712[
-7'— i
+0insk(nignu +n2kn21) i
0FBi 0FBi
0in1k(Op1 —n1gnay) F +0inak (01 — n2knar) 5721
5 F i
+0insk (O — 7131@7131)573
nsy
5Fpi 5Fpi 5Fpi
= Ony 2t 4 Ongp —2L + Oingp —2
oni o ons
9,08 + 0,7,
where crfj = —22:1 % -0in,. Moreover, by a direct calculation, we obtain

o ol (Vp,p)= Z’yaﬁ NakOiNak — Zk‘ (V-n,)0ing,

a=1 a=1
3
— Z kga [(@nap—Bpnaj)amap+nﬂjn@l(8pnal—amap)amap
a,B=1
(D1 — Dynat) ey . (2.4)

d
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3. Uniqueness of weak solutions

This section is devoted to the proof of the uniqueness of weak solutions in the
class V(0,7) x H(0,T). Let (pM),v(D) and (p®,v(?) be two weak solutions of the
frame hydrodynamic system (1.5)—(1.9) with the same initial data (po,vo), where the

orthonormal frames p(*) = (n(li),ng),néi)) (1=1,2).
We denote
1 2 1 2 1 2 )
5njfn() ()7 5hJ:h_§)*h§ )7 5aj:a§‘)7a§‘ )a (]:13273)7
Sy=vD —v® s, =AW _A®  s55=00_0O@ 5p=p(1)—p(2),

(1).5

5, =0 6p, —nl 6n,, g = —n{Y 6,

(S;Efg :nj(Ll) '6h2 _nél) '6h17 6Sk _Sgcl) —S](f)’ (k: 1’ 75)

By taking the difference between the equations for (p(l),v(l)) and (p(Q),V(Q)), we find
that

Oon, (1 (1, M wm 1 (1)
ot —(2(59 a; +X36A S3 X3(533>n2
lso g M2s 1y 1 (1)
(500-a +Oa s X25$2)n3 +0p,, (3.1)
O, (1 L, m o 1 1
o (259 a; —|—X N S3 X35$3>n1
1 (1 1 1 1
+ (5% a4+ i g>—;5ﬁ)ng>+5F2, (3.2)
Oon, (1 1, ne 1y 1 (1)
ot —(2(59 ay +X2(5A S, XZ(S_ffZ)nl
(1 @, m o 1 1
(259 i)+ oa s Xl(sgl)nQ + o, (3.3)
Bh
a—tvz—v(sp+nmv+v-(a(p<1>,5v)+ad(v5p))+v-5F4, (3.4)
V -6y =0, (3.5)

where the stresses o(pM),d,) and 0?(V6,) are expressed by
o(p.0,)=P1(6a-s1)si" +o(0a-s5)st + fo(0a si)s)”
+B2(0a-5)s §”+(53—%)<6A )8+ (84— ”i)(aA-si”)si”
+(ﬂ5_ﬁ)(5A s( )) (1)+ ss 5 +772 )5 +X 1)5

_i(all)ég;+a21)5g2+a31)531)
o?(V3,) = (VpM) pM)) — g4 (Vp®? p).

Moreover, g, (i=1,---,5) can be given by

S3

1 1
5F1 = <§Q(2) . 6a1 + %A@) Osy — g(énl : hg) - 5“2 th)))ngl)

1 1
+(30@.a? B a® 0 Lgtr, ),
X3 X3
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1
Op, = 5Q(Z) Oay + %A(Q) Oy —

+ (19(2) INONILEINCINC
2 X2

1
— (§Q(2) Oay + %A(Z) Oy —
1 m 2
(2@ . L MA@ .2
(2 3 Xl 5
op, =— v s, -5, @v® + 5 ((A?

s$)0s,) +Bo ((A®) -5, s}
2
Zi) ((A(2) '653)551) + (A(Q) '51(32))553)
3

+ B0 (AP 65,57 + (A

(A8 o) + (AP 5)0,) + (5

2

Q®.s,, +%A<2> e, —

a4 A (2
X2

PRERLYNCI

Oay + EA(Q) gy —
X1

I, C.C. WANG, AND J. XU
1 (2) @) (1)
g(éna 'hl _6111 'h3 ))1’13

1
732(2)~7:Bi)5n3—v(1)'v5 — 0y Vn(2)
X2

1

LTI
1

- ggg(Q)fBi)énl

1 2 2 1

55 )

z(”f&)ansfv(l Vb, — 0y - V0D,

1
(i, B 5, B

L @
- ]—'Bl)ém
1 2 2 1
;(5H2 hi(’) ) _6113 hé )))né )
1
731(2)]:&)5“2 vV, — 6, Vn(2)
X1

b))+ (AP 55

(B ) (AP 5 s+ (A 5o,

X2
2

(85— ) (A-6,,)s8 + (A2 s()a,,)

X1

A5,

2 (55 (B G, () 0, (247 F)
L (54 0y 0 =0, - 0Y) 400, (47 Fir)
+ (5 (5 0D — 6, 0D 404, (L) Fpi)
— 2 (A G, B G, 0) 1 5, (2 Fir)
2 (0 (B, B b, 1) 4, (2 Fir)
— — (a8 (6ny -1 — 6y - 05 + 60, (LD Fii)),
where X(Q)fgi(k‘: 1,2,3) are denoted as, respectively,

n@ . 0@ _n@ . n®, #@F,

<2>.h§>.

PO Fp =

L Fpi=n? nd) -

n®.h®

2 2
n®.n®

)
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Before presenting the proof of the uniqueness, we need to discuss the suitable choice
of the energy metric for the resulting system of the difference. A usual idea to prove
the uniqueness is to derive the energy estimates for the system (3.1)—(3.5) based on the
following natural energy metric:

3
165 ()12 + D IV6n, (£)][72-
k=1

However, in the sense of weak solutions, the above approach will no longer be available,
since we would encounter nonlinear terms like [;, or, - Ady, dx(k=1,2,3), which cannot
result in a closed energy estimate by using the embedding inequalities. A similar problem
has been discussed in [17,30,35] for the Ericksen—Lesile model.

As a consequence, a key ingredient to control the difference (d,,0) in the class
V(0,T) x H(0,T) is to introduce a suitable weaker metric:

() Sy ru), (3.6)

where for some s € (0,1/2), V(t) and U(t) are given by, respectively,
V(t) = sup 272986, (1) |72, U() = sup 2207 A;5,(1)]72,
Jj=-1 Jj=-1

3 3

185051172 =D _1A;0n, 172, for = =1, [A18p) 2= [A-10n, )7z
k=1 k=1

Here A is the Littlewood—-Paley operator defined in Subsection 2.1. Again, we introduce
the following functional W(%):

W(t) = sup 2*2”/ W (x,t)dx+[| A1 6, () [|72
Jj=-1 R2
where W/ (x,t) is defined as

3 3 3
; def 1
W (x,t) = i(Z%HVAj(Sm D kilVAn 7+ ) kij|In'Y .vaj(snjH%z),

i=1 i=1 ij=1

(3.7)

where the coefficients ~; > 0,k;,k;; >0(i,j=1,2,3) are expressed by (2.2) and (2.3).
Moreover, to close the energy estimate for the difference (d,,0y), we also need the

following simple relation:
[ WGty Ay 3 2 214,65, (35)
Rz

which implies that W(t) > c U(t) for some constant ¢> 0.
In order to present the proof of Theorem 1.2 conveniently, we introduce a locally
integrable function on [0,77] as follows:

F(6) L1+ (Vv D, 0v®) 12, 4[| (v, v) |4, + | (VpD, V)[4,

0|22 + (V™ Vo) |30 + (V2 V2p )| 7.,
where p(®) = (nga),néa),néa)) (a=1,2).

We now turn to the proof of the uniqueness of weak solutions in R?. The proof will
be divided into three subsequent subsections.
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3.1. Estimate for the velocity J,. We first notice that from Lemma 2.1,
there exists a constant ¢> 0 such that

ca; 29| A;8 30 < 14,75, 3., (3.9)

where a; =1 for j >0 and a; =0 for j=—1.

Applying the operator A; to both sides of the Equation (3.4) and taking the inner
product with A;dy, together with (3.9), we can deduce that

5 o883 + cag 215,13

- (Blnsgl)'AjéA%2+2/60/2(Aj6A'Sgl))(AJ’(sA'Sgl)>dx-‘r/82||Aj6A'Sgl)Hiﬁ)
2
_ 3 _ _ MONT . _m s D2
(5 ) 8s6m -5V 2 (B )||A6 S0~ (s = )1 son s
- (s e+ s+ ”'HJ,AJW
X3

+<2( a5 +alls +a(1)7-£ RN

3
+([A;,PIVoy, A V0, )+ Y ([A),Plon, . A;V5y)
=1

I

Iz
—(A;0(V6,),A;V6y) —(Aj6r,,A; Vi), (3.10)

13 14

where the symbol P stands for a polynomial function of (p™),p(?) with degree no
more than four, and we have used the relation A;Vé, =A;da +A;0q. Again, in (3.10)

HkAj (k=1,2,3) are defined as, respectively,

A def (1 A def (1

HS Njbp, —n) Ao, Ha Ao, — 0V Aoy,

(3.11)

A def (1

HEY T N OV

For the term I, applying Lemma 2.3 yields

L<C (25 |VPILv ) > 2718585 ) 185V 22

[7/—j1<4
FOPV ()5 (1+]|V2P|12)]|A; Vy | 2
§022jSF(t)V(t)+E Z 22j/HAj/(5vH%2+€22j||Aj6v||%2,
|7/ —jl<4

where we have employed the following simple facts:

IVP s < (VP Ve pa, (v vE) 2. +(1(Vp™, Ve 7. <C,
IV2Plzz <Ol VP, V@) |24+ C (V2D V2p2) | 2.
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In order to estimate the term Io, it is necessary to express the difference oy, (i=1,2,3)
by introducing the short notation. Specifically, using Lemma 2.4, we have

3
O, =7iAbn, + ki Vdivin, — Y kjiV x (V x by, -0 @nfV)

j=1
3 3
—ZkﬁVx (VXn(2)~5 ®n(1) —Zk--Vx (Vxn§2) -n§-2)®6nj)
j=1
3 3
*Z nes Vxn Vxn(l) Zk” (2).vx5n_7.)(V><n§.1))
Jj=1 j=1

3
= ki (0P -V xn?) (V% 8,))
j=1

3 3 3
CPV2n, +Y PV6,, +Y PYNV, + PYnP Vs,

j=1 j*l j=1
—I—ZZPVH V6, +ZZPvn<2>vn“>5 +Z7>vn 'Vn{V6,,. (3.12)
j=la=1 j=la=1

Then, by using Lemma 2.2, Lemma 2.3 and Sobolev’s embedding H*(R?) < L*(R?), we
deduce from (3.12) that

3 3
n<cy [||[Aj,7>21v26m Ny (Aj (P20 D60, 12+ 185 (P* V0 V3, ) | 12
i=1 k=1

2
+ ||A] (P2vn§2)v5nk) Iz + Z ||A] (PQVnga)V(Snk) Iz

a=1

+Z|\A P2vn<2>Vn<“>5nk)||L2+|Aj(PZ‘vn,g”Vng”gm)||L2)]|Ajvavnm

a=1
) Jj+9
<C2% (14 VP2 + | (Vo V@) Jud () 3 28 AV 1714595, 1
l=5-9

+C27° <1+ IV2P2|| 2+ V20| 2+ [ VP2 | (V) V)| o

Ve, Ve [ +| (Vp(l),Vp@))llizx)Ué ONA; Vol L2

j 1 1 j+9
<C2EFI(UI(E) Y 27 ||A1V§pHL2||A V| L2
l=5-9
+C2F (U (1)]| AV 12
J+9 4 »
<e Y AV |72 +2% (A6, 172+ C2P F(6)U(L),
1=5j—9

where € denotes a small positive constant to be determined later, and we have noticed
the fact that P? is a polynomial function of (p™) p(?)) with degree no more than 8.
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According to the expression of o in (2.4), the stress 0¥(Vd,) can be expressed as
7 (V8,) =0 (Ve pM)) =g (Vp®) p2)

3 2 3
= S Pvn{Ve, + Y PVnUvnVs,, .

ij=la=1 i,j,k=1
Consequently, similar to the treatment of the term Io, utilizing Lemma 2.2, the term I3
can be estimated as

3 2 3
L= S 1A/ (PVnlVa e+ > 145 (PIRI VR 6, )12 ) 14,7612
ij=la=1 i,5,k=1
Jj+9
SCPPFMUH) +e Y 2% AV |72 +22% (| A6, 172
1=j—9
To handle the term I, we first estimate the transport terms. Using Lemma 2.2, we
have

<Aj (5v ®V(2) +V(1) ®6v)7Ajv5V>
< <02j5||(v(1),v(2))||H1 ||5V||B;s

(s+1)4 1 1
+C272 H(V‘”?v(z))l\m||5v||;;; Z IIAjfévlliz)HAjVévlle
i —dI<4
<C2%% || (vD v |12, V() +22% || A5, ||2-. (3.13)

Then, combining (3.13) we obtain

L <2 || (v V)3 V(8) +22% A 60 |72

3 3
+3 (A;(Pon, VD), A;V8) + D (A (PoahY),A; V4, ).
i=1 i,k=1
In I42

Applying Lemma 2.2 and the expression of h;(i=1,2,3) in Lemma 2.4, I4; and I3 can
be estimated as, respectively,

3
Iy < Z ||Aj(PVV(2)6ni)||L2 1A;Voy| 2

i=1

<C2*(1+[|(Vp™, Vp@) | 12)]16, B3 Vv || 1227(| A6y || 2
<C2%5 | Vv ||2.U(t) +22% || A, ||22,

3
Lin < Y (1A (Pon, )| 2| A5V || 2
i,k=1
3
<O (14 [[(Vp®, Vo) 112) 105 | 32 D 1021122718, 12
k=1
<255 (|| Vp@ |4+ | V2@ | 2)U(t) +£2%|| A8 || 2.
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Accordingly, combining the above estimates, we get
Is<C2YF(t)(V(t) +U(t)) +2% || A0y ||7 -

Thus, substituting the above estimates of I(k=1,---,4) into (3.10) and removing
the dissipative terms, we arrive at

1d

2j /N3 () "2 (1) M (D85 A
3 eIt a2 185001 < —( o5 + B oDrg 4 LslVH Ajdn )

+<2( alVHy +alV 1y +allH ), A, 6n>

i+9 j+4
+CPPFB)D(t)+e Y 2 A7+ D 2% Ay [[3 (3.14)
1=5-9 l=j—4

3.2. Estimate for the orthonormal frame J,.  This subsection is dedicated
to the estimates of the difference for the orthonormal frame, i.e., d, =pM—p®@ . To
begin with, we may verify a claim for L2-estimate of A_14,.

Claim 1: There exists a constant C >0, such that

1d

5 1818172 < CFO V(O +U(). (3.15)

Indeed, applying the operator A_; to both sides of the Equation (3.1) and taking
L2-inner product with A_;d,, we can deduce that

1d

2dtHA 10172 = ;MtIIA 10, 12
3
_Z 1(PVO), A 100, )+ Y (A_1(Pdn,), A 10n,)
i,j=1
+Z<A_16Fi,A_15m>
i=1
o) A Ay & (3.16)

where we have utilized the short notation similar to (3.12). For the term I5, we infer
from Lemma 2.3 that

3
Is= Z( PIVoy, A 16n,)+ > (PVA_16y,A 16s,)
i=1
SC(”P”L‘”+HVP||L4+||VQP‘|L2)“5V||B;iOCHA*NSPHL?
SCF()(V(t) +U(1)).

Recalling the expression of oy, (i=1,2,3) in (3.12), and applying Lemma 2.2 and Lemma
2.3, the term Ig can be handled as

3
o<y [u (A1 P2V %50 |2 + [PPA 1 V260, | 12
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+Z<||A (P60, ) |2 + 1A (P?Vnl" Vén,) | 12
2

HIA (PPVRIVn, ) (22 + Y 1A (PPVn(" Vén,) | 12

a=1

+Z\|A (P> VP Vn( 60, )|l 12 + |A_1 (P*Vn) Vil s, )||L2>]||A_15m|\m

<CUE (OFE ()| A28, ]2

1 i’ 1
FO(IVP2 s+ 1(Tp ™ 0™ e )81, . >° 2% 18, VaplIZa A1y 2
FERTES

<CFU(L).

It remains to deal with the term I7. Using the definitions of ég,(i=1,2,3), we have

3 3
e S (A (6T A )= S (A (e ) A )
=1 =1
3
+Z LPYVP6,),A 180, ) + Z _1(P8n, ), A1)
dfeff71+172+173+f74

Armed with Lemma 2.2, we derive that
I <C(VO g+ IVO 23 165 L= A28yl < CROUL),
Iy <OVl +1V0) 23 [l 52 1A 16122 < CE(0) (V1) +U(0).
Irs SC(IPlle= + VPl c2) IVVP [ 2210y ]| p1-s | A1yl 12 S CF(OUR).

Similar to the estimate of the term I, from Lemma 2.2 and Lemma 2.3, we also can
infer that

Iy <CF(t)U(t).

Therefore, combining the above estimates for I;(i=5,6,7) with (3.16), the above Claim
1 can be completed.
Next, we give the second claim about the estimate of dy.

Claim 2: There exists a constant C >0 such that for any j>—1 and €>0, it
follows that

d

g WJ(x t) dx+zﬂ|\HkJHLz

k=1
< Ao alt) HE >—<%A-6Q-a§1),H2Aj> < Ao all) H >
+<%Aj5A-sg1),H§j>+<n2A oa-siHE )+ <%Aj5A-sgl),Hfj>
j+4 Jj+9

HOPPEFO)D(t)+e > 2 Ay ][724e Y 2%|AS,]7, (3.17)
I=j—4 1=5-9
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where W7 (x,t) is defined by (3.7), and ”HkAj (k=1,2,3) are defined by (3.11), respectively.

Before proving Claim 2, we calculate some derivatives of W7(x,t) with respect to
the frame. For convenience, we denote

Ep™M,A;6,)(1) % [ W (x,1)dx,
R2
def 0& 5E
Gg=— v Gi=—————, G=(61,92,G3).
5(A;0,) 5(Ajom,) (61,G2,0s)

By a direct calculation, we obtain

3
Gi =% AN On, + ki VAIVAGs, — Y kia V X (V X Ajdp, -0 @nll), (3.18)
a=1
8y k(Y V x AGn ) (VX A6y ) (3.19)
5n(1)_z ailll; ©0V X Q;0n, X R;50n, ) :
0 a=1

Then, from (3.18) and Lemma 2.1 we get

IGillzz <C (19248,

3
pe+ Y IVAL VA0 |12 ) SC2%|Aydn llzz,  (3.20)
a=1

Armed with the expressions of oy, (1=1,2,3) in (3.12), A;Jn, can be expressed in short
notation,

3
Ajbn, =Gi+ Y kia ((vng” VX Ajon,) x0l) + (0. V x Ay, )V x ng))
a=1
3 3 3
+38;(PVnP8,,) + 3 A (PYRV VL) + DA (PRI VL)

=1 =1 =1

3 2 3 2
332 (PYRIVEL )+ Y3 A (PYNP VN[5, )

I=1a=1 I=1a=1

3
+38;(PVnVnd,,) — (A, PIV(V % by,
=1

G+ 7. (3.21)

Furthermore, from (3.21), together with Lemma 2.2, Lemma 2.3 and Sobolev’s embed-
ding H'(R?)— L*(R?), we deduce that

1 Tillze <CIVP Dl VA 6m, 125+ C2 60, | a=e (1970 |2 + (V2 75®)]74)

+C2 |3 (T, Vo) g1 + 9P [ (F52, T2 1+ V2P 12

. 1 Jj+9 - 1
+02% (Vo Vel pallon, 12, D 27 (1A Vi, ||Z
2,00 . .
T i'=i-9
B 1 1 is 1 1 Y i’ 1
SCPF2 (U (1) +C22 FA(UT(t) Y 27 (|4 Vin,||2.. (3.22)

3'=3=9
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We now return to the proof of Claim 2. We denote
611:(6111’611276113)7 Aj(sh:(AjfshlaAj(sthj(Shg,)y T:(ﬂ77é77§)

Then, by the above definition of £, we obtain

d 5 0A5, 6 OpW)
J +)d . )P .
@t Jp, "V (eot)dx= / (5(A‘5p) ot op® T or )
(1
(Ti = A6, dx+/ yooe o
R2 10n ( ot
d_efAl + A, (3.23)
First, using (3.19) and Lemma 2.1, the term Az can be estimated as
3 .
A <C N 2% A, |22 10m )| 12
i,k=1

3 3
<ed 2V A0y, |22+ 029 D [0mi |32 80, 13

L2
i=1 i,k=1
<e2Y || A0y |32+ C22EF(H)U(R).

It remains to deal with the term .A;. Taking advantage of the Equations (3.1)—(3.3),
we deduce that

A1:f<%Ajan alV 15 >f<%Aj59 ORT >f<%Aj59 al 1)
+<%AJ—5A-s§”,H§J‘>+ %AJ—(SA-S$>,H§J‘>+<%AJ—5A-S§}>,H1J'>
3 3 3
—Zinﬁf,jniz+Z<7;,atAj5m>_Z<Ajah“Aj5Fi>
k=1 =1 i=1

.A11 -A12

3
=Y {[A},PIVOy+[A;,Plon,, Ao, ) (3.24)

i=1

Ais

Using Lemma 2.2 and Lemma 2.3 the term A;; can be estimated as follows:
An=(Ti 0"~ T-n?, A 5q-al! +@AJ—5A.S§1>>
+(Ts-n(? = 7i-nf, A5 <1>+"2A5 s

+<75~n§1)—7§~n21,§ﬁj5n (1)+"1A5 s

3 3 3

S A Xky§ﬁ>+z<7;,Aj5F Y+ (T, 1A, PIVEy +[A;, Plon, )
k;l i=1 =1
>

E

(IIA V0|l 2+ 18 (v V822 + 114, (8 -0l | 2



480 UNIQUENESS OF WEAK SOLUTIONS TO BIAXIAL HYDRODYNAMICS

3 3
+3° (18500 112 + 14, (PYV@ 6, )l 12+ 3 A, (Ph 6, |12 )
k=1 =1
F APV 1185 Pl 12 ) 1T

3
<Cy (IIAjV5vIIL2 +2%7 | Ay, |2 +27° (U2 () + V2 () F

i=1

Nl

(t)

F2EFEOUT() S 278y Vi, |12,

l7—3"1<9

2ErEVie) S 2’2||Ajfav||zz)|m||w

li—g'1<4

<e 2|8 Bpl13 e D 25| A8y [T+ C275 (U(t) + V() F (1),
[7—3"1<9 li—3"1<4

where we have used the expressions Vk(l)(k: 1,2,3) that are given by
1 1 1 1 1 1 1 1 1
Vl( ):(Ovnl(’,)vfné ))7 V2( ):(71'12(3 )aoan(l))a VB( ):(né)vfng)vo)'

Similarly, the terms Aj2 and A;3 can be handled as, respectively,

L2

3
[Ar2] <1140,

=1

3
Sz:HAjéhz
i=1
+||Aj<v(”-V6m)IIL2+IAj(6v~n§2))lL2>
<e > 2YAjdplFate Y 2% A8 ]3

l7—3"1<9 l7—3"|<4

+C2%5 (U + V(1)) F (),

2[[A;0r,

3
. (||Aj<PVv(2)6nk>||Lz £ 1A (PhP ) 12
=1

3
A <D (1145, PIVSy 22 + 11127, P1ow, |l 22) | Aj0n, | 2

i=1

<e Y 2Y|Aydpl3ate Y 28| A8y |3 +C27 (U + V() F(1).
[i—3"1<9 li—3"1<4

Combining the above estimates of Ay (k=1,2,3) with (3.24) we obtain
1 ‘ 1 . ) |
A= —<§A‘769.a§1),7{§: > B <§Aj69 a1y > - <§Aj69 .az(),l),”HlAJ>
+<%Am.sg1>,“rt§f>+<%Aj5A.S§1>7H§j>+<%Aj5A.Sgl)7%1Aj>

3
= é 2 |20 4+ 0227 (U(t) + V(1)) (1)
k=1

te o 2 Al te Y 2 A8 e
—3'1<9 lj—3'1<4
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Hence, plugging the estimates of A; and Ay into (3.23) yields (3.17). This completes
the proof of Claim 2.

In the end, to control the higher order derivative term [AA;d,| L2 that en-
ables us to close the energy estimate, we need a higher order dissipated estimate for
Sy lekH”HkAj |2,. To be specific, we have the following key lemma.

LEMMA 3.1.  There exists a constant C >0 such that for any € >0 sufficiently small,
it follows that

21 A 22 *
_27|‘Hk |I7e < —7\\Aﬁj5plliz +CFMUt) +2 Y 24| Adyll7e,

1=j—9

where x =max{x1,Xx2,x3} and y=min{y,v2,73}, and ’HkAj (k=1,2,3) are defined by
(3.11).
Proof. First of all, we recall the decomposition (1.2) formed by the tan-

gential spaces Ty SO(3)(a=1,2) and its orthogonal complements. In (1.2), taking
B:AAjp(o‘), we obtain

3

. 1

k:l‘vk |

1

> — 5 (A W)LY, a=12, (3.25)
= Wi

(A-V)(AAp V()

where Vk,(a)(k: 1,2,3) and W,ga)(k: 1,---,6) are the orthogonal basis of the tangential
space Tjy(a)S O(3) and its associated orthogonal complement space, respectively, that is,

Vvl(a) :(0 ni(’)a)a_néa))7 ‘/2(0() :(_ni(’)a)vovnga))7 ‘/'3(04) = (néa)a_nga)70)7
Wi =0 ng), WY =g 00i"), W =y mi,0),
W =m{ 0,0, W=0,:n0), W=(0,0n).

Armed with the definitions of Wka)(k: 1,---,6), it follows that

AN W =2 (Ap( W)~ (A, W | Ap()
=2 (V- (Vp@ - W) = Vp@ W) — A, W™ Ap(©)
=—A;(Vp@ . W) — (A, W] Ap().

Noticing \Vk(l)| = |Vk(2)| and |W,§1)| = |W,§2)\, and using (3.25) we derive

3
1
A-DDS, =Y —a—(A- V) (A6, V)
= Ve[
3
2 VR ((A-0u)A2;5@ V) +(A-VE)(28P - 51,))
k=11"k
6

1 1 1 1
-3t | (AW (859 T 418, W 185,)
k=1 k
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(AW (85(VpP Vo) + (A, 6w, 1Ap>))

+(A-0w,) (85 (V0@ - TWE) 18, WP Ap @) } (3.26)

where dy, :Vk,(l) - Vk@) and Oy, = W,El) - Wéz).

Taking A=AA;d, in (3.26) and then integrating over R?, and using Lemma 2.2
and Lemma 2.3, we can derive

3 3
1
1826072 <5 D AN 8, VP [[72 +CD AN | c2lldv [l AL |2
k=1

k=1

A (125 (V8- WD) 2+ 1185, W JAS 2 )

k=1

6
+CY 1ALz (1185 (V- Faw, ) lz2 + 110w, 1A 12 )

k=1

6
+CD ANz low, o (185 (T8 - TW) |2 + 1125, W 1A 12 )

k=1
1 3 ) 749
§Z|\Aaj5,,.v,§1>|\iz+022JSF(t)u(t)+s S 2" Arsl3.
k=1 1=j—9

Similarly, by taking A=G —~vAA;J, in (3.26), it follows that

/ (G—yAA;5,)- AA;6,dx
R2

1 ] 749
<5 [ [G-7A88) V(A5 V) + CEFOU) +2 5 2|8 -
R 1=j—9

Furthermore, applying integration by parts, there holds
/ (G—vAA;6,) - AA;b,dx
RZ

>Z(k IV divA;on, ||L2+ka||v (V% Ay, 0 2:)

=1
J+9

—C2FU)—e Y 2% Ay 3.

I=j—9

On the other hand, by the definitions of G and 7, and using (3.20) and (3.22), we obtain

3 3
[ S o@ v TV ax| <€ Y16 Tl
R? p=1 i=1
‘ Jj+9
SCYFUt) +e Y 2| Ardp7-.

1=j—9
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Then, collectmg the above estimates, and recalling the definitions of ’Hk '(k=1,2,3) in
(3.11), i.e., ’Hk 7 =A;0p- Vk( ), together with A0, =G+ 7T, we can derive that

3

3
1 Ai 1 1
Zf k-||%22;§j||A‘6h-v<>||%z

o Xk

1
||g v I2.+ 2 Z/ G- v (T -vMyax
k 1

3 2
%Z/ (672, V)28, VM )ax+ T2, VO
4 j+9
—CYFMUE) —e Y 2% A6y]|7

1=5—9

4y 27 2
>— (G—vAA;6,)- AAj(Sde+7|‘AAj6p||L2

X JR2
J+9
—C2F(t —e Y 2Y|AG,l3.
l=j—9

3
2t D kaillV X (V% Ay, -nD)22)

3
% Z:: (ki |V divA o,

9 4 j+9
+ 20 A Gy 3 - CHFOUD — 3 2| A 3
X 1=5—9
Hence, we complete the proof of the key lemma. 0

3.3. Proof of Theorem 1.2. We are now in a position to complete the proof of
Theorem 1.2. First of all, we know from Theorem 1.1 in Subsection 1.3 and Proposition
4.2 in [18] that, for any 6, M >0, the pair (p,v) satisfies

(p7V) EV(07T1 —9) X H(O,Tl —9) U"'UV(TL,hTL —9) X H(TL,DTL —9)
UV(TL,M) X H(TL,M),
where {T;}{, are the finite number of singular times. Assume that Tl(i) is the first

blow-up time of (p? v(¥)(i=1,2). By means of Proposition 4.2 in [18], we may find
that the following regularity for (p*,v(?)) holds,

/ V2D 24 [VpO 44 [Ty 2 4 |v @ dxdt < +oo, (8:27)
R2x[0,T1—6]

where 6 >0 and Ty :min{Tl(l),Tl(Q)}. Then, taking advantage of the Equations (1.5)—
(1.7), we can infer that

op@ e L2(R? x [0,Ty —0]). (3.28)

Further, (3.27) and (3.28) imply that F(t) is a locally integrable function, i.e., F(t) €
LY(0,Ty —0).

On the other hand, summing up (3.14), (3.15) and (3.17), and together with Lemma
3.1, it follows that
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d /1 . 1
(G158 l3+ [ Wit t)xs JIA1dylia)
2 - 2

dt
+ea; (2771850 [|72 +2Y | Ajdn, [172)
_ j+4 J+9
<C2FP)D(t)+e Y 22 |AG |72+ Y 2Y A, (3.29)
I=j—4 1=5—9

By choosing >0 sufficiently small, integrating (3.29) from 0 to ¢ and noting
(0v,0p)|t=0 =0, we have

188 [ Wit 1Al <C [ 25 Fra(ran
which together with (3.8) leads to
[A;80]172 +2%7 | A6, |7 SC/OtQQjSF(T)CD(T)dT. (3.30)
Multiplying (3.30) by 27%% and taking the supremum in j, we obtain
sup 27|46, |72 + sup 2207 A6, ]|7 SC/tF(T)‘I’(T)dTa
j=-1 j=-1 0

that is,

() <C /O tF(T)cb(T)dT. (3.31)

Then, applying Gronwall’s inequality to (3.31) and using the given same initial data,
we find that ®(¢t) =0 for any 6 >0 and ¢ €[0,77 — 6], where T} is the first singular time.
Consequently, we have (p(1),v(D)(t)=(p) ,v?))(t) for any t€[0,71). Indeed, we can
further get (p(M,v)(Ty) = (p@,vP)(T1), since (p,v(?)(t) is weakly continuous for
any t€[0,400), i.e., (p@,v(D) e Cy([0,+00); H). x L?). The similar argument implies
that there exists the second singular time T >0(T, >T}) and such that (v(1) p™)(t) =
(v p@)(t) with ¢ € [T1,Tz). We can thus obtain (p™),v(D)(t) = (p®) ,v(?)(t) for any
t€[0,400), since the number of singular times for weak solution is finite. Hence, we
finish the proof of Theorem 1.2.
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