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ABSTRACT: Liquid-crystalline orders are ubiquitous in membranes and could
significantly affect the elastic properties of the self-assembled bilayers.
Calculating the free energy of bilayer membranes with different geometries
and fitting them to their theoretical expressions allow us to extract the elastic
moduli, such as the bending modulus and Gaussian modulus. However, this
procedure is time-consuming for liquid-crystalline bilayers. In paper reports a
novel method to calculate the elastic moduli of the self-assembled liquid-
crystalline bilayers within the self-consistent field theory framework. Based on
the asymptotic expansion method, we derive the analytical expression of the
elastic moduli, which reduces the computational cost significantly. Numerical
simulations illustrate the validity and efficiency of the proposed method.

1. INTRODUCTION

Self-assembled bilayer membranes from amphiphilic molecules
are abundant in biological and soft matter systems. Particularly,
polymeric membranes have potential biomedicine and
biotechnology applications due to their flexibility in the
selection of monomers and chain architectures.1 To use the
membranes better, we need to understand their self-assembly
and stability. Generally, the formation and stability of
membrane morphologies can be understood by their
mechanical properties. A membrane with negligible thickness
could be modeled as a two-dimensional surface S. When the
curvature is small, the deformation energy F of S could be
described by the well-known Helfrich’s linear elasticity
theory2,3

∫ γ κ κ= [ + − + ]F M c G A2 ( ) d
S

M 0
2

G (1)

where M and G are the local mean and Gaussian curvatures of
the deformed bilayer, respectively. The mechanical parameters
are the surface tension γ, the spontaneous curvature c0, the
bending modulus κM, and the Gaussian modulus κG. Note that
the spontaneous curvature c0 is zero for bilayers due to its
symmetry.
For membranes formed by the self-assembly of particular

amphiphilic molecules, it is possible to study how the
molecular architecture and parameters determine the elastic
properties of the membranes. Particularly, experimental
techniques,4,5 simulation methods,6−9 and theoretical anal-
ysis10−12 have been developed to obtain the elastic moduli of
membranes. A natural idea to extract the elastic moduli is

studying bilayers in different geometries, such as planes,
cylinders, and spheres, and then comparing their free energies
with the corresponding expressions derived from elasticity
theories.11 In detail, there are two methods to do this: the
polynomial fitting method (PFM) and the asymptotic
expansion method (AEM). The PFM performs a computation
of the free energy of curved membranes and then extracts the
elastic constants by polynomial fitting of the theoretical
expressions to the computed free energy curves.11 The AEM
regards the curvature of bilayers as a small parameter and
carries out an asymptotic expansion of the free energy in terms
of the curvature to derive analytical expressions for the elastic
constants.13

Both the PFM and the AEM require accurate computation
of the free energy of bilayer membranes. Among the different
theoretical frameworks developed for amphiphilic molecules,
the self-consistent field theory (SCFT) provides a versatile
platform for studying self-assembled bilayer membranes.
Several studies14−17 using the SCFT have been carried out
to study the elastic properties of bilayers by the PFM. Recently,
Cai et al.13 derived the AEM for flexible bilayers within the
SCFT framework. In these studies, the polymers are assumed
to be flexible, and the Gaussian polymer model is used to
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describe the blocks. Although many amphiphilic molecules
contain a rigid or semiflexible component, the elastic
properties for semiflexible bilayers are less explored. Cai et
al.18 extended the PFM to a semiflexible chain model described
by the wormlike chain to study the elastic properties of liquid-
crystalline bilayers and found that the liquid-crystalline order
of the bilayers could have significant effects on the elastic
properties of the membranes. Since the AEM could provide the
analytical expression of elastic moduli and allows one to design
more efficient numerical schemes,13 it is valuable to extend the
AEM to semiflexible bilayers and verify its numerical efficacy
compared with the PFM.
Here, we perform the AEM on semiflexible bilayers that

possess liquid-crystalline orders self-assembled from wormlike
chains within the SCFT framework. It is well known that the
self-assembly of semiflexible polymers is significantly different
from that of the flexibility polymers even for the simple rod-
coil systems.19−23 For the semiflexible bilayers, it has been
predicted that various liquid-crystalline orders, such as A phase
and C-phase, could become equilibrium phases of the rod-coil/
coil blends.24 Numerically, the additional orientation dimen-
sions of wormlike chains make the computation of liquid-
crystalline bilayers time-consuming. This computational
burden is aggravated when PFM is used to extract the elastic
constants because the PFM needs to calculate the free energy
of bilayers with many different curvatures. In this study, using
the AEM, we analyze the excess free energy of bilayer
membranes in three different geometries: an infinite planar
bilayer; a cylindrical bilayer, which is extended to infinity in the
axial direction; and a spherical bilayer with different curvatures
(Figure 1). Specifically, we treat the curvature of cylindrical
and spherical bilayers as small parameters and then carry out
asymptotic expansions for the modified diffusion equation of
propagators and order parameter of polymeric monomers in
terms of the curvature, after which the self-consistent field
(SCF) equations at each order can be derived. Finally, we can
obtain analytical expressions of the free energy at each order,
which are related to the elastic moduli and could be computed
separately. Notably, a few SCF equations need to be solved to
calculate these expanded free energies.
The remainder of this paper is organized as follows. Section

2 gives the SCFT model of semiflexible bilayers and two
schemes to calculate the elastic moduli: the PFM and the
AEM. Section 3 derives the AEM for liquid-crystalline bilayers.
Section 4 presents the numerical method for solving the whole
SCFT model. Numerical examples and comparisons of the two
methods are illustrated in Section 5. Finally, Section 6
concludes with a brief summary.

2. THEORETICAL MODEL AND GEOMETRY
CONSTRAINTS
2.1. Molecular Model. We consider the model system

(used in ref 18) as a binary mixture of A(flexible)B-

(semiflexible)-diblock copolymers and A-homopolymers. In
this generic model, the amphiphilic molecules are modeled by
the diblock copolymers and the amphiphilic solvent molecules
are modeled by the homopolymers. To specify the model, we
assume that the copolymers and homopolymers have the same
degree of polymerization N and the volume fraction of the A
and B blocks of the copolymers are fA and f B = 1 − fA,
respectively. In addition, the flexible chains are modeled as
Gaussian chain and the semiflexible chains are modeled as the
wormlike chain with a rigidity parameter λ. Based on the
statistical segment lengths of A and B blocks (denoted by a
and b, respectively), we define the geometrical asymmetry
parameter24−26 as β = L/Rg, where L = bN is the total polymer

contour and =R Na /6g
2 is the gyration radius. Further-

more, the Flory−Huggins parameter27 χ and the Maier−Saupe
parameter28 η are used to describe the interaction between the
A and B monomers and the orientation interaction between
the semiflexible segments, respectively. Finally, the average
concentration of the diblock copolymers is controlled by the
activity zc of the chemical potential. Within the SCFT
framework formulated in the grand canonical ensemble, the
free energy of our AB/hA system is given by24

∫ρ
χ ϕ ϕ ω ϕ

ω ϕ

η
ξ ϕ ϕ

ψ ϕ ϕ

= [ −

−

+ − + −

+ − − ] − −ε

N
k T

N

N

G z Q Q

r r r r r

r r

M r M r r r r

r r r r

d ( ) ( ) ( ) ( )

( ) ( )

1
2

( ): ( ) ( )( ( ) ( ) 1)

( )( ( ) ( ))

A
B 0

A B A

B B

A B

1 A B c c h (2)

where ϕA(r), ϕB(r) and ωA(r), ωB(r) are the local
concentration and the mean field of the A and B monomers,
respectively; M(r) is the mean orientation field of the
semiflexible blocks; ξ(r) is the Lagrange multiplier enforcing
the incompressibility of the system; and ψ is another Lagrange
multiplier introduced to stabilize the bilayer of different
geometries.16,18,29 Here, a sharp Gaussian function Gε(r − r1)
with width ε is used to ensure that the ψ field only operates
near the interface at a prescribed position r1. In addition, Qc
and Qh are the contributions from the single-chain partition
functions of the copolymers and homopolymers.
The fundamental quantities to be calculated in the SCFT are

the propagators that can be regarded as the probability
distribution functions of polymer segments. In the presence of
the mean fields ωA, ωB, and M, the propagators qA

h(r, s) for the
A-homopolymers and qA

±(r, s), qB
±(r, u, s) for the AB-diblock

copolymers satisfy the modified diffusion equations (MDE)30

ω∂
∂

= ∇ − ∈
s

q s R q s sr r r( , ) ( ( )) ( , ), (0, 1)rA
h

g
2 2

A A
h

(3)

Figure 1. Three geometries: infinite planar, cylindrical, and spherical bilayers with a given curvature.
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ω∂
∂

= ∇ − ∈± ±

s
q s R q s s fr r r( , ) ( ( )) ( , ), (0, )rA g

2 2
A A A

(4)

i
k
jjj

y
{
zzzβ

λ
∂
∂

= ± ·∇ | − Γ + ∇

∈

± ±

s
q s R

L
q

s s f

r u u r u

r u

( , , ) ( , )
2

( , , ), (0, )

r u uB g
2

B

B (5)

with the initial conditions

π
= = =− −q q qr r r u( , 0) ( , 0) 1, ( , , 0)

1
4A

h
A B (6)

∫

π

=

=

+ −

+ −

q q f

q q f

r u r u

r u r

( , 0) d ( , , ),

( , , 0)
1

4
( , )

A B B

B A A (7)

Here, u is a unit orientational vector and Γ(r, u) is an r, u-
dependent field defined as Γ(r, u) = ωB(r) − M(r): (uu − 1/
3I). In terms of the chain propagators, the single-chain
partition functions are calculated by Qc = ∫ drqA+(r, fA), Qh =
∫ drqAh(r, 1), the local concentration of the A and B monomers
are obtained by

∫
∫

ϕ ϕ ϕ= +

= −

+ −− +

sq s q s

z sq s q f s

r

r r

r r

( )

d ( , ) ( , 1 )

d ( , ) ( , )
f

A A
h

A
c

0

1

A
h

A
h

c
0 A A A

A

(8)

∫ ∫ϕ π= −− +z s q s q f sr u r u r u( ) 4 d d ( , , ) ( , , )c

f

B 0 B B B
B

(9)

and the orientational order parameter of the B blocks is given
by

i
k
jjj

y
{
zzz∫ ∫π= −

−

− +z s q s q

f s

S r u r u uu
I

r u

( ) 4 d d ( , , )
3

( , , )

c

f

0 B B

B

B

(10)

Finally, the mean fields and the local concentrations are linked
by the SCF equations

ω χ ϕ ξ ψ= − + −εN Gr r r r r( ) ( ) ( ) ( )A B 1 (11)

ω χ ϕ ξ ψ= − − −εN Gr r r r r( ) ( ) ( ) ( )B A 1 (12)

η=M r NS r( ) ( ) (13)

ϕ ϕ+ =r r( ) ( ) 1A B (14)

∫ ϕ ϕ− − =εGr r r r rd ( )( ( ) ( )) 01 A B (15)

Eqs 2−15 form the whole SCFT model. Although the SCF
equations could have many solutions due to its high
nonlinearity, we focus on the solutions corresponding to
liquid-crystalline bilayers. Furthermore, the free energy of a
bilayer is compared to that of the homogeneous bulk phase

bulk , which can be computed analytically.16,24,31 Since the free
energy difference −( )bulk is proportional to the area of
membrane A, we can define an excess free energy density by

ρ
=

−
F

N
k T A

( )
ex

bulk

B 0 (16)

which will be compared with the deformation energy of
bilayers given in eq 1.

2.2. Geometric Constraints and the PFM. To extract the
bending modulus and Gaussian modulus of the self-assembled
bilayers, one can calculate the excess free energy of bilayer
membranes in three geometries:11,16,18 an infinite plane, a
cylinder, and a sphere. These geometries are easy to simulate
since we can reduce the computation domain to dimension
one in their corresponding coordinate systems. Furthermore,
MDEs 3−5 are now in one-dimensional planar, cylindrical, and
spherical coordinate systems, which can be written in unified
forms18 (omit the superscripts and subscripts)

i
k
jjjj

y
{
zzzz ω∂

∂
= ∂

∂
+ ∂

∂
−

s
q r s a

r
n
r r

q r s r q r s( , ) ( , ) ( ) ( , )2
2

2
(17)

β∂
∂

= ±
s

q r s L
r

L q r su u( , , ) ( ) ( , , )P CS (18)

where β= ± Θ∂ − Γ + ∇
λ

L r ucos ( , )r uP
1

2
2 is the operator

corresponding to planar bilayer, LCS is an operator introduced
by cylindrical or spherical deformations

l

m

oooooooo

n

oooooooo

=

=

Θ Φ Φ∂ − Θ Φ∂
≕

=

− Θ∂ ≕ =

Φ Θ

Θ

L

n

L
n

L n

0, 0

cos sin cos sin cos
,

1

sin , 2

CS

2

C

S

and n = 0, 1, and 2 for planar, cylindrical, and spherical
coordinate systems, respectively. Here, Θ and Φ in operators
LCS are the local orientational angle of u in the cylindrical or
spherical coordinate systems.
In the cylindrical and spherical geometries, the constraint

ψGε(r − r1) in eq 2 applied to the outer monolayer, where r1 is
set to control the curvature c of the self-assembled bilayer.
With these constraints, the obtained excess free energies for
the three geometries, F0, FC(c), and FS(c), are compared with
the theoretical free energies

γ κ= +F c20
M 0

2
(19)

κ
κ

= − + + +F c F c c c B c( ) 2
2

...C 0
M 0

M 2
C

4
(20)

κ κ κ= − + + + +F c F c c c B c( ) 4 (2 ) ...S 0
M 0 M G

2
S

4
(21)

where the high-order moduli, such as BC and BS, are
introduced for medium or large curvatures. Since the energies
FC(c) and FS(c) are polynomials when the curvature c is small,
their coefficients can be extracted from two datasets, {(ci,
FC(ci))} and {(ci, F

S(ci))}, by the standard polynomial fitting
method.16,18 Here, for each curvature ci in the set {ci}, the free
energy F(ci) (FC(ci) or FS(ci)) is calculated by solving the
SCFT model with the geometric constraint at r1 corresponding
to ci.

2.3. AEM. Taking the curvature c of cylindrical and
spherical bilayers as small parameters in the asymptotic
expansion theory,32,33 we can get asymptotic expansions for
the SCFT model. Denote x = r − 1/c as the local coordinate
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using the location of bilayer as a reference, then we can expand
1/r as

=
+

=
+

= − + +
r x c

c
cx

c xc x c
1 1

1/ 1
...2 2 3

(22)

The propagators, local concentrations and mean fields can be
expanded accordingly. We add a subscript i to denote the ith-
order term in the asymptotic expansion. For example, qAi is the
ith term of the expansion for qA(r, s)

= + + +q r s q x s cq x s c q x s( , ) ( , ) ( , ) ( , ) ...A A0 A1
2

A2

Furthermore, analytic expressions of the MDE and SCF
equations at each order could be obtained separately, which is
established in Section 3 for liquid-crystalline bilayers.
Once we solved the expanded SCF equations, the free

energy of a bilayer at each order can be analytically expressed.
Denoting the expansion for the semilocal excess energy density
by f(r) = ∑i≥0 c

i f i(x), we have the expansion for the excess
energy density Fex

∫ ∫
∫

∫∑ ∑ ∑

= =

= + + + +

= ≕

∞

−

∞

≥ −∞

∞

=
−

≥

F
A

f c r f r r

cx f x cf x c f x x

c x p x f x c F

r r
1

( )d ( )d

(1 ) ( ( ) ( ) ( ) ...)d

d ( ) ( )

V

n n

c

n

i

i

j

i

j i j
i

i
i

ex
0

1/ 0 1
2

2

0 0 0

(23)

where the functions pj(x) are monomials from the binomial
expansion of (1 + cx)n

= = = −
p x p x nx p x

n n
x( ) 1, ( ) , ( )

( 1)
2

, ...0 1 2
2

Since we only consider n = 0, 1, and 2, we have pj(x) = 0 for j >
2. By eq 23, we have the ith-order free energy of Fex

∫ ∑=
−∞

∞

=
−F x p x f xd ( ) ( )i

j

i

j i j
0 (24)

In particular, we have the first three terms from the free energy
expansion

∫=
−∞

∞
F f x x( )d0 0 (25)

∫= +
−∞

∞
F f x nxf x x( ( ) ( ))d1 1 0 (26)

i
k
jjjj

y
{
zzzz∫= + + −

−∞

∞
F f x nxf x

n n
x f x x( ) ( )

( 1)
2

( ) d2 2 1
2

0 (27)

Denote the free energy of cylindrical and spherical bilayers
(corresponding to n = 1 and 2, respectively) at ith order as Fi

C

and Fi
S, then the elastic moduli can be directly calculated

κ κ

κ κ γ κ

= = −

=− =− = −

F F F

c F F F c

2 , 4 ,

/(2 ) /(4 ), 2
M 2

C
G 2

S
2
C

0 1
C

M 1
S

M 0 M 0
2

(28)

Compared with the PFM, the AEM analytically gives the
elastic moduli corresponding to a series of SCF equations. Our
previous study13 derived these MDE and SCF equations for
flexible bilayers. In the next sections, we extend the AEM to

the liquid-crystalline bilayers and design numerical methods to
solve the obtained equations.

3. AEM FOR LIQUID-CRYSTALLINE BILAYERS
Compared with the flexible bilayers, the semiflexible bilayers
could have liquid-crystalline orders which have significant
effects on the bilayers’ phase behavior and elastic property.
Here, we derive the analytical expression of the elastic moduli
for liquid-crystalline bilayers. In particular, we focus on the A
phase bilayers for which the MDE of rods in cylindrical and
spherical coordinate systems have a unified form eq 18. To use
the AEM, we need to expand the MDEs with respect to the
curvature; then, the SCF equation and free energy at each
order can be derived.

3.1. MDEs at Each Order. For flexible Gaussian chains,
the MDE has the form of eq 17. According to the asymptotic
expansion for field ω and propagator q in eq 17, we have

i
k
jjjj

y
{
zzzz

ω

ω ω ω

∇ −

= ∂ + ∂ − − − +

× + + +

a r q r s

a
na

r
x c x c x

q x s cq x s c q x s

( ( )) ( , )

( ) ( ) ( ) ...

( ( , ) ( , ) ( , ) ...)

rr r

2 2

2
2

0 1
2

2

0 1
2

2
(29)

Substituting the relation 22 of r and x into eq 29 and
comparing the terms with different orders of c, we get the
MDE at the ith order

ω∂ = ∂ − +q x s a q x s g x s( , ) ( ) ( , ) ( , )s i xx i i
2 2

0 (30)

where gi(x, s) is a source term independent of qi(x, s)

∑ ω= − ∂ −
=

−
−g x s na x q x s( , ) ( ( ) ) ( , )i

j

i
j

x j i j
1

2 1

(31)

For wormlike chains, the MDE has the form of eq 18.
Substituting the asymptotic expansion for field Γ and
propagator q into eq 18, we have

i
k
jjj

y
{
zzz

Ä

Ç
ÅÅÅÅÅÅÅÅ É

Ö
ÑÑÑÑÑÑÑÑ

β
λ

β

λ

± Θ∂ + − Γ + ∇

= ± Θ∂ + − + +

− Γ + Γ + Γ + + ∇

× + + +

±

± ± ±

r
L q s

c xc x c L

x c x c x

q x s cq x s c q r s

r u r u

u u u

u u u

(cos
1

( , )
1

2
) ( , , )

(cos ( ...) )

( ( , ) ( , ) ( , ) ...)
1

2

( ( , , ) ( , , ) ( , , ) ...)

r

x

u

u

CS
2

2 2 3
CS

0 1
2

2
2

0 1
2

2

Expanding these terms and comparing them with different
orders of c, we get

∂ = +± ±q x s L q x s g x su u u( , , ) ( , , ) ( , , )s i i iP (32)

where β= ± Θ∂ − Γ + ∇
λ

L x ucos ( , )x uP 0
1

2
2 is the derivative

operator corresponding to planar bilayers and gi(x, u, s) is the
source term defined as

∑ β= ± − − Γ
=

−
−
±g x s x L x q x su u u( , , ) ( ( ) ( , )) ( , , )i

j

i
j

j i j
1

1
CS

(33)

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01116
J. Phys. Chem. B 2021, 125, 5309−5320

5312

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01116?rel=cite-as&ref=PDF&jav=VoR


3.2. SCF Equation and Free Energy at Each Order. For
the AB/hA model system, the MDEs eqs 30 and 32 for qAi

± , qBi
± ,

and qAi
h have the following initial conditions

∫

π

π

= = =

= =
= =

=

= =

− −

−

−

+ −

+ −

q x q x q x

q x q x
q x i

q x q x f

q x q x f i

u

u

u u

u

( , 0) ( , 0) 1, ( , , 0)
1

4
,

( , 0) ( , 0) 0,
( , , 0) 0, 1, 2, ...,

( , 0) d ( , , ),

( , , 0)
1

4
( , ), 0, 1, 2, ...

i i

i

i i

i i

A0
h

A0 B0

A
h

A

B

A B B

B A A

After solving the MDEs, we can calculate the expansions at
each order for order parameters ϕA

h(x), ϕA
c (x), ϕB

c (x), and
S(x). For example

i
k
jjj

y
{
zzz∫ ∫

∑

∑ ∑π

=

= −

−

≥

≥ =

−

−
+

x c x

c z q x s

q x f s

S S

u u uu
I

u

( ) ( )

4 ds d ( , , )
3

( , , )

i

i
i

i

i
f

j

i

j

i j

0

0
c

0 0
B

B, B

B

(34)

The SCF equations can be done similarly. In the geometric
constraint ψGϵ(r − r1), the position r1 can be decomposed as
r1 = 1/c + (r1 − 1/c) ≕ 1/c + h, where 1/c is the radius of the
cylindrical or spherical bilayer and h ≔ r1 − 1/c is the relative
position of the constraint. Instead of using r1 explicitly, we use
its relative position h, which is determined by the equation

∫ ϕ ϕ− − =ε
−∞

∞
G x h x x x( )( ( ) ( ))d 0A0 B0 (35)

Denoting the expansion of the relative position by h =∑i≥0 c
ihi

and using the Taylor expansion of Gε(x − h), we get
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Considering the expansion of the Lagrange multiplier ξ(r)=
∑i≥0 ciξi(x) and the constraint field ψ = ∑i≥0 ciψi and
comparing the eqs 11−15 at each order, we have the SCF
equations for the liquid-crystalline bilayer at the ith order

∑ω χ ϕ ξ ψ= − + −ε
=

−x N x x G x h( ) ( ) ( ) ( )i i i
j

i

j i jA B
0

, 0
(36)

∑ω χ ϕ ξ ψ= − − −ε
=

−x N x x G x h( ) ( ) ( ) ( )i i i
j
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j i jB A
0

, 0
(37)

η=x N xM S( ) ( )i i (38)
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∫ ∑ ∑ ϕ ϕ− −

=

ε
−∞

∞

= =

−

− − − −G x h p x x x

x

( ) ( )( ( ) ( ))

d 0

j

i

j
k

i j

i j k B i j k
0

, 0
0

k A, ,

(40)

Here, δ00 ≡ 1 for i = 0, and δ0i ≡ 0 for i ≥ 1. It should be noted
that there is no constraint to stabilize the planar bilayers;
hence, we have ψ0 = 0. Finally, the SCF equations are closed
after the curvature c of the bilayer is determined. For a curved
bilayer of finite thickness, the definition of the interface
position is somewhat arbitrary. Following our previous
setting,13 we define the curvature of cylindrical and spherical
bilayers as c satisfying ∫ (|r| − 1/c)ρ(r)dr = ∫ 0

∞ rn(r − 1/
c)ρ(r)dr = 0, where ρ(r) ≔ ϕB(r) − f Bϕbulk is regarded as a
density function and ϕbulk is the bulk copolymer concentration.
Expanding ρ(r) as ρ(r) = ∑i≥0 c

iρi(x), we have the following
constraints

∫∑ ρ≔ = =ψ
= −∞

∞

−I xp x x x i( ) ( )d 0, 0, 1, 2, ...i
j

i

j i j,
0

(41)

In summary, the SCF equations for i ≥ 1 are eqs 36−41.
The value of h is calculated from eq 35 after the SCF equation
for i = 0 is solved. Once we solved the SCF equations at each
order (see Section 4 for the numerical methods), the free
energy of a bilayer can be calculated analytically. For AB/hA
systems, the semilocal excess energy density f(r) is f(r) =
f bilayer(r) − f bulk, where f bulk is the energy density of the bulk
phase. Using the expansion in eq 23, we have the ith
component of f(x) giving by
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Then, the elastic moduli can be calculated by eqs 25−27. Note
that for flexible bilayers, our previous study13 shows that F0 =
F0
C = F0

S and 2 F1
C = F1

S. These relations are also true for liquid-
crystalline bilayers since the zeroth-order SCF equations are
the same as that of the planar bilayers and the first-order SCF
equations for cylindrical and spherical bilayers only have a
different scale n.

4. NUMERICAL METHOD
In this section, we turn to the numerical method to solve the
SCF equations. Generally, the SCFT models can be solved by
iteration methods. In solving SCF equations, we need to solve
the MDE, which is the most time-consuming step, especially
for semiflexible chains. For the AEM, the SCF equations at
each order are solved successively, then the free energy and
structure of the bilayers at each order can be obtained.

4.1. Solve the MDEs for the AEM. Unlike the PFM that
should solve MDEs in eqs 17 and 18, the MDEs in the AEM
are eqs 30 and 32 where the main difference is the source
terms gi. Our previous work

13 developed the numerical method
for solving MDE of coils; therefore, here, we only give the
numerical method for MDE of rods, i.e., eq 32. Furthermore,
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we reformulate eq 32 with initial value q0 and a reflection
bound condition as

λ

∂
∂

= ∂
∂

− Γ

+ ∇ +

s
q x s a

x
q x s x q x s

q x s g x s
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(42)

= ∂
∂

=q x q x
x

q x su u u( , , 0) ( , ), ( , , ) 00
in (43)

where g(x, u, s) is a given source term. The computational
domain is truncated to a proper interval [−L, L] with length
2L, and the boundary condition is at xin = ±L (the sign is
assigned from the sign of the coefficient a).
To capture the sharp interface of bilayers, we employ

nonuniform grids corresponding to a given monotone function
x = t(ζ) satisfying t(±L) = ±L, t″(±L) = 0 (a valid choice is
given in Appendix A). Then, with a proper change of variables,

ζ ζ= ′q x s t u s( , ) ( ) ( , ), eq 42 will be changed but has the
same form except variable coefficients and the source term
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where the new coefficients are
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Employing the well-known Strang split method,34 we obtain
the following two-order semidiscrete scheme for eq 44 with
step size Δs
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where uk(ζ, u) is the numerical approximation of u(ζ, u, sk), sk
= kΔs. Here, u*(ζ, u) and u**(ζ, u) can be solved by the well-
known Crank−Nicolson scheme,35 and u#(ζ, u) can be solved
by the spectral method employing the spherical harmonics

Yl
m(Θ, Φ) as basic functions. Note that the source term gi(x, u,

s) (or its variant g̃i(ζ, u, s)) is given by eq 33, whose evaluation
is straightforward and can be numerically implemented by the
spherical harmonics, i.e., the operation of LCS on a spherical
harmonic can be expressed by several spherical harmonics (see
Appendix B). It is worth noting that there are higher-order
numerical schemes to solve the differential eqs 42 and 44. For
instance, if the derivative operators on x (or ζ) are discretized
by fourth-order compact finite difference schemes36 and the
derivative operators on s are discretized by fourth-order
Runge−Kutta methods,37 then one could obtain fourth-order
schemes finally.

4.2. Solve the SCF Equations. The SCF equations can be
solved by the Picard iteration, where the fields ωAi, ωBi, and Mi
are updated from an old set of field, ωAi

old(x), ωBi
old(x), and

Mi
old(x). In detail, we first solved the MDEs with these old

mean fields to get propagators, qAi
± , qBi

± , and qAi
h , which are

directly used to calculate the order parameters ϕAi(x), ϕBi(x),
and Si(x). Next, we assign the Lagrange fields ξi and ψi
according to eqs 39−4141. Then, the fields ωAi, ωBi, and Mi
are updated according to eqs 3637−38. Repeat these steps
until the error of SCF equations is small enough; then, the ith-
order free energy can be obtained by eq 24. Detailed iteration
formula is given in Appendix C. Note that the Picard iteration
for SCF equations is robust but converges slowly. Hence, we
use the Anderson mixing technique38 of general fixed point
problems to accelerate the convergence when the fields are
updated by lots of Picard iterations.

4.3. Programming Skills. Now we introduce the
programming aspect of the AEM. At first glance, our analytical
approach seems cumbersome because there are many symbols
with subscripts corresponding to different orders of the
expansion. However, the programming is not cumbersome
since we use the object-oriented programming (OOP), which
treats the fields, order parameters, and propagators at each
order as object instances of a same class. The main difference
from solving planar bilayer SCF equations is that the MDE
now has an additional source term, and the cross-multiplying
terms are replaced by a for-loop summation (it is easy to
implement using OOP). The main disadvantage is that we
need to store the quantities of all orders, which consumes 5
times of CPU memory (i.e., five object instances from the
zeroth to the fourth orders of the fields, order parameters, and
propagators) if we want to calculate the fourth-order elastic
modulus. This is painless for flexible bilayers13 but expected to
be avoided for liquid-crystalline bilayers because the additional
orientation dimensions will increase the CPU memory. Next,
we introduce a trick to reduce the CPU memory to 2 times.
The main part of the memory consumption is that the

propagator of each order needs to be restored for the
subsequent calculations. For example, evaluating the source
term gi(x, u, s) by eq 33 will use the propagators q0, ..., qi−1.
Since the propagators up to the (i − 1)th order are only used
but not modified, we can save them to the hard disk instead of
to the CPU memory and load them back into the CPU
memory when needed. Besides, the source term (except a
tractable term Γi(x, u) q0

±) is unchanged during the SCF
iteration. Therefore, it is only once that we need to load the
propagators from the hard disk back into the CPU memory to
calculate the source term. Using this trick, we only need the
CPU memory to store two object instances: one instance for
the current order (ith-order fields, order parameters, and

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01116
J. Phys. Chem. B 2021, 125, 5309−5320

5314

pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01116?rel=cite-as&ref=PDF&jav=VoR


propagators) and another instance for the accumulated terms
(from the zeroth to the (i − 1)th orders).

5. RESULTS AND DISCUSSION
In this section, we present some numerical examples of the
AEM for tensionless liquid-crystalline bilayers, i.e., the activity
of chemical potential zc is adjusted such as the planar bilayer
has zero surface tension (γ = 0). The computational domain
[−L, L] is determined by the concentration profile to ensure
the order near the boundary is close to the bulk phase. The
orientational vector u on unit sphere is discretized by 32 values
of Θ and 36 values of Φ, and the spherical harmonics Yl

m for
calculating LCSq is truncated by |m| ≤ l ≤ 16. The number of
spatial and contour grid point are set as Nx = 400 and Ns =
800, respectively. The free energy is convergent in the order of
10−4, and the fields are self-consistent with L2-norm error less
than 10−6. The Gaussian width ε in eq 2 is set as ε = 0.2Rg. For
the obtained elastic moduli, we use the unit same with Li et
al.,16 where the referenced length is d = 4.3Rg and the
interfacial free energy per unit area between coexisting A and B
homopo lymer s ( in the l im i t o f l a rge χN) i s
γ χ ρ= N k Ta N/6 /int 0 B .

5.1. Compare the PFM and the AEM. To compare the
PFM and the AEM, we first verify the consistency of the AEM
with the directly constrained cylindrical and spherical bilayers.
We show the energy curves in Figure 2 with model parameters

χN = 15, ηN = 30, fA = 0.5, β = 1, and λ/L = ∞. The circles
and squares are the excess free energy of cylindrical and
spherical bilayers calculated in the cylindrical and spherical
coordinate systems, respectively.18 Under this model param-
eter, the bilayer is self-assembled to A phase and its thickness is
about 2.2Rg when the bilayer is slightly curved. Therefore, the
curvature of spherical and cylindrical bilayers has an upper
bound cmax ∼ 1/2.2 ≈ 0.45. Actually, numerical results reveal
that the solution of the SCFT model with constrained
curvature c > cmax ≈ 0.2 for spheres (or cmax ≈ 0.3 for
cylinders) will tend to micelles instead of perfect bilayers. The
solid and dashed energy curves in Figure 2 are the polynomials
whose coefficients are determined by the AEM. It is obvious
that the free energy from the AEM is consistent with that of

the directly constrained simulations, which implies the
consistency between the AEM and the PFM, i.e., the second-
order energy expansion F2c

2 approximates Fex(c) well when the
curvature c is small and adding the fourth-order energy F4c

4

will improve the approximation for more larger curvatures. It is
interesting to note that the fourth-order energy is positive for
cylindrical bilayers but negative for spherical bilayers, i.e., F4

C >
0, F4

S < 0. This trend occurs for most flexible bilayers13,16 and
semiflexible bilayers (see Section 5.3). It provides a qualitative
understanding for highly curved membranes as the fourth-
order energies become observable when the curvature is large.
A similar result has been observed in molecular dynamic
simulations of lipid models,39 where the parabolic membrane
stiffens with increasing curvature.
Now we consider the aspect of time cost. Generally, the total

CPU time T for solving the SCFT model can be estimated by
T = Kt + T0, where K is the number of SCF iterations to
converge, t is the time cost of one iteration, and T0 is the
warmup time. Since the total iteration number K depends on
many factors, such as the quality of initial guess of fields, the
stopping criteria, and the iteration schemes, we only compare
the time cost t and T0. In the AEM, T0 is the CPU time to
calculate the source terms at the beginning of iterations. Figure
3 shows the CPU time as a function of the number of

iterations for both the PFM and the AEM. It is evident that the
AEM is about 2 times faster than the PFM for one iteration
when the semiflexible blocks are rigid rods (λ/L = ∞). This is
because the MDE in the PFM contains orientation operators
(LCS) introduced by the curvatures, which is time-consuming
and needs to be computed at each iteration. In contrast, for the
AEM, the operator LCS appears in the source term and only
needs to be computed once. However, one iteration in the
AEM is a little slower than that of the PFM when the chains
are semiflexible (λ/L < ∞). Note that using the PFM, we need
to solve the SCFT model many times (25 times, for example,
determined by how many curvature values that we need to be
constrained at). Therefore, the total number of iteration is
much large than that of the AEM. Generally, the AEM is more
efficient than the PFM to calculate the elastic moduli
(especially for the rigid rod case).

Figure 2. Comparison of the free energies of cylindrical and spherical
bilayers. Fex is calculated by the geometry constraint method, while F2
and F4 are calculated by the AEM. (Model parameters are χN = 15,
ηN = 30, fA = 0.5, β = 1, and λ/L = ∞).

Figure 3. Comparison of the CPU time of the PFM and the AEM (up
to the second-order expansion). The numerical parameters are Nx =
400 and Ns = 800.
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Let us summarize the pros and cons of the PFM and the
AEM to calculate the elastic moduli of liquid-crystalline
bilayers. The significant merit of the AEM is that it provides an
analytical expression of the elastic moduli, which correspond-
ing to a few SCF equations with the MDE, including source
terms. Using the analytical expressions, we only need to solve
five SCF equations (corresponding to F0, F1

C, F2
C, F1

S, and F2
S) to

obtain all of the second-order moduli and additional four SCF
equations for the fourth-order moduli. In contrast, the PFM
needs to solve the SCF equations many times, which is
determined by how many curvature values should be used for
the polynomial fitting. Although five points of (c, Fex(c)) are
enough to determine a fourth-order polynomial Fex(c), we
should use more points (such as 25 points) to ensure the fitted
coefficients are reasonable since the free energies include
numerical errors. Therefore, to obtain all of the second- and
fourth-order moduli, the PFM needs to solve the SCF
equations about 50 times (the cylindrical and spherical bilayers
have each 25 times). However, in the AEM, the SCF equations
should be solved successively, and the lower-order terms of
propagators appear in higher-order source terms of the MDE,
which results in an increase of the CPU memory. These
comparisons are listed in Table 1.

5.2. Decomposition of the Order Parameters. As a
merit of the AEM, the order parameters of curved bilayers can
be recovered by the asymptotic expansion. Figure 4 gives the
decomposition of a spherical bilayer with the curvature c ≈
0.14, and the zeroth-, first-, and second-order concentrations in
the AEM. For this curvature, the third- and fourth-order
concentrations are small (less than 0.1 for ϕA

c ; see Figure 4d).
Note that the zeroth-order and the second-order concentration
profiles are symmetric with respect to the center of the bilayer,
while the first-order profile is antisymmetric. Hence, the odd-
order terms in the free energies can be omitted.
It is interesting to note that the profile of the ith-order

concentrations is similar to that of the derivative of the (i −
1)th-order concentrations (up to a proper multiplier), such as
ϕA,1(x) ≈ 1.0 ϕA,0′ (x) and ϕA,2(x) ≈ 0.7 ϕA,1′ (x) for the
example in Figure 4. These relations provide good initializa-
tions for solving the high-order SCF equations because we can
initialize the (i + 1)th-order concentrations based on the
derivative of the ith-order concentrations.

5.3. Elastic Properties of Semiflexible Bilayers. Now
we show some results on the elastic properties of semiflexible
bilayer membranes that exhibit liquid-crystalline orders. First,
we examine the bending modulus and Gaussian modulus
difference between flexible and semiflexible bilayer membranes.
To make this comparison, we fix the Flory−Huggins parameter
as χN = 30, turning off the orientational interaction between
rods, i.e., letting ηN = 0, setting the geometrical asymmetry
parameter β = √6 such that the rigid rod and coil have the
same mean-squared end-to-end vector.18,30 The results are
given in Figure 5, where the elastic moduli of tensionless
flexible (coil−coil) and semiflexible (rod-coil) bilayer mem-
branes are shown as a function of the hydrophilic fraction fA. It
is indicated that the flexible bilayers have a higher bending

Table 1. Summary of the PFM and the AEM to Calculate
the Elastic Moduli of Liquid-Crystalline Bilayer Membranes

property PFM AEM

analytical expression no yes
MDE standard has source terms
solve SCF equations ∼50 times 5−9 times
CPU memory one instance two instances

Figure 4. Order parameters of bilayers. (a−c) Local concentrations in AEM at the zeroth, first, and second orders, respectively. (d) Local
concentrations of a spherical bilayer with curvature c ≈ 0.14, and the decomposition of ϕA

c up to the fourth-order component. Model parameters are
the same as Figure 2.

The Journal of Physical Chemistry B pubs.acs.org/JPCB Article

https://doi.org/10.1021/acs.jpcb.1c01116
J. Phys. Chem. B 2021, 125, 5309−5320

5316

https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01116?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01116?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01116?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcb.1c01116?fig=fig4&ref=pdf
pubs.acs.org/JPCB?ref=pdf
https://doi.org/10.1021/acs.jpcb.1c01116?rel=cite-as&ref=PDF&jav=VoR


modulus κM than semiflexible bilayers (about 1.8 to 2.3 times).
The former also has a higher magnitude of Gaussian modulus
κG. Note that Katsov et al.

15 compared the bending moduli of
monolayer (equals κM/2) obtained from SCFT with
experimental values and suggested a scale-down factor of
about 2.5. This factor is close to 1.8−2.3 and hence implies
that modeling the polymer as semiflexible chains might predict
the elastic moduli more accurately than flexible chains.
Next, we turn to the effect of model parameters on the

elastic properties of tensionless bilayers. Figure 6a gives the
second- and fourth-order moduli as functions of fA with two
values of χN (χN = 15 and χN = 20). The bending modulus κM
and the fourth modulus (BC and BS) have a weak symmetry
around fA = 0.5, and the Gaussian modulus κG changes from

positive to negative around fA = 0.43. Besides, the magnitude of
the moduli increases with increasing Flory−Huggins parameter
χN. Figure 6b gives the elastic moduli as functions of ηN. The
κM and BC values are positive, while the κG and BS values are
negative in most cases. The magnitudes of elastic moduli are
roughly increasing functions of ηN; however, their increment is
not always smooth since there exist bilayer phase transitions
between different liquid-crystalline orders.24 For the example
of χN = 15, fA = 0.5, the bilayer is in An phase for ηN = 20 and
in As phase for ηN = 30, and the An−As phase transition occurs
about ηN = 23. The tensionless bilayers in the As phase have
significantly higher moduli than the An phase. When ηN is
small (less than ∼10), the bilayers’ liquid-crystalline order is
weak and the elastic moduli hardly changed. In contrast, the
liquid-crystalline order with high ηN has significant effects on
the elastic properties.

6. CONCLUSIONS
In this paper, we extended the AEM to liquid-crystalline bilayer
membranes within the SCFT framework, where the liquid-
crystalline order occurs by introducing wormlike chains in the
amphiphilic copolymers. Analytic expressions of the elastic
moduli of self-assembled liquid-crystalline bilayers are derived
and related to a few SCF equations. In contrast, the PFM
needs to solve a large number of SCF equations before fitting
the energy curves. Since it is time-consuming to solve the
MDE for wormlike chains, the PFM has a heavy computing
burden. The AEM only needs to solve a few SCF equations to
remarkably reduce the computational cost. We have performed
the AEM for self-assembled A phase bilayers and verified its
validity and efficiency.
Although the model and methods are restricted to a rod-coil

diblock system, it is straightforward to extend the AEM to
other molecular architectures. It is expected that the AEM will
contribute to better exploring and understanding the depend-
ence of elastic properties on the molecular architecture and
microscopic parameters. In addition, other liquid-crystalline
orders such as the C-phase bilayers can also become the

Figure 5. Elastic moduli of tensionless flexible (coil−coil) and
semiflexible (rod-coil) bilayer membranes as functions of the
hydrophilic fraction fA with χN = 30. The unit of elastic moduli is
adopted from Li et al.16 (Other model parameters for rod-coil are ηN
= 0, β = √6, and λ/L = ∞).

Figure 6. Elastic moduli of tensionless semiflexible bilayer membranes as functions of (a) the hydrophilic fraction fA and (b) the Maier−Saupe
parameter ηN (χN = 15, fA = 0.5). (Other model parameters: β = √6 and λ/L = ∞).
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equilibrium state for some molecular parameters,24 and it is
interesting to study the effect of molecular tilt on the elastic
properties of bilayers, which will be left for our future work.

■ A. NONUNIFORM GRIDS
To capture the sharp interface of bilayers, we use the
nonuniform grid induced by a transformation t(ζ)
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where ζ0 is a parameter that corresponds to the position of
interfaces and k is a small positive number that controls the
nonuniform degree of the grid. A larger k results in a larger
nonuniform degree, which means more nodes near the
interface. To quantitatively control the nonuniform degree,
we define a dense ratio d reflecting how dense the nonuniform
grid is over the uniform grid
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Figure 7 gives examples of nonuniform grid with different
degrees, where the computational domain is rescaled to [−1,

1] and ζ0 is adjusted to capture interfaces at x = ±0.25. Note
that the dense ratio d = 2 indicates that the grid at x = ±0.25 is
double dense as the uniform grid. In our numerical
experiments, the nonuniform dense ratio is set as d = 1.5.

■ B. OPERATIONS ON SPHERICAL HARMONICS
The spherical harmonics are defined as
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m denotes the associated Legendre polynomials. The

spherical harmonics are eigenfunctions of the Laplacian
operator, ∇u

2, and have the relation: ∇u
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m.

When the operator LCS in cylindrical and spherical coordinates
(i.e., LC and LS) act on Yl

m, the results LCSYl
m can be expressed
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■ C. UPDATE THE FIELDS
With old fields ωAi

old(x), ωBi
old(x), and Mi

old(x) (and its
corresponding concentrations ϕAi

old(x), ϕBi
old(x), and Si

old(x))
in hand, we update the fields by the iteration
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where αi, i = 1, 2, are update ratios, which are chosen as α1 =
0.03 and α2 = 0.01 in our calculations. This is the Picard-type
iteration which is robust but converges slowly. Therefore,
when the fields are updated by a lot of Picard iterations such
that the error is less than 0.1, we turn to the Anderson iteration
where the corresponding fixed point problem is eqs 36−38. In
both the Picard and Anderson iterations, the Lagrange field
ξi(x) and ψi are given by (omit the superscript)

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÄ
Ç
ÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑ

∫

∫

∑

ξ χ ϕ ϕ ω ω

γχ ϕ ϕ δ

ψ ω ω χ ϕ ϕ

ψ βχ

= + − +

− + −

= − − −

− − −

−

ε ψ

ε

=

−

−

x N x x x x

N x x

x x x N x x

G x h x NI

xG x h x

( )
1
2

( ( ( ) ( )) ( ( ) ( )))

( ( ) ( ) ),

( ( ) ( ) ( ( ) ( ))

2 ( ))d

/ 2 ( )d

i i i

i i

i i i

j

i

j i j i

A Bi A Bi

A Bi 0

A Bi Bi A

0

1

, 0 ,

0

Figure 7. Examples of grid with different nonuniform degrees
controlled by the dense ratios.
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where γ and β are numerical parameters, which are chosen as
0.6 and 0.4, respectively. Note that the constraint eq 41 is
satisfied because of the existence of field ψi; hence, Iψi appears
in the iteration.
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