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ON GLOBAL COHOMOLOGICAL WIDTH OF ARTIN ALGEBRAS

BY

CHAO ZHANG (Guiyang and Bielefeld)

Abstract. We study the global cohomological width of artin algebras. Using the
construction of indecomposable objects in the triangulated category via taking cones due
to Happel and Zacharia (2008), we establish that global cohomological width coincides
with strong global dimension. Moreover, an upper bound for the global cohomological
width of piecewise hereditary algebras is obtained. As an application, we construct finite-
dimensional piecewise hereditary algebras of type A and D with global cohomological
width an arbitrary positive integer m. Finally, we find a relation between recollements
and global cohomological width.

1. Introduction. Let R be a commutative artin ring. Throughout this
article, all algebras are connected associative artin R-algebras with identity
unless stated otherwise. In representation theory of algebras, an important
homological invariant is global dimension. The global dimension of an al-
gebra measures to some extent the complexity of its homological properties.
The best-understood algebras are hereditary algebras, whose global dimen-
sions are at most one. The module category of hereditary algebras is a
classical example of a hereditary abelian category, i.e., an abelian category
such that the functor Ext2(−,−) vanishes. The indecomposable objects in
the bounded derived category of these algebras are stalk complexes (see
[Hap88, Kr07] for details).

The piecewise hereditary algebras are those algebras derived equivalent
to some hereditary abelian category [HRS96b]. According to the celebrated
classification theorems due to Happel and Reiten [Hap01, HR02], up to
derived equivalences, there are only two classes of piecewise hereditary alge-
bras: the algebras derived equivalent to some hereditary algebra and the al-
gebras derived equivalent to some canonical algebra. In the research on piece-
wise hereditary algebras, much emphasis has been placed on those which are
finite-dimensional over fields. Another homological invariant, strong global
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dimension, was introduced to measure how far an algebra is from being
hereditary [Sko87]. Roughly speaking, the strong global dimension of an
algebra is defined by taking the supremum over the lengths of all inde-
composable objects in its bounded homotopy category of finite generated
projective modules. Ringel conjectured that an algebra is piecewise heredi-
tary if and only if its strong global dimension is finite. Much effort has been
put toward the proof of this conjecture, for example for algebras with radi-
cal square zero [KSYZ04]. The conjecture was completely proved by Happel
and Zacharia [HZ08]. As a byproduct, they described the algebras of strong
global dimension two as those quasitilted algebras which are not hereditary.
Here, we say an algebra A is quasitilted if there exists a hereditary abelian
category H with a tilting object T such that A = EndH(T )op, or equiva-
lently, gl.dimA ≤ 2 and either pdX ≤ 1 or idX ≤ 1 for any X ∈ modA
(see [HRS96a]). Indeed, quasitilted algebras are generalizations of tilted al-
gebras, and the typical examples of quasitilted algebras are tilted algebras
and canonical algebras.

More recently, Han and the present author introduced another carrier
of homological information of algebras, global cohomological width, in the
study of derived Brauer–Thrall type theorems [HZ13]. The global cohomo-
logical width was defined on the level of the bounded derived category as the
supremum of the cohomological widths of indecomposable complexes. As
was first observed for finite-dimensional algebras over algebraically closed
fields, global cohomological width coincides with strong global dimension,
even though these two invariants are defined in different frameworks [HZ13,
Proposition 3].

In the present paper, we generalize the description of [HZ13, Proposi-
tion 3] to the case of artin algebras, based on the construction of indecom-
posables in a triangulated category via taking cones, due to Happel and
Zacharia [HZ08, Corollary 1.4]. We mainly study the global cohomological
width of artin algebras, and try to convince the readers that it is much more
convenient to deal with the indecomposables in terms of homology rather
than length, even though strong global dimension coincides with global co-
homological width.

First, we study the behavior of global cohomological width under derived
equivalences, retrieving the inequality between strong global dimensions un-
der tilting equivalences, established by Happel and Zacharia [HZ10, Theo-
rem 4.2]. Moreover, we find an upper bound for the global cohomological
width of piecewise hereditary artin algebras, which coincides with the upper
bound provided in [HZ08, Proposition 3.1] for strong global dimension by a
careful analysis of normalized equivalences associated to finite-dimensional
piecewise hereditary algebras over fields. By [Z14, Proposition 1.5], piecewise
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hereditary algebras can be characterized as the algebras with finite global
cohomological width. We shall describe a special class of piecewise heredi-
tary algebras, quasitilted algebras that are not hereditary, as those algebras
of global cohomological width two (see also [HZ08, Proposition 3.3]). As an
application of the upper bound we provide, we construct finite-dimensional
piecewise hereditary algebras of type A and D with global cohomological
width an arbitrary positive integer m by analysing tilting complexes. Fi-
nally, the relation of global cohomological width and recollements is dis-
cussed and we obtain the result of [AKL12, Lemma 5.6] in terms of global
cohomological width.

This paper is organized as follows: following the introductory section,
we introduce some notation and definitions, and then analyse the behavior
of global cohomological width under derived equivalences. The second sec-
tion is mainly devoted to proving that global cohomological width coincides
with strong global dimension. In Section 3, we establish an upper bound for
the global cohomological width of piecewise hereditary algebras, and char-
acterize the algebras of global cohomological width two. The fourth section
mainly constructs finite-dimensional piecewise hereditary algebras of type A
and D of global cohomological width an arbitrary positive integer m. In the
last section, we describe the relation between global cohomological width
and recollements.

2. Preliminaries. Let A be an artin R-algebra. Denote by modA the
category of all finitely generated right A-modules, and by C(A) the cate-
gory of A-module complexes. Cb(A) (resp. Cb(projA)) is the category of
all bounded complexes of A-modules (resp. projective A-modules), while
C−,b(projA) is the right bounded complexes of projective A-modules with
bounded cohomology. Denote by Kb(projA) and K−,b(projA) the homo-
topy categories corresponding to Cb(projA) and C−,b(projA) respectively.
Moreover, Db(A) is the bounded derived category of modA with [−1] the
shift functor.

Definition 2.1 ([HZ13, Z14]). The cohomological width of a complex
X• ∈ Db(A) is

hw(X•) := max{j − i+ 1 | H i(X•) 6= 0 6= Hj(X•)},
and the global cohomological width of A is

gl.hwA := sup{hw(X•) | X• ∈ Db(A) is indecomposable}.
Obviously, cohomological width is invariant under shifts and isomor-

phisms. Let H be a hereditary abelian category, i.e. Ext2H(−,−) = 0. The
following lemma implies that any indecomposable object in the bounded
derived category Db(H) of H is a stalk complex. In particular, this holds
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for the module category of a hereditary artin R-algebra. Therefore, if A is
a hereditary artin R-algebra then gl.hwA = 1.

Lemma 2.2 (see Krause [Kr07, Section 1.6]). Let H be a hereditary
abelian category and X be an indecomposable object in Db(H). Then X•

is isomorphic to a stalk complex.

Recall that a complex X• = (Xi, di) ∈ C(A) is said to be minimal if
Im di ⊆ radXi+1 for all i ∈ Z. For any complex P • = (P i, di) ∈ Kb(projA),
there is a minimal complex P̄ • = (P̄ i, d̄i) ∈ Kb(projA), which is unique up
to isomorphism in C(A), such that P • ∼= P̄ • in Kb(projA). The length of
P • is

l(P •) := max{j − i | P̄ i 6= 0 6= P̄ j}.
Clearly, for any complex P • = (P i, di) ∈ Kb(projA), we have hw(P •) ≤
l(P •) + 1.

The following proposition and corollary describe the behavior of coho-
mological width under derived equivalences. Note that they were originally
proved for finite-dimensional algebras over algebraically closed fields [HZ13,
Proposition 1(1)], but the proof also works for general artin algebras. Here,
we provide the proof for the convenience of the readers.

Proposition 2.3. Let A and B be two algebras, let AT
•
B be a two-sided

tilting complex of length l(AT
•) as a complex in Kb(projA), and let F =

− ⊗LA T •B : Db(A) → Db(B) be a derived equivalence. Then for all X• in
Db(A),

hw(F (X•)) ≤ hw(X•) + l(AT
•).

In particular, gl.hwB ≤ gl.hwA+ l(AT
•).

Proof. Recall that the width of a complex Y • ∈ Cb(A) is

w(Y •) := max{j − i+ 1 | Y j 6= 0 6= Y i}.
For any X• ∈ Db(A), there exists a complex X̄• ∈ Db(A) which can be
obtained from X• by good truncations, such that X̄• ∼= X• with hw(X̄•) =
w(X̄•). Since AT

•
B is a two-sided tilting complex, there is a perfect complex

AT̄
• ∈ Cb(projAop) with AT

• ∼= AT̄
• and l(AT

•) = l(AT̄
•) = w(AT̄

•) − 1.
Thus, viewed as a complex of R-modules, F (X̄•) = X̄• ⊗LA T • ∼= X̄• ⊗A T̄ •.
Hence hw(F (X•)) = hw(F (X̄•)) = hw(X̄• ⊗A T̄ •) ≤ w(X̄• ⊗A T̄ •) ≤
w(X̄•A) + w(AT̄

•)− 1 = hw(X•A) + l(AT
•).

Corollary 2.4. Let algebras A and B be derived equivalent. Then
gl.hwA <∞ if and only if gl.hwB <∞.

Proof. Since A and B are derived equivalent, there is a two-sided tilting
complex AT

•
B such that −⊗LA T •B : Db(A)→ Db(B) is a derived equivalence

[Ri91]. So the corollary follows from Proposition 2.3.
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3. Global cohomological width and strong global dimension. In
this section, we mainly focus on the relation between the global cohomologi-
cal width and the strong global dimension of artin R-algebras. The definition
of strong global dimension was introduced in [Sko87] for finite-dimensional
algebras over fields, but the definition makes sense for general artin algebras.

Definition 3.1. Let A be an artin R-algebra. The strong global dimen-
sion of A is

s.gl.dimA := sup{l(P •) | P • ∈ Kb(projA) is indecomposable}.
It is clear that for a module of finite projective dimension, the length of

its minimal projective resolution equals its projective dimension. Hence, if
gl.dimA <∞ then s.gl.dimA ≥ gl.dimA.

Recall that for a complex P • in C−,b(projA) of the form

P • = · · · → P−n−1
d−n−1

−−−−→ P−n
d−n

−−→ · · · → Pm−1
dm−1

−−−→ Pm → 0,

its brutal truncation σ≥−n(P •) is

σ≥−n(P •) = 0→ P−n
d−n

−−→ · · · → Pm−1
dm−1

−−−→ Pm → 0.

The following lemma due to Happel and Zacharia [HZ08, Corollary 1.4]
provides a method to construct indecomposables via taking cones for general
triangulated categories.

Lemma 3.2. Let (T , Σ) be a triangulated category and f : X → Y be
nonzero and not invertible with X,Y indecomposable in T . Suppose

X
f→ Y

u→ Cf
v→ ΣX

is a triangle. If HomT (Y,ΣX) = 0, then Cf is indecomposable.

As an application, we obtain two corollaries on how to construct inde-
composable objects in a bounded derived category.

Corollary 3.3. Let A be an artin algebra and

Y • = 0→ P−n
d−n

−−→ · · · → P−1
d−1

−−→ P 0 → 0

be a minimal indecomposable complex in Kb(projA). If X• is an indecom-
posable complex in Db(A) of the form

X• = 0→ X−m
d−m

−−−→ · · · → X−n−2
d−n−2

−−−−→ X−n−1 → 0

and 0 6= f ∈ HomA(X−n−1, P−n) satisfying d−nf = 0 = fd−n−2, then

C•f = 0→ X−m
d−m

−−−→ · · · d
−n−2

−−−−→ X−n−1
f→ P−n

d−n

−−→

· · · → P−1
d−1

−−→ P 0 → 0

is also indecomposable in Db(A).
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Proof. Assume f• = (f i) with f−n = f and zero otherwise. Then f•

is nonzero and not invertible viewed as an element in HomDb(A)(X
•, Y •).

Moreover, it is clear that HomDb(A)(Y
•, X•[−1]) = 0. Thus the cone C•f• =

C•f is indecomposable by Lemma 3.2.

Corollary 3.4. Let A be an artin algebra, and let

X• = · · · → P−n
d−n

−−→ · · · → P−1
d−1

−−→ P 0 → 0

be a minimal indecomposable complex in K−,b(projA) such that H i(X•) = 0
for i ≤ −n+ 1. If there is another indecomposable object

Y • = 0→ Y −m
d−m

−−−→ · · · → Y −n−1
d−n−1

−−−−→ Y −n → 0

in Db(A) and 0 6= f• ∈ HomDb(A)(X
•, Y •), then the cone C•f• is indecom-

posable.

Proof. Since H i(X•) = 0 for i ≤ −n+ 1, X• is quasi-isomorphic to the
complex

X̄• = 0→ P−n+2/ Im d−n+1 d−n+2

−−−−→ P−n+3 d−n+3

−−−−→ · · · → P−1
d−1

−−→ P 0 → 0.

Then HomDb(A)(Y
•, X•[−1]) ∼= HomDb(A)(Y

•, X̄•[−1]) = 0. Therefore,
C•f• is indecomposable by Lemma 3.2.

The following proposition is deduced using the constructions in previ-
ous corollaries; it was also proved in [Z14, Proposition 1.4] with a different
argument.

Proposition 3.5. Let A be an artin R-algebra. Then gl.dimA≤ gl.hwA.

Proof. Let M be an indecomposable A-module with pdM > 1, and let
a minimal projective resolution of M be

P •M = · · · → P−n−1
d−n−1

−−−−→ P−n
d−n

−−→ · · · → P−1
d−1

−−→ P 0 → 0,

such that P−n−1 6= 0. We will prove that there is an indecomposable object
in Db(A) of cohomological width n+ 1. Indeed, since P •M is exact at P i for
i < 0 and P−n−1 6= 0, P •M is isomorphic to

P̄ •M = 0→ Im d−n−1
i→ P−n

d−n

−−→ · · · → P−1
d−1

−−→ P 0 → 0

with Im d−n−1 6= 0. Take an indecomposable direct summandK of Im d−n−1,
and assume Y • is the stalk complex with K in component −n−1. Now con-
sider the canonical epimorphism f : P •M → Y •. Then C•f is indecomposable

by Corollary 3.4. Moreover, H−n−1(C•f ) 6= 0 6= H−1(C•f ) and hw(C•f ) =
n+ 1. Thus for any indecomposable module of projective dimension m > 1,
there is an indecomposable complex with cohomological width m. There-
fore, if gl.dimA <∞, then gl.dimA ≤ gl.hwA. If gl.dimA =∞, then there
is a simple A-module S of infinite projective dimension. By an argument
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as above, we can construct indecomposable objects in Db(A) of arbitrarily
large cohomological width, thus gl.hwA =∞.

Strong global dimension is defined by taking the supremum of the lengths
of all indecomposable perfect complexes, while global width is defined in a
totally different way on the level of the bounded derived category using ho-
mological information. Now we can prove that the two different parameters
coincide for artin R-algebras, based on the constructions of indecompos-
able objects in the bounded derived category in the previous corollaries.
Note that this result was obtained for finite-dimensional algebras over alge-
braically closed fields in [HZ13, Proposition 3].

Theorem 3.6. Let A be an artin R-algebra. Then gl.hwA = s.gl.dimA.

Proof. First we prove gl.hwA ≥ s.gl.dimA. It suffices to prove that for
any minimal indecomposable complex, without loss of generality of the form

(∗) P • = 0→ P−n
d−n

−−→ P−n+1 d−n+1

−−−−→ · · · d
−2

→ P−1
d−1

−−→ P 0 → 0,

we can find an indecomposable complex Q• such that n = l(P •) ≤ hw(Q•).
Note thatH0(P •) 6= 0. IfH−n+1(P •) 6= 0 orH−n(P •) 6= 0, then hw(P •) ≥ n
and l(P •) ≤ hw(P •). If H−n+1(P •) = H−n(P •) = 0, then with a similar
argument to the proof of Proposition 3.5, we take Y • to be the stalk complex
with K in component −n such that K is an indecomposable direct summand
of P−n. Then the mapping cone of f : P • → Y •, say Q•, is indecomposable
by Corollary 3.4 and of cohomological width n.

It remains to prove gl.hwA ≤ s.gl.dimA. Now we assume s.gl.dimA
< ∞; then we first claim gl.dimA < ∞. Indeed, if there is a simple A-
module S of infinite projective dimension with a minimal projective reso-
lution P •, then it is easy to check that the brutal truncation σ≥−m(P •) ∈
Kb(projA) is indecomposable for any m > 0, which is a contradiction. Thus
Db(A) ' Kb(projA). Hence, for any indecomposable object X• ∈ Db(A),
we can choose a minimal complex P • ∈ Kb(projA) such that X• ∼= P •

in Db(A). Now it is enough to show that each indecomposable complex
P • ∈ Kb(projA) has hw(P •) ≤ l(Q•) for some indecomposable complex
Q• ∈ Kb(projA). Let P • be a complex of the form (∗). Then hw(P •) ≤ l(P •)
if H−n(P •) = 0. Assume M = H−n(P •) 6= 0. Let X• be the stalk complex
with K in component −n such that K is an indecomposable direct summand
of M and f : K → P−n is the canonical inclusion satisfying df−n = 0. Then
Q• = C•f is indecomposable by Corollary 3.3. Moreover, since gl.dimA <∞,
Q•f is isomorphic to a perfect complex of length n+ pdK + 1.

Remark 3.7. Let artin R-algebras A and B be derived equivalent by
means of a tilting A-module T , i.e. a finitely generated A-module satisfying

(1) pdT = r;
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(2) Exti(T, T ) = 0 for any i > 0;
(3) there exists a sequence of the form

0→ AA → T1 → T2 → · · · → Tr → 0

with Ti ∈ add(T ).

Then by Proposition 2.3, we have gl.hwA ≤ gl.hwB + l(AT
•) = gl.hwB +

pdT . Thus, gl.hwB − pdT ≤ gl.hwA ≤ gl.hwB + pdT by tilting symme-
try. Combining it with the above theorem, one can retrieve the inequality
established by Happel and Zacharia [HZ10, Theorem 4.2]:

s.gl.dimB − pdT ≤ s.gl.dimA ≤ s.gl.dimB + pdT.

4. Piecewisehereditary algebras andglobal cohomologicalwidth.
Recall that an artin R-algebra A is said to be piecewise hereditary of type H
if there is a triangle equivalence Db(A) ' Db(H) for some hereditary abelian
R-category H (see [HRS96b]). This section is devoted to exploring piecewise
hereditary artin R-algebras in terms of global cohomological width.

Next we shall provide an upper bound for the global cohomological width
of piecewise hereditary algebras. For this, we need some preparations.

Let H be a hereditary abelian category. Recall that a complex T • in
Db(H) is called a tilting complex if

(1) HomDb(H)(T
•, T •[i]) = 0 for all i 6= 0;

(2) addT • generates Db(H) as a triangulated category

(see [HR98] for example). If T • is a tilting complex in Db(H), then
HomDb(H)(T

•,−) : Db(H) → Db(End(T •)) is an equivalence [Ri89]. The
following is an important observation [HR98, Lemma 1.5].

Lemma 4.1. Let A be a piecewise hereditary algebra with F : Db(A) →
Db(H) an equivalence. Then F (A) is a tilting complex in Db(H).

Let H be a hereditary abelian category with F : Db(A) → Db(H) an
equivalence. Since an indecomposable object in Db(H) is isomorphic to a
stalk complex by Lemma 2.2, the tilting object F (A) has the form of F (A) =⊕s

i=0 Ti[r + i] such that Ti ∈ H. Note that Ti need not be indecomposable
for any 0 ≤ i ≤ s.

The following theorem establishes an upper bound for the global coho-
mological width of piecewise hereditary artin algebras, which coincides with
the upper bound provided in [HZ08, Proposition 3.1] for the strong global
dimension of finite-dimensional piecewise hereditary algebras over fields by
a careful analysis of associated normalized equivalences.

Theorem 4.2. Let A be a connected piecewise hereditary algebra and
F : Db(A) → Db(H) be an equivalence with F (A) =

⊕s
i=0 Ti[r + i]. Then
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gl.hwA ≤ s+ 2. In particular, gl.hwA ≤ rkK0(A) + 1, where K0(A) is the
Grothendieck group of A.

Proof. For any X• ∈ Db(A), we have

Hj(X•) = HomDb(A)(A,X
•[−j]) ∼= HomDb(H)(FA,FX

•[−j]).

Assume X• is indecomposable and FX• ∈ H[l] for some l ∈ Z. Note that
HomD(H)(H[i],H[j]) 6= 0 implies j = i or i− 1. If Hj(X•) 6= 0, then r− 1 ≤
l− j ≤ r+ s, and thus r− l− 1 ≤ −j ≤ r+ s− l. Therefore, hw(X•) ≤ s+ 2
for any indecomposable object X• in Db(H). Consequently, gl.hwA ≤ s+2.

We claim that the direct summands of F (A) lie in continuous pieces
of

⋃
i∈ZH[i], i.e., if there are direct summands T ′, T ′′ of F (A) such that

T ′ ∈ H[m] and T ′′ ∈ H[n], then for any integer m < i0 < n, there exists
another direct summand T of F (A) with T ∈ H[i0]. Otherwise, we assume
Q′ is the direct sum of those direct summands in H[i] with i < i0, and
Q′′ is the direct sum of those direct summands in H[i] with i > i0. Then
HomDb(H)(Q

′, Q′′) = 0 = HomDb(H)(Q
′′, Q′). So A ∼= EndDb(H)(Q

′ ⊕ Q′′)op
is not connected, contrary to assumption. Moreover, the number of inde-
composable direct summands of F (A) is precisely rkK0(A). Thus, we have
rkK0(A) ≥ s+ 1 by the claim. Therefore, gl.hwA ≤ rkK0(A) + 1.

Remark 4.3. Let the algebra A, the functor F and F (A) be as defined
in the above theorem. For any X• ∈ Db(A),

Hj(X•) = HomDb(A)(A,X
•[−j]) ∼= HomDb(H)(FA,FX

•[−j]).

Therefore, if we write HomH(−,−) as Ext0H(−,−) and assume FX• ∼= M [l]
for some M ∈ H and l ∈ Z, then we can rewrite the cohomological width of
X• as

hw(X•) = wM

:= max{i− t | ExttH(Ti,M) 6= 0} −min{i− t | ExttH(Ti,M) 6= 0}+ 1,

where the only possible values of t are 0 and 1. Thus, the global cohomo-
logical width of A can be described as

gl.hwA = sup{wM |M is indecomposable in H}.

By the previous theorem, if an artin algebra A is piecewise hereditary,
then the global cohomological width of A is finite. The converse also holds
true. The following proposition from [Z14, Proposition 1.5] characterizes the
piecewise hereditary algebras as those algebras with finite global cohomo-
logical width.

Proposition 4.4. Let A be an artin R-algebra. Then A is piecewise
hereditary if and only if gl.hwA <∞.
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Now we consider artin algebras of global cohomological width n. By
Lemma 2.2 and Proposition 3.5, gl.hwA = 1 if and only if A is hereditary.
Moreover, Happel and Zacharia established that for a finite-dimensional
algebra A over a field, s.gl.dimA = 2 if and only if A is a quasitilted algebra
which is not hereditary [HZ08, Proposition 3.3]. Next, we study quasitilted
artin R-algebras in terms of global cohomological width.

Recall from [HRS96a] that an algebra A is a quasitilted algebra if there
exists a hereditary abelian category H with a tilting object T such that
A = EndH(T )op, or equivalently, if gl.dimA ≤ 2, and pdX ≤ 1 or idX ≤ 1
for any X ∈ modA. The following proposition describes quasitilted algebras
which are not hereditary as those algebras of global cohomological width two
(see also [HZ08, Proposition 3.3]).

Proposition 4.5. Let A be an artin R-algebra. Then gl.hwA = 2 if and
only if A is a quasitilted algebra which is not hereditary.

Proof. If A is a quasitilted algebra, then A = EndH(T )op with T a tilting
object in a hereditary abelian category H. Thus HomDb(H)(T,−) : Db(H)→
Db(A) is an equivalence. Moreover, we assume its quasi-inverse is F . Note
that F (A) ∼= T . By Theorem 4.2, we have gl.hwA ≤ 2. If additionally, A is
not hereditary, then gl.hwA = 2.

Conversely, assume gl.hwA = 2. Then gl.dimA ≤ 2 by Proposition
3.5 and it suffices to show that for any M ∈ modA, either pdM ≤ 1 or
idM ≤ 1. Assume that on the contrary there exists an indecomposable
A-module M with pdM = 2 and idM = 2. The condition idM = 2 implies
that there exists an indecomposable A-module X such that Ext2(X,M) 6= 0.
Thus pdX = 2. Take a minimal projective resolution of X,

P • = 0→ P−2
d−2

−−→ P−1
d−1

−−→ P 0 → 0.

Since Ext2(X,M) 6= 0, we have HomA(P−2,M) 6= 0. Let

Y • = 0→ Q−1
δ−1

−−→ Q0 → 0

be a minimal projective presentation of M . Then HomA(P−2,M) 6= 0 im-
plies HomA(P−2, Q0) 6= 0. Take a nonzero element f ∈ HomA(P−2, Q0).
Then f is naturally nonzero and noninvertible in HomDb(A)(P

•, Y •[−2]).
Consider the triangle

P •
f→ Y •[−2]→ C•f → P •[−1].

Since Y •[−2] is indecomposable and HomDb(A)(Y
•[−2], P •[−1]) = 0, by

Lemma 3.2, C•f is indecomposable. Moreover, H−3(C•f ) 6= 0 since pdM = 2,

and H−1(C•f ) = X 6= 0. Thus hw(C•f ) = 3, which contradicts the assump-
tion. Therefore, A is a quasitilted algebra which is not hereditary.
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Remark 4.6. By the above proof, if gl.hwA ≤ n, then pdX + idX ≤
n+ 1 for any indecomposable finitely generated A-module X.

5. Applications. Throughout this section, we assume all algebras are
finite-dimensional over a field k. We will construct piecewise hereditary al-
gebras of type A and D with global cohomological width an arbitrary positive
integer m. For this, we need the following lemma due to Happel and Reiten
[HR98, Lemma 1.6].

Lemma 5.1. Let A be a finite-dimensional hereditary algebra. Then a
complex T • =

⊕r
i=1 Ti[i] satisfies HomDb(A)(T

•, T •[i]) = 0 for any i 6= 0 if

and only if HomA(Ts, Tt) = 0 if t 6= s, and Ext1A(Ts, Tt) = 0 if t 6= s− 1.

Proof. If HomDb(A)(T
•, T •[i]) = 0 for any i 6= 0, then

HomA(Ts, Tt) ∼= HomDb(A)(Ts[s], Tt[s]),

which is a direct summand of HomDb(A)(T
•, T •[s− t]), and is zero if t 6= s.

Similarly, Ext1A(Ts, Tt) = 0 if t 6= s− 1. Conversely, since

HomDb(A)(T
•, T •[i]) ∼=

⊕
1≤s,t≤r

HomDb(A)(Ts, Tt[t+ i− s]),

and A is hereditary, the only nonzero direct summands are the ones such
that t+ i− s = 0 or 1. If i 6= 0, then HomDb(A)(Ts, Tt[t+ i− s]) = 0 for any
1 ≤ s, t ≤ r by assumption, and thus HomDb(A)(T

•, T •[i]) = 0.

Theorem 5.2. There are finite-dimensional piecewise hereditary k-al-
gebras of type A and D of global cohomological width an arbitrary positive
integer m.

Proof. Since the global cohomological width of every hereditary algebra
is precisely 1, we only need to consider the cases m ≥ 2. Let A = kQn with
Qn the quiver

n
αn−1−−−→ n− 1

αn−2−−−→ · · · α2−→ 2
α1−→ 1.

Assume the complex T • =
⊕n

i=1 Si[i] is in Db(A), where Si is the simple
A-module corresponding to vertex i. Since HomA(Si, Sj) = 0 if j 6= i, and
Ext1A(Si, Sj) = 0 if j 6= i − 1, we have HomDb(A)(T

•, T •[i]) = 0 for any

i 6= 0 by Lemma 5.1. Moreover, it is clear that addT • generates Db(A) as a
triangulated category. Thus T • is a tilting complex in Db(A). By a straight-
forward check, B = EndDb(A)(T

•) = kQn/I with I the admissible ideal
generated by all paths of length two. Therefore, B is a piecewise hereditary
algebra of type A.

Next we will show gl.hwB = n−1. Indeed, by Proposition 3.5, gl.hwB ≥
gl.dimB = n − 1. Moreover, Theorem 4.2 implies gl.hwB ≤ n + 1. If
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gl.hwB = n + 1, then by Remark 4.3, there is an indecomposable A-
module M such that Ext1A(S1,M) 6= 0 and HomA(Sn,M) 6= 0. Note that
Ext1A(S1,M)=0 for any M ∈ modA since S1 is projective. Thus gl.hwA≤n.
Assume gl.hwB = n; then there exists an indecomposable A-module N such
that HomA(S1, N) 6= 0 6= HomA(Sn, N) by Remark 4.3, which is impossible.
Therefore, gl.hwB = n− 1.

Let F : Db(B) → Db(A) be an equivalence, and X• be a complex in
Db(B) such that FX• ∼= Pn−1, where Pn−1 is the indecomposable projective
A-module corresponding to vertex n − 1. Then X• is an object with the
largest cohomological width by Remark 4.3 since HomA(S1, Pn−1) 6= 0 6=
Ext1A(Sn, Pn−1). So kQm+1/I is piecewise hereditary of type A with global
cohomological width m as required.

Now we consider the piecewise hereditary algebras of type D. Let A′ =
kQ′n with Q′n the quiver

2

n
αn−1 // · · · α4 // 4

α3 // 3

α2

@@

α1

��
1

such that n ≥ 4. Similarly, T • = (S1 ⊕ S2)[2] ⊕ (
⊕n

i=3 Si[i]) ∈ Db(A′) is a
tilting complex with B′ = EndDb(A′)(T

•) = kQ′n/I
′, where Si is the simple

A′-module corresponding to vertex i, and I ′ is the ideal generated by all
paths of length two. Moreover,

n− 2 = gl.dimB′ ≤ gl.hwB′ ≤ n
by Proposition 3.5 and Theorem 4.2. Since Ext1A′(S1 ⊕ S2,−) = 0, we have
gl.hwB′ < n by Remark 4.3. Moreover, gl.hwB′ 6= n − 1 since there is
no indecomposable A-module M such that HomA(S1 ⊕ S2,M) 6= 0 6=
HomA(Sn,M). Therefore, gl.hwB′ = n − 2. Thus kQ′m+2/I

′ is piecewise
hereditary of type D with global cohomological width m.

Remark 5.3. In the proof of the above theorem, for the piecewise hered-
itary algebras of global cohomological width m we construct, their global
cohomological width coincides with their global dimension. In general, there
exists a piecewise hereditary algebra whose cohomological width is strictly
greater than its global dimension. Let A = kQ5 be the hereditary algebra,
where Qn is the quiver defined as above, and let

T • = S2[1]⊕ (S3 ⊕ P3)[2]⊕ S4[3]⊕ S5[4].

Then T • is a tilting complex inDb(A) by Lemma 5.1 and the fact that addT •

generates Db(A) as a triangulated category. Moreover, B = EndDb(A)(T
•) ∼=
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kQ5/I, where I is the ideal generated by the relations α4α3 = 0 = α2α1.
We have gl.dimB = 2.

We claim that

gl.hwB = 3 > gl.dimB.

Indeed, gl.hwB ≤ 5 by Theorem 4.2. Since S1 is the unique indecom-
posable A-module such that Ext1A(S2, S1) 6= 0, but HomA(S4, S1) = 0 =
HomA(S5, S1), we have gl.hwB < 5 by Remark 4.3. If gl.hwB = 4 then
there is an indecomposable A-module M satisfying HomA(S2,M) 6= 0 6=
HomA(S5,M), which is impossible. Thus gl.hwB ≤ 3. Moreover, the inde-
composable A-module P4/S1 satisfies

HomA(S2, P4/S1) 6= 0 6= Ext1A(S5, P4/S1),

and hence gl.hwB = 3 is strictly greater than the global dimension, as
claimed.

6. Recollements and global cohomological width. Recollements
of triangulated categories were originally introduced by Beilinson, Bernstein
and Deligne [BBD82] and play an important role in the study of homological
invariants of algebras, for example global dimension [K91, Wi91], finitistic
dimension [CX14, Hap93], Hochschild dimension [Han14] and so on. More-
over, the relation of strong global dimension and recollements is described
for finite-dimensional algebras over fields in [AKL12]. In this section, we
analyse the behavior of the global cohomological width of artin algebras
under recollements.

Let T1, T and T2 be triangulated categories. Recall from [BBD82] that
a recollement of T relative to T1 and T2 is given by

T1
i∗=i! // T

i∗oo

i!oo

j!=j∗ // T2

j!oo

j∗oo

such that

(R1) (i∗, i∗), (i!, i
!), (j!, j

!) and (j∗, j∗) are adjoint pairs of triangle func-
tors;

(R2) i∗, j! and j∗ are full embeddings;
(R3) j!i∗ = 0 (and thus also i!j∗ = 0 and i∗j! = 0);
(R4) for each X ∈ T , there are canonical triangles

j!j
!X → X → i∗i

∗X → Σj!j
!X,

i!i
!X → X → j∗j

∗X → Σi!i
!X,

where the maps are the counits and the units of the adjoint pairs
respectively.
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Proposition 6.1. Let A be an artin algebra. Suppose there is a recolle-
ment

Db(B)
i∗=i! // Db(A)

i∗oo

i!oo

j!=j∗ // Db(C)

j!oo

j∗oo
.

Then

(1) gl.hwB ≤ gl.hwA+ l(i!B),
(2) gl.hwC ≤ gl.hwA+ l(j!C),

where l(i!B) and l(j!C) are the lengths of i!B and j!C respectively, viewed as
objects in Kb(projA). In particular, if A is a piecewise hereditary algebra,
then so are B and C.

Proof. We only prove statement (1); the proof of (2) is similar. If gl.hwA
=∞, then the inequality holds. Now suppose gl.hwA <∞. Then by Propo-
sition 3.5, gl.dimA < ∞ and thus Db(A) ' Kb(projA). Since i! is a full
embedding, for any indecomposable object X• ∈ Db(B),

Ht(X•) = HomDb(B)(B,X
•[−t]) ∼= HomDb(A)(i!B, i!X

•[−t]).

Note that i!(B) ∈ Kb(projA) with n = l(i!B), and we assume it is quasi-
isomorphic to the minimal complex

P • = 0→ P−n
d−n

−−→ P−n+1 d−n+1

−−−−→ · · · d
−2

−−→ P−1
d−1

−−→ P 0 → 0.

Since i!X
• is indecomposable, h = hw(i!X

•) ≤ gl.hwA. By truncations, we
can assume i!X

• is quasi-isomorphic to the complex

X̄• = 0→ Xs−h+1 → Xs−h+2 → · · · → Xs−1 → Xs → 0

such that Hs(X̄•) 6= 0 6= Hs−h+1(X̄•). Thus Ht(X•) 6= 0 implies −n− s ≤
−t ≤ h − s − 1, and then hw(X•) ≤ h + n ≤ gl.hwA + l(i1B). Therefore,
gl.hwB ≤ gl.hwA+ l(i!B). The remaining statement follows from Proposi-
tion 4.4.

Remark 6.2. The proof above actually provides an alternative proof of
Proposition 2.3 by viewing derived equivalences as trivial recollements. In
general, the converse of the statement is not ture, i.e., if there is a recollement
as in the above proposition such that B and C are piecewise hereditary, then
A is not necessarily piecewise hereditary: see [AKL12, Example 4.3] for a
counterexample.
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