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1 Introduction

Throughout this paper, k is an algebraically closed field, all algebras are connected
basic finite-dimensional associative k-algebras with identity, and all modules are finite-
dimensional right modules, unless stated otherwise. One of the main topics in representation
theory of algebras is to study the classification and distribution of indecomposable modules.
In this aspect two famous problems are Brauer-Thrall conjectures I and II:

Brauer-Thrall Conjecture I The algebras of bounded representation type are of finite
representation type.

Brauer-Thrall Conjecture II The algebras of unbounded representation type are of
strongly unbounded representation type.

Here, we say an algebra is of finite representation type or representation-finite if there are
only finitely many isomorphism classes of indecomposable modules. An algebra is said to
be of bounded representation type if the dimensions of all indecomposable modules have a
common upper bound, and of unbounded representation type otherwise. We say an algebra
is of strongly unbounded representation type if there are infinitely many d ∈ N such that
for each d, there exist infinitely many isomorphism classes of indecomposable modules of
dimension d. Brauer-Thrall conjectures I and II were formulated by Jans [24]. Brauer-Thrall
conjecture I was proved for finite-dimensional algebras over an arbitrary field by Roiter
[29], and artin algebras by Auslander [5]. Brauer-Thrall conjecture II was proved for finite-
dimensional algebras over an infinite perfect field by Nazarova and Roiter using matrix
method [26, 30], and an algebraically closed field by Bautista using geometric method [6].
Refer to [28] for more on Brauer-Thrall conjectures.

Since Happel [17, 18], the bounded derived categories of finite-dimensional algebras
have been studied widely. The study of the classification and distribution of indecomposable
objects in the bounded derived category of an algebra is still an important theme in repre-
sentation theory of algebras. It is natural to consider the derived versions of Brauer-Thrall
conjectures. For this, one needs to find an invariant of a complex analogous to the dimension
of a module. On this topic, Vossieck is undoubtedly a pioneer. He introduced and classified
derived discrete algebras, i.e., the algebras whose bounded derived categories admit only
finitely many isomorphism classes of indecomposable objects of arbitrarily given coho-
mology dimension vector, in his elegant paper [32]. Since a complex and its shifts are of
different cohomology dimension vectors, for a non derived discrete algebra, there are always
infinitely many d ∈ N

(Z) such that for each d, there exist infinitely many isomorphism
classes of indecomposable objects of cohomology dimension vector d in its bounded derived
category. Nevertheless, cohomology dimension vector is seemingly not a perfect invariant
of complexes in the context of derived versions of Brauer-Thrall conjectures, because it is
too fine to identify an indecomposable complex with its shifts and cannot be used to define
the derived boundedness and strongly derived unboundedness of algebras.

In this paper, we shall introduce the cohomological range of a bounded complex which
is a numerical invariant under shifts and isomorphisms. It leads to the concepts of derived
bounded algebras and strongly derived unbounded algebras naturally. We shall prove the
following two Brauer-Thrall type theorems for derived module categories:

Theorem I Derived bounded algebras are just derived finite algebras.
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Brauer-Thrall Type Theorems for Derived Module Categories 1371

Theorem II An algebra is either derived discrete or strongly derived unbounded, but not
both.

According to Theorem I and Theorem II, all algebras are divided into three disjoint
classes: derived finite algebras, derived discrete but not derived finite algebras, and strongly
derived unbounded algebras. In particular, Theorem II excludes the existence of such an
algebra for which there are only (nonempty) finitely many r ∈ N such that for each
r , up to shift and isomorphism, there exist infinitely many indecomposable objects of
cohomological range r in its bounded derived category.

The paper is organized as follows: in Section 2, we shall introduce some numerical
invariants of complexes (algebras) including (global) cohomological length, (global) coho-
mological width, and (global) cohomological range, and observe their behaviors under
derived equivalences. Global cohomological width provides an alternative definition of
strong global dimension on the level of bounded derived category, and piecewise hered-
itary algebras are characterized as the algebras of finite global cohomological width.
Furthermore, we shall prove Theorem I. In Section 3, we shall show that strongly derived
unboundedness is invariant under derived equivalences, and observe its relation with cleav-
ing functors. Furthermore, we shall prove Theorem II for simply connected algebras, gentle
algebras, and finally all algebras by using cleaving functors and covering theory. Moreover,
derived discrete algebras are characterized as the algebras of finite global cohomological
length.

2 The First Brauer-Thrall Type Theorem

2.1 Some Numerical Invariants of Complexes and Algebras

Let A be a (finite-dimensional) k-algebra. Denote by modA the category of all (finite-
dimensional) right A-modules, and by projA its full subcategory consisting of all finite-
dimensional projective right A-modules. Denote by C(A) the category of all complexes
of finite-dimensional right A-modules, and by Cb(A) and C−,b(A) its full subcate-
gories consisting of all bounded complexes and right bounded complexes with bounded
cohomology respectively. Denote by Cb(projA) and C−,b(projA) the full subcategories
of Cb(A) and C−,b(A) respectively consisting of all complexes of finite-dimensional
projective modules. Denote by K(A), Kb(projA) and K−,b(projA) the homotopy cate-
gories of C(A), Cb(projA) and C−,b(projA) respectively. Denote by Db(A) the bounded
derived category of modA. Moreover, dim := dimk , the dimension of a k-vector
space.

Now we introduce some numerical invariants of complexes and algebras.

Definition 1 The cohomological length of a complex X• ∈ Db(A) is

hl(X•) := max{dimHi(X•) | i ∈ Z},

and the global cohomological length of A is

gl.hlA := sup{hl(X•) | X• ∈ Db(A) is indecomposable}.
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1372 C. Zhang, Y. Han

Obviously, the dimension of an A-module M is equal to the cohomological length of the
stalk complex M . Note that there is a full embedding of modA into Db(A) which sends a
module to the corresponding stalk complex. If gl.hlA < ∞ then A is representation-finite
due to the truth of Brauer-Thrall conjecture I.

Definition 2 The cohomological width of a complex X• ∈ Db(A) is

hw(X•) := max{j − i + 1 | Hi(X•) �= 0 �= Hj(X•)},
and the global cohomological width of A is

gl.hwA := sup{hw(X•) | X• ∈ Db(A) is indecomposable}.

Clearly, the cohomological width of a stalk complex is 1. If A is a hereditary algebra then
every indecomposable complex X• ∈ Db(A) is isomorphic to a stalk complex by [18, I.5.2
Lemma]. Thus gl.hwA = 1.

Definition 3 The cohomological range of a complex X• ∈ Db(A) is

hr(X•) := hl(X•) · hw(X•),

and the global cohomological range of A is

gl.hr A := sup{hr(X•) | X• ∈ Db(A) is indecomposable}.

The cohomological range of a complex will play a role similar to the dimension of a
module. It is invariant under shifts and isomorphisms, since both cohomological length and
cohomological width are.

Next we observe the behaviors of these invariants under derived equivalences. For this,
we need do some preparations.

Let T be a triangulated k-category with [1] the shift functor. For T ∈ T , we define 〈T 〉n
inductively by

〈T 〉0 := {X ∈ T | X is a direct summand of T [i] for some i ∈ Z},
and

〈T 〉n :=
{
X ∈ T

∣∣∣∣ Y ′ → X ⊕ Y → Y ′′ → Y ′[1] is a triangle in T
with Y ′, Y ′′ ∈ 〈T 〉n−1 and Y ∈ T

}
.

Clearly, 〈T 〉n−1 ⊆ 〈T 〉n and 〈T 〉 := ⋃
n≥0〈T 〉n is the smallest thick subcategory of T

containing T . For X ∈ 〈T 〉, the distance of X from T is

d(X, T ) := min{n ∈ N | X ∈ 〈T 〉n}.

Lemma 1 (See Geiss and Krause [16, Lemma 4.1]) Let T be a triangulated k-category,
T ∈ T and X ∈ 〈T 〉. Then for all Y ∈ T ,

dim HomT (X, Y ) ≤ 2d(X,T ) sup
i∈Z

dim HomT (T [i], Y ).

Proposition 1 Let A and B be two algebras, AT •
B a two-sided tilting complex, and F =

−⊗L
AT •

B : Db(A) → Db(B) a derived equivalence. Then there are N1, N2, N3 ∈ N such
that for all X• ∈ Db(A),

(1) hw(F (X•)) ≤ hw(X•) + N1,
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(2) hl(F (X•)) ≤ N2 · hl(X•),
(3) hr(F (X•)) ≤ N3 · hr(X•).

Proof

(1) Recall that the width of a complex Y • ∈ Cb(A) is

w(Y •) := max{j − i + 1 | Y j �= 0 �= Y i}.
For any X• ∈ Db(A), there exists a complex X̃• ∈ Db(A) which can be obtained from
X• by good truncations, such that hw(X̃•) = w(X̃•) and X̃• ∼= X• in Db(A). Since
AT •

B is a two-sided tilting complex, there is a perfect complex AT̃ • ∈ Cb(projAop)

such that AT • ∼= AT̃ • in Db(Aop). Thus F(X̃•) = X̃•⊗L
AT • ∼= X̃• ⊗A T̃ • in Db(k).

Hence hw(F (X•)) = hw(F (X̃•)) = hw(X̃• ⊗A T̃ •) ≤ w(X̃• ⊗A T̃ •) ≤ w(X̃•
A) +

w(AT̃ •)−1 = hw(X̃•
A)+w(AT̃ •)−1 = hw(X•

A)+w(AT̃ •)−1. So N1 := w(AT̃ •)−1
is as required.

(2) Since F is a derived equivalence, we have B ∈ Kb(projB) = 〈F(A)〉. By Lemma 1,
we get

dim Hi(F (X•)) = dim HomDb(B)(B, F (X•)[i])
≤ 2d(B,F (A)) sup

j∈Z
dim HomDb(B)(F (A), F (X•)[j ])

= 2d(B,F (A)) sup
j∈Z

dim HomDb(A)(A,X•[j ])
= 2d(B,F (A)) sup

j∈Z
dim Hj(X•)

= 2d(B,F (A)) hl(X•).

Thus N2 := 2d(B,F (A)) is as required.
(3) It follows from (1) and (2) that hr(F (X•)) = hl(F (X•)) · hw(F (X•)) ≤ N2 · hl(X•) ·

(hw(X•) + N1) ≤ N2(N1 + 1) · hr(X•). Thus N3 := N2(N1 + 1) is as required.

Corollary 1 Let two algebras A and B be derived equivalent. Then gl.hwA < ∞ (resp.
gl.hlA < ∞, gl.hrA < ∞) if and only if gl.hwB < ∞ (resp. gl.hlB < ∞, gl.hrB < ∞).

Proof Since A and B are derived equivalent, there is a two-sided tilting complex AT •
B such

that −⊗L
AT •

B : Db(A) → Db(B) is a derived equivalence [27]. So the corollary follows
from Proposition 1.

2.2 Strong Global Dimension

Strong global dimension was introduced by Skowroński in [31]. Happel and Zacharia char-
acterized piecewise hereditary algebras as the algebras of finite strong global dimension
[23]. Here, we adopt the definition of strong global dimension in [23], which is slightly
different from that in [31].

Recall that a complex X• = (Xi, di) ∈ C(A) is said to be minimal if Imdi ⊆ radXi+1

for all i ∈ Z. For any complex P • = (P i, di) ∈ Kb(projA), there is a minimal complex
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1374 C. Zhang, Y. Han

P̄ • = (P̄ i , d̄i ) ∈ Kb(projA), which is unique up to isomorphism in Cb(A), such that
P • ∼= P̄ • in Kb(projA). The length of P • is

l(P •) := max{j − i | P̄ i �= 0 �= P̄ j }.
The strong global dimension of A is

s.gl.dim A := sup{l(P •) | P • ∈ Kb(projA) is indecomposable}.
Obviously, for a module of finite projective dimension, the length of its minimal pro-

jective resolution equals to its projective dimension. Furthermore, if gl.dim A < ∞ then
s.gl.dim A ≥ gl.dim A.

The following result sets up the connection between the indecomposable objects in
Kb(projA) and those in K−,b(projA).

Proposition 2 Let P • ∈ K−,b(projA) be a minimal complex and n := min{i ∈
Z | Hi(P •) �= 0}. Then P • is indecomposable if and only if so is the brutal truncation
σ≥j (P

•) ∈ Kb(projA) for some (resp. all) j < n.

Proof Since K−,b(projA) � Db(A) is a Krull-Schmidt category, a complex X• ∈
K−,b(projA) is indecomposable if and only if its endomorphism algebra EndK(A)(X

•) is
local, if and only if EndK(A)(X

•)/radEndK(A)(X
•) ∼= k. Hence, it suffices to show

EndK(A)(P
•)/radEndK(A)(P

•) ∼= EndK(A)(σ≥j (P
•))/radEndK(A)(σ≥j (P

•)).

Since P • is minimal, all null homotopies in EndC(A)(σ≥j (P
•)) form a nilpotent ideal of

EndC(A)(σ≥j (P
•)), thus are in radEndC(A)(σ≥j (P

•)). Hence we have

EndK(A)(σ≥j (P
•))/radEndK(A)(σ≥j (P

•)) ∼= EndC(A)(σ≥j (P
•))/radEndC(A)(σ≥j (P

•)).

Now it is enough to show

EndK(A)(P
•)/radEndK(A)(P

•) ∼= EndC(A)(σ≥j (P
•))/radEndC(A)(σ≥j (P

•)).

Consider the composition of homomorphisms of algebras

EndC(A)(P
•) φ→ EndC(A)(σ≥j (P

•)) ψ→ EndC(A)(σ≥j (P
•))/radEndC(A)(σ≥j (P

•)),

where φ is the natural restriction and ψ is the canonical epimorphism. Since
σ≤j−1(P

•) is a minimal projective resolution of Kerdj , every cochain map in
EndC(A)(σ≥j (P

•)) can be lifted to a cochain map in EndC(A)(P
•), i.e., φ is surjective. Thus

the composition ϕ := ψφ is surjective. Since P • is a minimal complex, all null homotopies
in EndC(A)(P

•) form a nilpotent ideal of EndC(A)(P
•), thus are in radEndC(A)(P

•). Fur-
thermore, φ maps all null homotopies in EndC(A)(P

•) into radEndC(A)(σ≥j (P
•)). Hence ϕ

induces a surjective homomorphism of algebras

ϕ̄ : EndK(A)(P
•) � EndC(A)(σ≥j (P

•))/radEndC(A)(σ≥j (P
•)).

Now it is sufficient to show that Kerϕ̄ = radEndK(A)(P
•). Clearly,

Kerϕ̄ ⊇ radEndK(A)(P
•). Conversely, for any f̄ • ∈ Kerϕ̄ with f • ∈

EndC(A)(P
•), we have ψ(φ(f •)) = ϕ̄(f̄ •) = 0. Thus φ(f •) is nilpotent, i.e., there exists

t ∈ N such that (f i)t = 0 for all i ≥ j . Since σ≤j−1(P
•) is a minimal projective resolution

of Kerdj , the restriction σ≤j−1(f
•) ∈ EndC(A)(σ≤j−1(P

•)) of f • is a lift of the restriction
of f j on Kerdj . Thus (σ≤j−1(f

•))t is a lift of the restriction of (f j )t on Kerdj , i.e., a lift
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Brauer-Thrall Type Theorems for Derived Module Categories 1375

of zero morphism. Hence (σ≤j−1(f
•))t is a null homotopy. Therefore, f̄ •t = 0, i.e., f̄ •

is nilpotent, in EndK(A)(P
•). So Ker ϕ̄ is a nilpotent ideal of EndK(A)(P

•). Consequently,
Ker ϕ̄ ⊆ radEndK(A)(P

•).

Corollary 2 Let A be an algebra. Then gl.dimA ≤ s.gl.dimA.

Proof We have known gl.dimA ≤ s.gl.dimA if gl.dimA < ∞. If gl.dimA = ∞ then there
is a simple A-module S of infinite projective dimension. Thus S admits an infinite minimal
projective resolution. By Proposition 2, there are indecomposable objects in Kb(projA) of
arbitrarily large length, which implies s.gl.dimA = ∞.

Remark 1 It is possible gl.dimA < s.gl.dimA. Indeed, since piecewise hereditary algebras
are factors of finite-dimensional hereditary algebras [21, Theorem 1.1], all algebras of finite
global dimension and with oriented cycles in their quivers are not piecewise hereditary, thus
of infinite strong global dimension by [23, Theorem 3.2].

As an additional corollary, we give a characterization of global cohomological width on
the level of bounded homotopy categories of finite-dimensional projective modules.

Corollary 3 Let A be an algebra. Then

gl.hw A = sup{hw(P •) | P • is (minimal) indecomposable in Kb(projA)}.

Proof Clearly, the value of the right hand side of the equation is invariant no matter whether
we assume that the indecomposable complex P • ∈ Kb(projA) is minimal or not. Since
Kb(projA) ⊆ Db(A), the right hand side is not larger than gl.hwA. Conversely, by Proposi-
tion 2, any minimal indecomposable complex P • ∈ K−,b(projA) � Db(A) has the property
that hw(σ≥j (P

•)) ≥ hw(P •) and σ≥j (P
•) ∈ Kb(projA) is indecomposable for j � 0.

Thus the right hand side is not smaller than gl.hwA.

The following result implies that the global cohomological width can provide an
alternative definition of strong global dimension on the level of bounded derived category.

Proposition 3 Let A be an algebra. Then gl.hwA = s.gl.dimA.

Proof First we show gl.hwA ≥ s.gl.dimA. It suffices to prove that for any minimal inde-
composable complex P • ∈ Kb(projA) with l(P •) = n, there is an indecomposable
complex Q• ∈ Kb(projA) such that hw(Q•) ≥ n. Without loss of generality, we assume

P • = 0 −→ P −n d−n−→ P −n+1 d−n+1−→ · · · d−2−→ P −1 d−1−→ P 0 −→ 0.

Since P • is minimal, we have H 0(P •) �= 0. If H−n(P •) �= 0 or H−n+1(P •) �= 0 then
hw(P •) ≥ n. Thus Q• := P • is as required. If H−n(P •) = 0 = H−n+1(P •) then Q• :=
σ≥−n+1(P

•) is as required, since it is indecomposable by Proposition 2 and hw(Q•) = n .
Next we show s.gl.dimA ≥ gl.hwA. By Corollary 3, it is enough to show that for any

minimal indecomposable complex P • ∈ Kb(projA), there is a minimal indecomposable
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1376 C. Zhang, Y. Han

complex Q• ∈ Kb(projA) such that l(Q•) ≥ hw(P •). Without loss of generality, we
still assume that P • is of the above form. If H−n(P •) = 0 then l(P •) ≥ hw(P •). Thus
Q• := P • is as required. If H−n(P •) ∼= Kerd−n �= 0, we take a minimal projective
resolution of Kerd−n, say

P ′• = · · · −→ P −n−2 d−n−2−→ P −n−1 −→ 0.

Gluing P ′• and P • together, we get a minimal complex

P ′′• = · · · −→ P −n−2 d−n−2−→ P −n−1 d−n−1−→ P −n d−n−→ · · · d−1−→ P 0 −→ 0,

where d−n−1 is the composition P −n−1 � Kerd−n ↪→ P −n. Since P • = σ≥−n(P
′′•) is

indecomposable and Hi(P ′′•) = 0 for all i ≤ −n, by Proposition 2, P ′′• is indecomposable.
Also by Proposition 2, we have Q• := σ≥−n−1(P

′′•) is indecomposable with l(Q•) =
n + 1 = hw(P •).

Recall that an algebra A is said to be piecewise hereditary if there is a triangle equiva-
lence Db(A) � Db(H) for some hereditary abelian k-category H (Ref. [21]). In this case,
H must have a tilting object [20]. Thus there are exactly two classes of piecewise hereditary
algebras whose derived categories are triangle equivalent to either Db(kQ) for some finite
connected quiver Q without oriented cycles, or Db(cohX) for some weighted projective line
X (Ref. [19]).

As a corollary of Proposition 3, piecewise hereditary algebras can be characterized as the
algebras of finite global cohomological width.

Corollary 4 An algebra A is piecewise hereditary if and only if gl.hwA < ∞.

Proof It follows from [23, Theorem 3.2] and Proposition 3.

2.3 The First Brauer-Thrall Type Theorem

Definition 4 An algebra A is said to be derived bounded if gl.hrA < ∞, i.e., the
cohomological ranges of all indecomposable objects in Db(A) have a common upper bound.

Recall that an algebra A is said to be derived finite if up to shift and isomorphism there
are only finitely many indecomposable objects in Db(A) (Ref. [8]). Now we can prove
Theorem I, another proof of which will be given at the end of this paper (Remark 2).

Theorem 1 Let A be an algebra. Then the following assertions are equivalent:

(1) A is derived bounded;
(2) A is derived finite;
(3) A is piecewise hereditary of Dynkin type.

Proof (1) ⇒ (3): By assumption, gl.hrA < ∞. Thus gl.hwA < ∞. It follows from
Corollary 4 that A is piecewise hereditary. By [19, Theorem 3.1], Db(A) � Db(kQ) for
some finite connected quiver Q without oriented cycles, or Db(A) � Db(cohX) for some
weighted projective line X. In the first case, by Corollary 1 we have gl.hr kQ < ∞. Hence
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Brauer-Thrall Type Theorems for Derived Module Categories 1377

Q is a Dynkin quiver. In the second case, by [15, Theorem 3.2], Db(A) is triangle equiv-
alent to Db(C) for a canonical algebra C. Since C is representation-infinite, gl.hrC = ∞.
By Corollary 1, we have gl.hrA = ∞, which is a contradiction.

(3) ⇒ (2): This is well-known [18].
(2) ⇒ (1): Trivial.

3 The Second Brauer-Thrall Type Theorem

3.1 Strongly Derived Unbounded Algebras

Recall that the cohomology dimension vector of a complex X• ∈ Db(A) is d(X•) :=
(dimHn(X•))n∈Z ∈ N

(Z). An algebra A is said to be derived discrete if for any d ∈ N
(Z),

up to isomorphism, there are only finitely many indecomposable objects in Db(A) of coho-
mology dimension vector d (Ref. [32]). It is easy to see that an algebra A is derived discrete
if and only if for any r ∈ N, up to shift and isomorphism, there are only finitely many
indecomposable objects in Db(A) of cohomological range r .

Definition 5 An algebra A is said to be strongly derived unbounded if there is an (strictly)
increasing sequence {ri | i ∈ N} ⊆ N such that for each ri , up to shift and isomorphism,
there are infinitely many indecomposable objects in Db(A) of cohomological range ri .

Note that all representation-infinite algebras are strongly unbounded due to the truth of
Brauer-Thrall conjecture II, thus strongly derived unbounded. Moreover, it is impossible
that an algebra is both derived discrete and strongly derived unbounded.

Now we show that derived equivalences preserve strongly derived unboundedness.

Proposition 4 Let two algebras A and B be derived equivalent. Then A is strongly derived
unbounded if and only if so is B.

Proof Let AT •
B be a two-sided tilting complex such that F = −⊗L

AT •
B : Db(A) → Db(B)

is a derived equivalence. Assume that A is strongly derived unbounded. Then there exist
an increasing sequence {ri | i ∈ N} ⊆ N and infinitely many indecomposable objects
{X•

ij ∈ Db(A) | i, j ∈ N} which are pairwise different up to shift and isomorphism such
that hr(X•

ij ) = ri for all j ∈ N. It follows from Proposition 1 (3) that there exist two positive
integers N and N ′, such that for any X•

ij ,

1

N ′ · hr(X•
ij ) ≤ hr(F (X•

ij )) ≤ N · hr(X•
ij ).

In order to show that B is strongly derived unbounded, we shall find inductively an
increasing sequence {r ′

i | i ∈ N} ⊆ N and infinitely many indecomposable objects
{Y •

ij ∈ Db(B) | i, j ∈ N} which are pairwise different up to shift and isomorphism such
that hr(Y •

ij ) = r ′
i for all j ∈ N. For i = 1, we have 0 < hr(F (X•

1j )) ≤ N ·hr(X•
1j ) = N · r1.

Since F(X•
1j ), j ∈ N, are also pairwise different indecomposable objects up to shift and

isomorphism, we can choose 0 < r ′
1 ≤ Nr1 and infinitely many indecomposable objects

{Y •
1j | j ∈ N} ⊆ {F(X•

1j ) | j ∈ N} which are pairwise different up to shift and isomorphism
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such that hr(Y •
1j ) = r ′

1 for all j ∈ N. Assume that we have found r ′
i . We choose some rl

with rl > N ′ · r ′
i . Since

r ′
i <

1

N ′ · rl = 1

N ′ · hr(X•
lj ) ≤ hr(F (X•

lj )) ≤ N · hr(X•
lj ) = N · rl,

we can choose r ′
i < r ′

i+1 ≤ N · rl and infinitely many indecomposable objects {Y •
i+1,j | j ∈

N} ⊆ {F(X•
lj ) | j ∈ N} which are pairwise different up to shift and isomorphism such that

hr(Y •
i+1,j ) = r ′

i+1 for all j ∈ N.

3.2 Cleaving Functors

Cleaving functors were introduced in [7] as a tool for proving that certain algebras are
representation-infinite. In this part, we will observe the relations between cleaving functors
and strongly derived unboundedness of algebras.

In order to use cleaving functors, one needs to view basic finite-dimensional algebras
or bound quiver algebras as finite spectroids. Recall that a locally bounded spectroid [14]
(=locally bounded category [11]) is a small k-linear category A satisfying:

(1) different objects in A are not isomorphic;
(2) the endomorphism algebra A(a, a) is local for all a ∈ A;
(3)

∑
x∈A dim A(a, x) < ∞ and

∑
x∈A dim A(x, a) < ∞ for all a ∈ A.

A finite spectroid is a locally bounded spectroid with finitely many objects. Let A be a
finite spectroid. A right A-module M is just a covariant k-functor from A to the category of
k-vector spaces. The dimension of M is dimM := ∑

a∈A dimM(a). Denote by modA the
category of finite-dimensional right A-modules. The indecomposable projective A-modules
are Pa = A(a, −) and indecomposable injective A-modules are Ia = DA(−, a) for all a ∈
A, where D = Homk(−, k). A bound quiver algebra kQ/I with Q a finite quiver and I an
admissible ideal can be viewed as a finite spectroid A by taking the vertices in Q0 as objects
and the k-linear combinations of paths in kQ/I as morphisms. Conversely, a finite spectroid
A admits a presentation kQ/I

∼→ A for a finite quiver Q and an admissible ideal I (Ref.
[14, Chapter 8]). In these cases, kQ/I and A have equivalent (finite-dimensional) module
categories. Throughout this section, we do not differentiate the terminologies “(basic finite-
dimensional) algebra”, “bound quiver algebra” and “finite spectroid”. In particular, all the
concepts and notations concerning module category defined for a bound quiver algebra
make sense for a finite spectroid.

To a k-functor F : B → A between finite spectroids, we associates a restriction functor
F∗ : modA → modB, which is given by F∗(M) = M ◦ F and exact. The restriction
functor F∗ admits a left adjoint functor F ∗, called the extension functor, which sends a
projective B-module B(b, −) to a projective A-module A(Fb,−). If gl.dimB < ∞ then
F∗ extends naturally to a derived functor F∗ : Db(A) → Db(B), which has a left adjoint
LF ∗ : Db(B) → Db(A). Note that LF ∗ is the left derived functor associated with F ∗ and
maps Kb(projB) into Kb(projA). We refer to [33] for the definition of derived functors.

A k-functor F : B → A between finite spectroids with gl.dimB < ∞ is called a cleaving
functor [7, 32] if it satisfies the following equivalent conditions:

(1) The linear map B(b, b′) → A(Fb, Fb′) associated with F admits a natural retraction
for all b, b′ ∈ B;
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(2) The adjunction morphism φM : M → (F∗ ◦F ∗)(M) admits a natural retraction for all
M ∈ modB;

(3) The adjunction morphism �X• : X• → (F∗ ◦ LF ∗)(X•) admits a natural retraction
for all X• ∈ Db(B).

Proposition 5 Let F : B → A be a cleaving functor between finite spectroids with
gl.dimB < ∞. Then the following assertions hold:

(1) If B is strongly derived unbounded then so is A.
(2) If gl.hlA < ∞ (resp. gl.hwA < ∞, gl.hrA < ∞), then gl.hlB < ∞ (resp. gl.hwB <

∞, gl.hrB < ∞).

Proof

(1) Assume that there exist an increasing sequence {ri | i ∈ N} ⊆ N and indecomposable
objects {X•

ij ∈ Db(B) | i, j ∈ N} which are pairwise different up to shift and isomor-
phism such that hr(X•

ij ) = ri for all j ∈ N. Since F is a cleaving functor, X•
ij is a

direct summand of (F∗ ◦LF ∗)(X•
ij ). Thus for any X•

ij , we can choose an indecompos-
able direct summand Y •

ij of LF ∗(X•
ij ), such that X•

ij is a direct summand of F∗(Y •
ij ).

Clearly, for any i ∈ N, the set {Y •
ij | j ∈ N} contains infinitely many elements which

are pairwise different up to shift and isomorphism. To prove A is strongly derived
unbounded, by the proof of Proposition 4, it is enough to show that there exist N ′, N
∈ N such that for any X•

ij , the inequalities 1
N ′ · hr(X•

ij ) ≤ hr(Y •
ij ) ≤ N · hr(X•

ij ) hold.
For any a ∈ A, we have

Hm(LF ∗(X•
ij ))(a) ∼= HomDb(A)(LF ∗(X•

ij ), Ia[m])
∼= HomDb(B)(X

•
ij , F∗(Ia)[m])

∼= Hm(RHomB(X•
ij , F∗(Ia))).

Since gl.dimB < ∞, the B-module F∗(Ia) admits a minimal injective resolution

0 → F∗(Ia) → E0
a → E1

a → · · · → Era
a → 0,

and there is a bounded converging spectral sequence

ExtpB(H−q(X•
ij ), F∗(Ia)) ⇒ Hp+q(RHomB(X•

ij , F∗(Ia))).

Thus hw(Y •
ij ) ≤ hw(LF ∗(X•

ij )) ≤ hw(X•
ij ) + gl.dimB, and

dimHm(Y •
ij ) = ∑

a∈A

dimHm(Y •
ij )(a)

≤ ∑
a∈A

dimHm(LF ∗(X•
ij ))(a)

= ∑
a∈A

dimHm(RHomB(X•
ij , F∗(Ia)))

≤ ∑
a∈A

∑
p+q=m

dimExtpB(H−q(X•
ij ), F∗(Ia))

≤ ∑
a∈A

ra∑
p=0

dimHp−m(X•
ij ) · dimE

p
a

≤ ∑
a∈A

hl(X•
ij ) · (ra + 1) · max

0≤p≤ra

{
dimE

p
a

}
≤ n0(A) · hl(X•

ij ) · (gl.dimB + 1) · max
a∈A, 0≤p≤ra

{
dimE

p
a

}
,

where n0(A) denotes the number of objects in A.
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Set N0 = n0(A) · (gl.dimB +1) · max
a∈A, 1≤p≤ra

{dimE
p
a }. Then hl(Y •

ij ) ≤ N0 ·hl(X•
ij )

and

hr(Y •
ij ) = hw(Y •

ij ) · hl(Y •
ij )

≤ (hw(X•
ij ) + gl.dimB) · N0 · hl(X•

ij )

≤ N0 · (gl.dimB + 1) · hr(X•
ij ).

So N := N0 · ( gl.dimB + 1) is as required.
Assume the indecomposable projective B-module Qb = B(b, −) and inde-

composable projective A-module Pa = A(a, −) for all b ∈ B and a ∈ A.
Then

dimHm(X•
ij ) ≤ dimHm(F∗(Y •

ij ))

= ∑
b∈B

dimHomDb(B)(Qb, F∗(Y •
ij )[m])

= ∑
b∈B

dimHomDb(A)(LF ∗(Qb), Y
•
ij [m])

= ∑
b∈B

dimHomDb(A)(F
∗(Qb), Y

•
ij [m])

= ∑
b∈B

dimHomDb(A)(PF(b), Y
•
ij [m])

≤ n0(B) · dimHomDb(A)(A, Y •
ij [m])

= n0(B) · dimHm(Y •
ij )

for all m ∈ Z, where n0(B) denotes the number of objects in B. Thus hl(X•
ij ) ≤

n0(B) · hl(Y •
ij ), hw(X•

ij ) ≤ hw(Y •
ij ), and hr(Y •

ij ) ≥ 1
n0(B)

· hr(X•
ij ). So N ′ := n0(B) is

as required.
(2) It can be read off from the proof of (1) that for any indecomposable object X• ∈

Db(B), there exists an indecomposable object Y • ∈ Db(A) such that dimHm(X•) ≤
n0(B) · dimHm(Y •) for all m ∈ Z. Then the statement follows.

3.3 Simply Connected Algebras

To a tilting A-module TA, one can associate a torsion pair (T (T ),F(T )) in modA, and a
torsion pair (X (T ),Y(T )) in modEndA(T ). The Brenner-Butler theorem in classical tilting
theory establishes the equivalence between F(T ) and X (T ) under the restriction of functor
F = Ext1A(TA,−), and the equivalence between T (T ) and Y(T ) under the restriction of
functor G = HomA(TA,−) (Ref. [22, Theorem (2.1)]). We say a torsion pair (T ,F) in
modA splits if any indecomposable M in modA is either in T or in F . A tilting A-module
T is said to be separating if the torsion pair (T (T ),F(T )) splits. A tilting A-module T is
said to be splitting if the torsion pair (X (T ),Y(T )) splits. Refer to [3, Chapter VI].

Recall that an algebra A is said to be triangular if its quiver QA has no oriented cycles.
A triangular algebra A is said to be simply connected if for any presentation A ∼= kQ/I , the
fundamental group �1(Q, I) of (Q, I) is trivial [25]. Now we prove Theorem II for simply
connected algebras.

Lemma 2 A simply connected algebra A is either derived discrete or strongly derived
unbounded. Moreover, a simply connected algebra A is derived discrete if and only if it is
piecewise hereditary of Dynkin type, if and only if gl.hlA < ∞.
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Proof According to Corollary 1 and Proposition 4, it is enough to show that a simply con-
nected algebra A is tilting equivalent (thus derived equivalent) to either a hereditary algebra
or a representation-infinite algebra. If A is itself hereditary or representation-infinite then
we have nothing to do. If A is representation-finite but not hereditary then, by [1, Theorem],
there exists a separating but not splitting basic tilting A-module T . Put A1 = EndA(T ).
Then there are more indecomposable modules in modA1 than in modA, in particular A and
A1 are not isomorphic as algebras. Moreover, A1 is still simply connected by [4, Corol-
lary] and thus triangular. Since A1 is a tilted algebra of A, they have the same number of
simple modules [22, Corollary (3.1)]. If A1 is hereditary or representation-infinite then we
have nothing to do. If A1 is representation-finite but not hereditary then there exists a sep-
arating but not splitting basic tilting A1-module, and we can proceed as above repetitively.
We claim this process must stop in finite steps, and thus A is tilting equivalent to either
a hereditary algebra or a representation-infinite algebra. Indeed, for any n ∈ N, there are
only finitely many (unnecessarily connected) basic representation-finite triangular algebras
having n simple modules up to isomorphism (compare with [18, Chapter IV, Lemma 7.3]).
We can prove this by induction on n. If n = 1, then there exists only one basic triangular
algebra up to isomorphism. Assume that it is true for n − 1 and B is a basic representation-
finite triangular algebra having n simple modules. Then B is a one-point extension of a
basic representation-finite triangular algebra with n − 1 simples, say C, by some C-module
M = ⊕r

i=1Mi with Mi being indecomposable. Since C is representation-finite, we have
r ≤ 3. Indeed, if r ≥ 4 then dim e(radB/rad2B)(1 − e) = dim M/radM ≥ 4, where
e is the idempotent of B corresponding to the extension vertex. Thus in the quiver of B

there will be at least four arrows starting from the extension vertex, which implies that
B is representation-infinite. It is a contradiction. Therefore, the number of the isomor-
phism classes of basic representation-finite triangular algebras having n simple modules is
finite. Furthermore, the tilting process above must stop in finite steps, since representation-
finite simply connectedness and the number of simples are invariant under this
process.

3.4 The second Brauer-Thrall Type Theorem

Bekkert and Merklen have classified the indecomposable objects in the derived category of
a gentle algebra [8, Theorem 3]. Now we apply their results to prove Theorem II for gentle
algebras.

Lemma 3 A gentle algebra A is either derived discrete or strongly derived unbounded.
Moreover, A is derived discrete if and only if gl.hlA < ∞.

Proof It follows from [8, Theorem 4] that a gentle algebra A is derived discrete if and only
if A does not contain generalized bands.

If A contains a generalized band w, then one can construct indecomposable complexes
{P •

w,f | f = (x − λ)d ∈ k[x], λ ∈ k∗, d > 0} which are pairwise different up to shift
and isomorphism such that P •

w,f and P •
w,f ′ are of the same cohomological range (resp.

cohomological length) if and only if deg(f ) = deg(f ′) (Ref. [8, Definition 3]). Thus A is
strongly derived unbounded and gl.hlA = ∞.

If A = kQ/I does not contain generalized bands we shall prove gl.hlA < ∞. By
Bobiński, Geiss and Skowroński’s classification of derived discrete algebras [9, Theorem
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A], we know that A is derived equivalent to a gentle algebra 
(r, n, m) with n ≥ r ≥ 1 and
m ≥ 0, which is given by the quiver

with the relations αn−1α0, αn−2αn−1, · · · , αn−rαn−r+1. According to Corollary 1, it suf-
fices to show that gl.hl
(r, n, m) ≤ dim
(r, n, m) < ∞. Note that any generalized string
w of 
(r, n, m) must be a sub-generalized string of the following generalized strings or
their inverses:

(αi · · ·αn−r )[(αn−r+1) · · · (αn−1)(α0 · · · αn−r )]p (αn−r+1) · · · (αn−1)(αj · · · α−1)
−1,

with −m ≤ i ≤ n − r , −m ≤ j ≤ −1 and p ≥ 0. By Bekkert and Merklen’s con-
struction of the indecomposable objects in the bounded derived category of a gentle algebra
[8, Definition 2 and Theorem 3], every indecomposable projective direct summand of each
component of the indecomposable object P •

w ∈ Kb(proj
(r, n,m)) is multiplicity-free, and
hence gl.hl
(r, n, m) ≤ dim
(r, n, m) < ∞.

Let Am
n be the finite spectroid defined by the quiver

and the admissible ideal generated by all paths of length m.

Lemma 4 The finite spectroid Am
3m with m ≥ 3 is strongly derived unbounded and

gl.hlAm
3m = ∞.

Proof Let B = Am
3m, w1 = α3m−1, w2 = α3m−2 · · ·α2m, w3 = α2m−1 · · ·αm+1, w4 =

αm · · ·α2, w5 = α1, w′
1 = α3m−1 · · ·α2m+1, w′

2 = α2m, w′
3 = w3, w′

4 = αm, and w′
5 =

αm−1 · · · α1. Then we construct a family of complexes {P •
λ,d | λ ∈ k, d ≥ 1} by

P •
λ,d := 0→ P d

1
δ0→ P d

m ⊕ P d
2

δ1→ P d
m+1 ⊕ P d

m+1
δ2→ P d

2m ⊕ P d
2m

δ3→ P d
2m+1 ⊕ P d

3m−1
δ4→ P d

3m → 0

with the differential maps

δ0 :=
(

P(w′
5)Id

P (w5)Jλ,d

)
, δi :=

(
P(w′

5−i )Id 0
0 P(w5−i )Id

)
, for i = 1, 2, 3,

and δ4 := (P (w′
1)Id , P (w1)Id). Here Jλ,d denotes the upper triangular d × d Jordan block

with eigenvalue λ ∈ k, and the map P(u) from Pt(u) to Po(u) is the left multiplication by
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the path u with origin o(u) and terminus t (u). In fact, the complex P •
λ,d can be illustrated

as follows

where P d
1 lies in the 0-th component of P •

λ,d .
It is elementary to show that EndCb(B)(P

•
λ,d) is local, i.e., the complex P •

λ,d is indecom-

posable, for all λ ∈ k and d ≥ 1. Indeed, if f • = (f i) ∈ EndCb(B)(P
•
λ,d) then f i = 0

unless 0 ≤ i ≤ 5. As a k-vector space,

HomB(Pi, Pj ) ∼= ejBei
∼=

{
k, if i ≤ j < i + m;
0, otherwise.

Thus each f i can be expressed as a matrix and by the construction of P •
λ,d , f 2 and f 3 can

be written as the same block matrix of form(
f11 f12
f21 f22

)
, fij ∈ kd×d .

Since m > 2, we have

f 1 =
(

f 1
11 f 1

12
0 f 1

22

)
, f 4 =

(
f 4

11 0
f 4

21 f 4
22

)
, f h

ij ∈ kd×d .

The commutativity of cochain map forces

f 1 = f 2 = f 3 = f 4 =
(

f11 0
0 f22

)
.

Furthermore, f 0, f 5 ∈ kd×d satisfy(
Id
Jλ,d

)
f 0 =

(
f11 0
0 f22

)(
Id
Jλ,d

)

and

f 5 (
Id Id

) = (
Id Id

) (
f11 0
0 f22

)
.

Therefore, f 0 = f11 = f22 = f 5 and Jλ,df 0 = f 0Jλ,d , and thus f 0 is of the form
⎛
⎜⎜⎜⎜⎜⎝

x1 x2 · · · xd−1 xd

0 x1 · · · xd−2 xd−1
...

...
. . .

...
...

0 0 · · · x1 x2
0 0 · · · 0 x1

⎞
⎟⎟⎟⎟⎟⎠

, xi ∈ k.

Hence EndCb(B)(P
•
λ,d) is local. Moreover, the complexes {P •

λ,d | λ ∈ k, d ≥ 1} are pairwise
different up to shift and isomorphism by a similar argument on the morphisms between
these P •

λ,d ’s.
Now it suffices to show that hr(P •

λ,d) = hr(P •
λ′,d ′) and hl(P •

λ,d) = hl(P •
λ′,d ′) if and only
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if d = d ′, which implies B is strongly derived unbounded and gl.hlB = ∞. Indeed, it
is clear that Hi(P •

λ,d) is independent of λ except i = 0, 1. Moreover, H 0(P •
λ,d) = 0 and

dimH 1(P •
λ,d) is independent of λ since δ0 is injective. Hence, P •

λ,d ’s are of the same coho-
mological range and cohomological length for a fixed d. Conversely, we have hw(P •

λ,d) = 5

due to H 1(P •
λ,d) �= 0 �= H 5(P •

λ,d) and hl(P •
λ,d) = d · hl(P •

λ,1). Thus, P •
λ,d ’s are of distinct

cohomological ranges and cohomological lengths for different d.

Lemma 5 If a finite spectroid A is not strongly derived unbounded (resp. A is of finite
global cohomological length) then the endomorphism algebra A(a, a) is isomorphic to
either k or k[x]/(x2) for all a ∈ A.

Proof If A is not strongly derived unbounded (resp. A is of finite global cohomological
length) then A is representation-finite. Thus for any a ∈ A, A(a, a) is a uniserial local
algebra, and then A(a, a) ∼= k or A(a, a) ∼= k[x]/(xm) with m ≥ 2. Note that the func-
tor F : Am

n → A given by F(i) = a and F(αj ) = x is a cleaving functor. If m ≥ 3
then, by Lemma 4, Am

3m is strongly derived unbounded and gl.hlAm
3m = ∞. It follows

from Proposition 5 that A is strongly derived unbounded and gl.hlA = ∞, which is a
contradiction.

Now we can prove Theorem II for all algebras.

Theorem 2 A finite spectroid is either derived discrete or strongly derived unbounded.

Proof Assume that a finite spectroid A is not strongly derived unbounded. Then A is
representation-finite. It follows from Lemma 5 that the endomorphism algebra A(a, a) is
isomorphic to either k or k[x]/(x2) for all a ∈ A. Thus A does not contain Riedtmann
contours, and hence it is standard [7, Section 9].

If A is simply connected then A is derived discrete by Lemma 2. If A is not simply
connected then A admits a Galois covering π : Ã → A with non-trivial free Galois group G

such that Ã is a simply connected locally bounded spectroid [12], hence the filtered union
of its connected convex finite full subspectroids [12, 13]. Any connected convex finite full
subspectroid B of Ã is simply connected, thus gl.dimB < ∞. Note that the composition
of the embedding functor B ↪→ Ã and the covering functor π is a cleaving functor. By
Proposition 5, B is not strongly derived unbounded. It follows from Lemma 2 that B is
piecewise hereditary of Dynkin type. By the same argument as that in the proof of [32,
Lemma 4.4], we obtain B is piecewise hereditary of type A. Thus Ã admits a presentation
given by a gentle quiver (Q, I) (Ref. [2, Theorem]), and so does A. Therefore, A is derived
discrete by Lemma 3.

Next we show that derived discrete algebras can be characterized as the algebras of finite
global cohomological length. Moreover, we summarize in the following proposition all
previous results on global finiteness of the homological invariants introduced in this paper.

Proposition 6 Let A be a finite spectroid. The following assertions hold:

(1) gl.hlA < ∞ if and only if A is derived discrete;
(2) gl.hwA < ∞ if and only if A is piecewise hereditary;
(3) gl.hrA < ∞ if and only if A is piecewise hereditary of Dynkin type.
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Proof If A is derived discrete then by Vossieck’s classification of derived discrete algebras
[32, Theorem], A is either piecewise hereditary of Dynkin type or derived equivalent to
some gentle algebras without generalized bands. In the case A is piecewise hereditary of
Dynkin type, by Corollary 1, we have gl.hlA < ∞. In the other case, by Lemma 3, we have
gl.hlA < ∞.

Conversely, it is enough to repeat the proof of Theorem 4 and replace the phrase “not
strongly derived unbounded” with “of finite global cohomological length”.

The statements (2) and (3) are actually Corollary 4 and Theorem 3 respectively.

Remark 2 By Proposition 6, we know piecewise hereditary algebras and derived discrete
algebras can be characterized as the algebras of finite global cohomological width and the
algebras of finite global cohomological length respectively, which provides another proof
of the first Brauer-Thrall type theorem for derived category. Indeed, an algebra A satisfies
gl.hrA < ∞ if and only if both gl.hwA < ∞ and gl.hlA < ∞, if and only if A is both
piecewise hereditary and derived discrete, i.e., piecewise hereditary of Dynkin type.

We conclude this paper with a question. In [10], Bongartz proved that for a finite-
dimensional algebra A over an algebraically closed field k, there are no gaps in the sequence
of dimensions of finite-dimensional indecomposable A-modules. More precisely, if there
is an indecomposable A-module of dimension n ≥ 2 then there is also one of dimension
n − 1. It is natural to consider the derived version of the above Bongartz’s theorem and
ask whether there are no gaps in the sequence of cohomological ranges of indecomposable
objects in Db(A).

Question Is there an indecomposable object in Db(A) of cohomological range r − 1 if
there is one of cohomological range r ≥ 2?

Acknowledgments The authors thank Xiao He and Yongyun Qin for many helpful discussions on this
topic. They are supported by the National Natural Science Foundation of China (Grant No. 11171325 and
11571341).
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