
Bull. Malays. Math. Sci. Soc. (2021) 44:2489–2505
https://doi.org/10.1007/s40840-021-01078-y

The Geometric Model of Gentle One-Cycle Algebras

Yu-Zhe Liu1 · Chao Zhang2

Received: 9 February 2020 / Revised: 5 November 2020 / Accepted: 6 January 2021 /
Published online: 19 January 2021
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021

Abstract
In this paper, we mainly study the geometric model of the derived category of gentle
one-cycle algebras provided by Opper, Plamondon and Schroll. We provide a realiza-
tion of AAG-invariant on the surface, which is slightly different from the realization in
their paper, and deduce a standard form of marked surfaces of gentle one-cycle alge-
bras under derived equivalences. As an application, we classify those derived-unique
gentle one-cycle algebras.

Keywords Derived equivalence · Derived standard form · Marked ribbon surface ·
AAG-invariant · Derived-unique algebras

Mathematics Subject Classification 16E35 · 16G60 · 16E05 · 16G20

1 Introduction

Gentle algebras, introduced in 1980’s by Assem-Skowroński [7], are a class of
important algebras in the representation theory, whose derived categories have been
extensively studied in recent years. From the homological aspect, there are many inter-
esting results related to the indecomposables, morphisms, derived equivalences and
so on [3,8,11,21,22]. To be more precise, the indecomposable objects in derived cat-
egories of gentle algebras and the morphisms between objects have been explicitly
described by Bekkert andMerklen [8] and Arnesen et al. [3], respectively. The derived
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equivalence is also an important theme since Richard’s work [21], for the reason that
many homological invariants preserve under the derived equivalence, such as the rank
of Grothendieck group, the finiteness of global dimension and so on, see [14]. Schröer
and Zimmermann show that the class of gentle algebras is closed under derived equiv-
alences [22]. Avella-Alaminos and Geiss constructed a combinatorial function φ (we
call it AAG-invariant) for each gentle algebra and proved that φ is a derived invariant.
Moreover, φ is a perfect invariant to judge the derived equivalence for those gentle
one-cycle algebras, i.e., Db(A) � Db(B) if and only if φ(A) = φ(B), see [1]. A
classification of graded gentle algebras with one cycle was established in [20] by con-
structing the graded tilting complex and using the dg version of Richard’s theorem on
derived equivalence.

Recently, geometric models for gentle algebras are extensively studied [5,10,12].
In [9,15], a connection between graded gentle algebras and Fukaya categories was
established; they proved that collections of formal generators in (partially wrapped)
Fukaya categories define graded gentle algebras. Conversely, in [16,17], given a homo-
logically smooth graded gentle algebra A, a graded surface with stops (SA, MA, ηA)

is constructed, where SA is an oriented smooth surface with non-empty boundary, MA

is a set of stops on the boundary of A and ηA is a line field on A, such that the partially
wrapped Fukaya category W(SA, MA) and derived category D(A) are equivalent.
Moreover, in [17], the indecomposable objects and the basis of morphisms between
objects in the derived category Db(A) are described by the curves and the intersection
points of the curves, respectively, and also the AAG-invariant. A complete classifica-
tion of gentle algebras is established by Amiot et al. [4] with a geometric method via
winding numbers and Arf invariants, which perfected the classification work of the
derived equivalence of gentle algebras. The classification work was also obtained by
Opper independently [18]. Moreover, in [18], the authors also provided a new proof
of well-known results; namely, gentle algebras are closed under derived equivalences
[22] and gentle algebras are Gorenstein algebras [13].

In this paper,wemainly study thegentle one-cycle algebras in termsof the geometric
model. To be more precise, we provide a standard form of marked surfaces of gentle
one-cycle algebras using the realization of AAG-invariant, and then, we prove that a
gentle one-cycle algebra A is derived-unique if and only if it is Kronecker algebra,
or the quiver Q of A is an oriented cycle with n vertices and the number of relations
equals n − 1 or n, where derived-unique algebras are those algebras for which the
notions of derived equivalence and Morita equivalence coincide [19]. The paper is
organized as follows: inSect. 2,we shall introduce somebasic notions, andwe recall the
geometric model of gentle algebras. In Sect. 3, we provide some properties of marked
ribbon surfaces, recall the definition of AAG-invariant and realize AAG-invariant by
the marked ribbon surface of any gentle one-cycle algebra. In Sect. 4, we provide
a standard form of gentle one-cycle algebras by the geometric model. Finally, we
characterize the derived-unique gentle one-cycle algebras as an application in Sect. 5.
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2 The Geometric Model of Gentle Algebras

Let A = kQ/I be a k-algebra over an algebraically closed field k with Q =
(Q0, Q1, s, t) a finite quiver, where Q0 is the set of all vertices, Q1 is the set of
arrows and s, t : Q0 → Q1 are the source and target of an arrow in Q1. For the multi-
plication αβ of two arrows α, β ∈ Q0, we define it is the concatenation if t(α) = s(β)

or zero otherwise, see [6].
We use Q� to denote the set of all paths of length �. Thus, Q0 and Q1 are the sets

of all trivial paths and all paths of length 1, respectively; for an arbitrary set X with
finite elements, �X is the number of elements in X .

Definition 2.1 A finite-dimensional algebra is gentle if it is isomorphic to an algebra
which admits a presentation A = kQ/I where

(1) for any α ∈ Q1, �{β ∈ Q1|s(α) = t(β)} ≤ 2, �{γ ∈ Q1|t(α) = s(γ )} ≤ 2;
(2) for any arrow α ∈ Q1, there is at most one arrow γ ∈ Q1 such that s(α) = t(γ )

(resp. t(α) = s(γ )) and γα /∈ I (resp. αγ /∈ I );
(3) for any arrow α ∈ Q1, there is at most one arrow β ∈ Q1 such that s(α) = t(β)

(resp. t(α) = s(β)) and βα ∈ I (resp. αβ ∈ I );
(4) the ideal I of the path algebra kQ is an admissible ideal generated by paths of

length 2.

The definition of permitted threads and forbidden threads is originally introduced by
Avella–Alaminos and Geiss, which is essential in the definition of the AAG-invariant
of gentle algebras [1].

Definition 2.2 Let A = kQ/I be a gentle algebra.
A non-trivial permitted path of A is a path p = α1 · · · αs where αiαi+1 /∈ I for each

i = 1, 2, . . . , s − 1, and a non-trivial permitted thread of A is a maximal permitted
path; a trivial permitted thread is a trivial path εv over the vertexes v of Q where v

satisfies that �{α ∈ Q1|s(α) = v} ≤ 1, �{α ∈ Q1|t(α) = v} ≤ 1, and if β, γ ∈ Q1
are arrows such that t(β) = s(γ ) = v, then βγ /∈ I .

A non-trivial forbidden path of A is a path p = α1 · · ·αs where αiα j ∈ I for each
i, j = 1, 2, . . . , s, and a non-trivial forbidden thread of A is a maximal permitted
path; a trivial permitted thread is a trivial path εv over the vertexes v of Q where the
v is such that �{α ∈ Q1|s(α) = v} ≤ 1, �{α ∈ Q1|t(α) = v} ≤ 1 and if β, γ ∈ Q1
are such that t(β) = s(γ ), then βγ ∈ I .

Definition 2.3 [17]Amarked ribbon graph is a sextuple
 = (V , E, v, e,m, σ )where

(1) V and E are two finite sets, all elements of V and E are called vertices and
half-edges of 
, respectively;

(2) v : E → V is such a function: for each half-edge x ∈ E , v(x) is the endpoint
of x ; and e : E → E is such an involution function (i.e., e2 = 1E ): for each
half-edges x ∈ E , e(x) is another half-edges which connect to the x ;

(3) m : V → E is a function such that for every y ∈ V , m(y) ∈ v−1(y), that is, we
choose exactly one half-edge m(y) at each vertex.

(4) σ : E → E is a permutation whose orbit correspond to the sets v−1(v) for all
v ∈ V .

123



2492 Y.-Z. Liu, C. Zhang

The marked ribbon graphs of a gentle algebra can be defined as follows.

Definition 2.4 [17] Let A = kQ/I be a gentle algebra. Then, the marked ribbon graph

A = (V , E, v, e,m, σ ) of A is defined as follows.

(1) V is a set consisting of all permitted threads of A.
(2) For any permitted threadw ∈ V and each vertex v ∈ Q0 whichw passes (the case

thatw passes v multiple times is permitted), there is a half-edge x ∈ E attached to
w (in the anticlockwise order), and the function v : E → V sends x to thew ∈ V .
To emphasize the orientation, we define a cyclic permutation σ on the set v−1(w)

of half-edges w attached by the anticlockwise orientation. For convenience, the
half-edge x is denoted by [v,w].

(3) For every vertex v ∈ Q0, there are exactly two permitted threads passing through
it (maybe the same one passes through it two times) and thus two half-edges
labeled with v, and the involution function e : E → E sends one to the other.

(4) For each w ∈ V of A, the vertices of Q which the permitted thread w passes
through are ordered from the starting point to the endpoint.

(5) The map m : V → E sends every permitted thread in V to the half-edge labeled
by its endpoint.

Example 2.5 Let A = kQ/I be a gentle algebra with Q given by

2
α2

3 α3

−2
α−2

−1
α−1

1

α1

4

0α0
α5

5 α4

and I = 〈α0α1, α1α2〉, then its marked ribbon graph 
A is shown in Fig. 1. The
set of permitted threads V = {α−2α−1α1, α2α3, e5, α0, e−2, e−1, α5α4, e3}. Let
α−2α−1α1 = y, then there are four half-edges [1, y], [−2, y], [−1, y] and [2, y]
attached to y, such that v([1, y]) = v([−2, y]) = v([−1, y]) = v([2, y]) = y. The
function e sends [1, y], [−2, y], [−1, y], and [2, y] to [1, α0], [−2, e−2], [−1, e−1]
and [2, α2α3], respectively. The function m : V → E satisfies that m(y) = [2, y].
Definition 2.6 [17] Let 
 = (V , E, v, e,m) be a connected marked ribbon graph.
The marked ribbon surface of 
, denoted by (S
, M), is constructed as follows:

(1) For any y ∈ V , Py is an 2d(y)-gon with counterclockwise orientation, where
d(y) is the number of half-edges attached to y.

(2) Following the cyclic orientation of y ∈ V , label every side of Py with the half-edge
x ∈ E , such that v(x) = y.

(3) For each x ∈ E , identify the side of Py labeled x and the side of Pv(e(x)) labeled
e(x), glue Py and Pv(e(x)) to form a surface S
 , such that x and e(x) are glued
together respecting the orientation of the polygons.

(4) For any polygon Py , we add a marked point on the boundary of the surface S


between the edge labeled by m(y) and the edge labeled by σ(m(y)) in coun-
terclockwise orientation. We denote by M the set of all marked points on the
surface.
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Moreover, for a gentle algebra A = kQ/I , the marked ribbon surface SA of A is the
marked ribbon surface of 
A.

Remark 2.7 (1) By [17, Proposition 1.6], there is a unique marked embedding up to
homotopy from the ribbon graph 
A into SA, sending the vertices to the marked
points. We denote by E the set of all the edges of 
A in SA under the embedding.
Moreover,E forms a full formal arc system [15, Section 3.4] of themarked surface
SA, i.e., E satisfies:

• Each element in E is an arc, namely a continuous function γ : [0, 1] → SA
satisfying
– both γ (0) and γ (1) are in M ;
– for any 0 < t < 1, γ (t) is in SA \ ∂SA, where ∂SA is the boundary of SA.

• E is a collection of pairwise disjoint and non-isotopic arcs, such that E cut out
SA into polygons which have exactly one boundary arc not belonging to E.

(2) There is an equivalent construction of the marked surface SA in the proof of [16,
Theorem 3.2.2] from the ribbon graph
A by replacing vertices of
A with 2-disks
and replacing half-edges of 
A with thin rectangles.

Example 2.8 Let A = kQ/I be a gentle algebra in Example 2.5 and 
A of A be the
marked ribbon graph in Fig. 1. Consider the permitted thread y = α−2α−1α1 ∈ V of
A, we have four half-edges [i, y] for i ∈ {−2,−1, 1, 2} and

Pv(e([1,y])) = Pv([1,α0]) = Pα0;
Pv(e([−2,y])) = Pv([−2,e−2]) = Pe−2;
Pv(e([−1,y])) = Pv([−1,e−1]) = Pe−1;
Pv(e([2,y])) = Pv([2,α2α3]) = Pα2α3 .

All the polygons associated with permitted threads are illustrated as the first figure in
Fig. 2. Moreover, gluing all polygons by Definition 2.6, we have the ribbon surface
SA of A, see the figure II in Fig. 2. Note that in these figures, the black curves con-
necting the marked points are precisely the marked embedding of the ribbon graph 
A

α−2α−1α1

e−2

e−1

α0

e5

α2α3

e3

α5α4

−2

−1

1

0
5

4

3

2

Fig. 1 Ribbon graph in Example 2.5
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Fig. 2 Marked surface of the gentle algebra in Example 2.5

into the ribbon surface SA. Here, the marked embedding is the orientation-preserving
embedding provided in [17, Proposition 1.6].

By the above construction, for a given gentle algebra A, we have a ribbon graph

A which can be embedded into a marked surface SA. Conversely, for each marked
ribbon surface (S, M) constructed froma ribbon graph
A, one can recover the original
gentle algebra A. Oneway is the definition from [17, Section 1.5] using the lamination.
For convenience, we adopt the equivalent definition from [15] using a full formal arc
system, see [17, Section 1.7].

Definition 2.9 Let SA = (S, M) be a marked surface from a gentle algebra A, 
A be
the ribbon graph embedded into SA and E be the full formal arc system which cuts
out SA into polygons with exactly a single boundary arc not belonging to E. Then, we
associate a quiver Q = (Q0, Q1) and relation I = 〈R〉 to SA as follows:

(1) the vertices in Q0 correspond to the arcs in 
A;
(2) there is an arrow from i to j in Q1 whenever there is a polygon 
 in SA such that


 has sides i and j with j following i in the such an orientation that the surface
lies to the right;

(3) R is the set of such composition ab of arrows a : i → j and b : j → k that j
follows i and k follows j at different endpoints of j .

Example 2.10 Let A = kQ/I be a gentle algebra in Example 2.5 and 
A of
A be the marked ribbon graph in Fig. 1. Then, the marked ribbon surface SA is
shown in I of Fig. 3. By the above definition, the set of all arcs of SA is E =
{Y1Y2,Y1Y3,Y1Y4,Y4Y8,Y5Y8, Y6Y8,Y6Y7,Y1Y6}, the quiver Q = (Q0, Q1) of the
marked surface is of the form as in II of Fig. 3, and the relation I = 〈α0α1, α1α2〉.

More generally, the following theorem due to Opper et al. [17] shows that the
construction as above provides us a way to recover the original gentle algebra.

Theorem 2.11 [17, Proposition 1.21] (Opper–Plamondon–Schroll) Let A be a gentle
algebra with 
A and SA the associated ribbon graph and marked ribbon surface, and
AS be the algebra constructed from SA. Then, A ∼= AS.
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Fig. 3 Associated quiver of the marked surface in Example 2.5

Throughout this paper, a gentle algebra is called to be gentle one-cycle if its under-
lying graph has exactly one cycle. We also fix some notations: For a marked ribbon
surface S
 = (S
, M) induced by marked ribbon graph 
, the set E of all arcs formed
by the image under the embedding from 
 to S
 is a full formal arc system by Remark
2.7 (1) and thus E cut S
 into polygons {Pi | i ∈ I } with precise one boundary edge.
We denote by ∂P the boundary edge P ∩ ∂S
 for each polygon P .

Remark 2.12 Let A = kQ/I be a gentle one-cycle algebra,
A be its ribbon graph, and
SA be their marked ribbon surface. Then, by [17, Corollary 1.24], SA is an annulus. In
this case, SA has two boundary-components, and we can fix one of them as the inner
boundary-component γ in of SA and the other one as the outer boundary-component
γ out. By Remark 2.7, all polygons (Pi )i∈I can be divided into two types

(I) the polygons P in
i (1 ≤ i ≤ m) whose boundary edge lie in γ in;

(II) the polygons Pout
j (1 ≤ j ≤ m′) whose boundary edge lie in γ out.

Wewill refer polygons of type (I) or (II) according to the label of the item.Moreover,we
denote by EPi the set {s ∈ E | s is an edge of Pi }. In the next section, (�EP in

i )1≤i≤m

and (�EPout
j )1≤ j≤m′ are important values for computing the AAG-invariants of gentle

one-cycle algebras.

Example 2.13 Let A = kQ/I be the gentle algebra in Example 2.5, its marked ribbon
surface SA is shown in Example2.8. By Remark 2.12, we have two polygons P in

1
and P in

2 of the type (I), and others are of the type (II), see Fig. 4. Moreover, we have
EP in

1 = {Y1Y4,Y4Y8,Y7Y6,Y6Y1}, EP in
2 = {Y8Y6,Y6Y7} and �EP in

1 = 4, �EP in
2 =

2.

3 The AAG-Invariants of Gentle Algebras

In this section, we recall the definition of AAG-invariant for gentle algebras [1, Section
3] and then realize theAAG-invariant of gentle one-cycle algebras in its marked ribbon
surface.

123



2496 Y.-Z. Liu, C. Zhang
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P in
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P in
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Fig. 4 Type of the polygons of the gentle algebra in Example 2.5

Definition 3.1 Let A = kQ/I be a gentle algebra, its AAG-invariant is a function φA :
N
2 → N, denoted by [(b1, c1), . . . , (bm, cm)], such that the set {(bi , ci )|1 ≤ i ≤ m}

is the support of the function and (bi , ci ) is written φA(bi , ci ) times in the multiset
[(b1, c1), . . . , (bm, cm)], where the sequence {(bi , ci )}mi=1 is defined as follows:

Step 1

(i) Let H0 be a permitted thread of A.
(ii) If Hi = α1 · · · αr is defined, consider the forbidden thread Πi = β1 · · · βs which

ends at e(Hi ) and satisfies αr �= βs . (If Hi = εq is a trivial permitted thread on
the vertex q ∈ Q0 which is sink or source, then consider the trivial forbidden
thread Πi = εq .)

(iii) Let Hi+1 = α′
1 · · · α′

t (t ∈ N) be the permitted thread which starts at s(Πi ) and
such that β1 �= α′

1.

This process stops when Hb = H0 for some b ∈ N. Let c be the total length of
Π1, . . . , Πb, then we obtain a pair (b, c).

Step 2 Repeat the Step 1 until all permitted threads appear.

Step 3 If there are oriented cycles in which every two consecutive arrows form a
relation, then we add a pair (0, l) for each those cycles, where l is the length of the
oriented cycle.

Moreover, we do not differentiate the function φA and the multiset [(b1, c1), . . . ,
(bm, cm)] as in [1].

The following proposition originally provided in [1] implies that the AAG-invariant
provides us a perfect way to judge the derived equivalences of gentle one-cycle alge-
bras.

Proposition 3.2 The number of arrows, the number of cycles and the AAG-invariant
are invariant under derived equivalences for gentle algebras. Moreover, if A and B
are both gentle one-cycle algebras, then Db(A) � Db(A′) if and only if φA = φA′ . �


For a gentle one-cycle algebra A = kQ/I , one can calculate its AAG-invariant by
its marked ribbon surface by the following theorem which is essentially equivalent to
[17, Theorem 6.1] but in a different form more or less.

123



The Geometric Model of Gentle One-Cycle Algebras 2497

Theorem 3.3 Let A = kQ/I be a gentle one-cycle algebra with n = �Q0, 
A =
(V , E, v, e,m, σ ) and SA = (SA, M) be its marked ribbon graph and marked ribbon
surface, respectively, and there bem polygons P1, P2, . . . , Pm of the type (I) in Remark
2.12. Then,φA = [(n − b, n − c), (b, c)], where b equals the number of marked points
on the γ in and c = ∑m

i=1 �EPi − b.

Proof If A has a oriented cycle with full relations, i.e., any two consecutive arrows
form a relation on the cycle. We assume that all arrows on the cycle are clockwise;
then, there exists a unique polygon P in class (I) given by Remark 2.12 in SA such
that the second integer pair of φA is (0, �EP) obviously.

Now suppose that A has no full relations cycle, and we calculate the second integer
pair of φA. Let � be the one-to-one correspondence from Q0 to the full formal arc
system of SA. We assume that H0 is a permitted thread of A with t(H0) = v, we
can find a forbidden thread Π0 = α1 · · · αt such that s(α1) = u, t(αi ) = wi , and
t(αt ) = v. Since A is a gentle one-cycle algebra, by Remark 2.12, the marked ribbon
surface SA is an annulus. Then, there is a unique polygon P0 whose edges correspond
to {u, w1, . . . , wt−1, v} such that the ending points of �(wi ) and �(u) are on the
same boundary-component of SA, and the starting point of �(u) and the ending point
of �(v) are on the other boundary-components. Thus, �EP0 = t + 1 = l(Π0) + 1,
where l(Π0) is the length of Π0. Without loss of generality, we assume that the
polygon P0 belongs to the class (I) in Remark 2.12; then, the ending points of �(wi )

and �(u) are on the outer boundary component γ out of SA. By Definition 3.1, we
obtain two sequences {Hj }0≤ j≤m and {Π j }0≤ j≤m , such that each permitted thread
Hj corresponds to a marked point on the inner boundary-component of SA, and each
Π j corresponds to a polygon Pj which belong to class (I) with �EPj = l(Π j ) + 1.
Therefore,

m∑

j=1

�EPj = c + m,

where m is the number of inner polygons, which is precisely the number of marked
points on γ in and c is the total length of permitted threads {Π j }0≤ j≤m . Thus, (b, c) =
(m,

∑
j �EPj − m) is the second integer pair of φA. With a similar argument, we

can calculate the first integer pair (b′, c′) = (m′,
∑

j �EP ′
j − m′), where any P ′

j is a
polygon of the type (II). Moreover, b+b′ is the number of total permitted threads of A,
and c+c′ equals double the number of arcs minus b+b′ since each arc is an edge of an
inner polygon and an outer one. Therefore, b+b′ = n and c+c′ = 2n− (b+b′) = n.

�


Let A = kQ/I be an arbitrary gentle one-cycle algebra, andφA = [(b1, c1), (b2, c2)]
be its AAG-invariant. In this paper, we always fix the order of pairs of φA such that
b2 is the number of marked points in the inner boundary-component of SA. For
two gentle one-cycle algebras A and A′, we can compute φA = [(b1, c1), (b2, c2)]
and φA′ = [(b′

1, c
′
1), (b

′
2, c

′
2)] by Theorem 3.3, and define the drop of AAG-invariant

�φA,A′ := φA′ −φA = [(b′
1−b1, c′

1−c1), (b′
2−b2, c′

2−c2)]. Moreover, for n gentle
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one-cycle algebras A1, A2, . . . , An , we define the drop �φA1,An = ∑n−1
i=1 �φAi ,Ai+1 ,

and �φA1,An = [(0, 0), (0, 0)] yields Db(A1) � Db(An) by Proposition 3.2.

Example 3.4 Let A = kQ/I be the gentle algebra defined in Example 2.5. Then,
its marked ribbon surface SA is as shown in Example 2.8. Following the nota-
tion in Examples2.10 and 2.13, we obtain the set of all polygons of the type (I) is
{P in

1 = Y1Y4Y8Y7Y6Y1, P in
2 = Y8Y6Y7Y8}. The second pair (b, c) of AAG-invariant

φA satisfies that b = 2 and c = �EP in
1 + �EP in

2 − b = 4 + 2 − 2 = 4; thus,
φA = [(8− 2, 8− 4), (2, 4)] = [(6, 4), (2, 4)]. Indeed, the first pair (6, 4) can also be
calculated by the polygons Pout

j of the type (II). Since

Pout
1 = Y1Y2Y1,

Pout
2 = Y1Y2Y3Y1,

Pout
3 = Y1Y3Y4Y1,

Pout
4 = Y4Y5Y8Y4,

Pout
5 = Y5Y6Y8Y5,

Pout
6 = Y1Y6Y1.

Thus, b = 6 and c = ∑6
j=1 �EPout

j − b = 1 + 2 + 2 + 2 + 2 + 1 − 6 = 4.

4 The Derived Standard Forms of Gentle One-Cycle Algebras

In this section, we provide a standard form of gentle one-cycle algebra under the
derived equivalences. For convenience, we need the following definition.

Definition 4.1 (Branches) Let A = kQ/I be a gentle one-cycle algebra. A connected
subquiver Q̂ is a branch of Q if

(1) each arrow α ∈ (Q̂)1 does not lie on the cycle of Q.
(2) Q̂ is a maximal subquiver in the sense of (1), i.e., for any connected subquiver

Q′ such that Q̂ � Q′ ⊆ Q, then there is an arrow α ∈ Q′ lying on the cycle.

Remark 4.2 (1) If a gentle one-cycle algebra has no branch, then it is an algebra of
the type Ãn .

(2) Let A = kQ/I be an arbitrary gentle one-cycle algebra with at least one branch
and SA be the marked ribbon surface of A. Then, there is an arrow α in this branch
such that s(α) is a source of Q, or t(α) is a sink of Q, and we call this source or
sink of Q is an end of branch of A. Moreover, either s(α) or t(α) corresponds to an
edge Y1Y2 ∈ E of SA such that Y1 and Y2 are on the same boundary-component of
SA, and either the number of edges �v−1(Y1) in E connecting to Y1 or the number
�v−1(Y2) connecting to Y2 is one. If we remove α from Q, then we get an algebra
A′ = kQ′/I ′, and the surface SA′ can be obtained from SA by removing the edge
Y1Y2.
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Lemma 4.3 Let A = kQ/I be a gentle one-cycle algebra with at least one branch. If
we remove the arrow α at the end of a branch and obtain a new gentle algebra A′,
then �φA,A′ = [(0, 0), (−1,−1)] or [(−1,−1), (0, 0)].

Proof By remark 4.2 (2), if we remove such an arrow α, then the change on surface is
deleting the edge Y1Y2 corresponding to the source or the sink of α. Without loss of
generality, we assume that both Y1 and Y2 lie on the inner boundary-component γ in of
SA; then, Y1Y2 and γ in form a 2-gon P1 of type (I) in Remark 2.12. Thus, �EP1 = 1
by Theorem 3.3, and the second integer pair (b, c) = (b, 1 + ∑n

i=2 �EPi − b). If
one deletes the edge Y1Y2 from the surface SA, then polygon P1 vanishes; thus, the
number of marked points b is decreased by one, and c′ = ∑n

i=2 �E(P ′
i ) − (b − 1),

where P ′
i = Pi stays unchanged for all i ≥ 3 and the number of inner edges of P2,

which is adjacent to P1, is also decreased by one since the common edge Y1Y2 with P1
vanishes. Then, c′ = c − 1. The first integer pair of φA stays unchanged. Therefore,
�φA,A′ = [(0, 0), (−1,−1)]. With a similar discussion, if both Y1 and Y2 are on the
γ out, then we have �φA,A′ = [(−1,−1), (0, 0)]. �


Lemma 4.4 Let A = kQ/I be a gentle algebra of the type Ãn with I �= 0, and
A′ = kQ/I ′ be a gentle algebra obtained by removing a relation αβ on the cycle of
Q from I , then �φA,A′ = [(−1, 0), (+1, 0)] or [(+1, 0), (−1, 0)].

Proof Let 
A be the marked ribbon graph and SA be the marked ribbon surface of A.
By Definition 2.9, there is a one-to-one correspondence � : Q0 → E. Then, for a
relation αβ on the cycle, the vertices s(α), t(α) = s(β) and t(β) correspond to three
edges Y1Y2, Y2Y3 and Y3Y4 of SA, such that Y2,Y3 are marked points on the same
boundary component of SA, and the edge �(t(α)) = Y2Y3 forms a 2-gon P1 with the
boundary of SA. See Fig. 5.

If we remove the relation αβ from I , then the marked ribbon surface SA′ of A′ =
kQ/I ′ changes in the following way: one endpoint of �(t(α)), for example Y2, stays
on the previous boundary component such that both �(t(β)) and �(s(α)) connect to
Y2, and the other endpoint Y3 lies on the other boundary component, see Fig. 6.

Now we observe the value of φ. Let φA = [(b1, c1), (b2, c2)], φA′ =
[(b′

1, c
′
1), (b

′
2, c

′
2)]. We assume that the marked points Y2,Y3 be on the inner boundary

component γ in of SA. For convenience, we denote by P in
1 the inner polygon formed

by Y2Y3. By Theorem 3.3, we have

b′
2 = b2 − 1; c2 =

m∑

i=1

�EP in
i − b2; and c′

2 =
n∑

i=2

�EP in
i − b′

2.

Since c2 − c′
2 = �EP in

1 − b2 + b′
2 = 1 + b′

2 − b2 = 0, we have �φA,A′ =
[(+1, 0), (−1, 0)]. Similarly, if Y2,Y3 are on the outer boundary-component γ out,
then �φA,A′ = [(−1, 0), (+1, 0)]. �
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Y3 Y2

Ψ(t(β))

Ψ(t(α))

Ψ(s(α))

αβ

Y2 Y3
Ψ(s(α))

Ψ(t(α))

Ψ(t(β))α β

Fig. 5 Two cases with a relation on the cycle

Ψ(t(β))

Y3

Ψ(s(α))Y2

αβ

Ψ(s(α))

Y3

Ψ(t(β))

Y2

α β

Fig. 6 Change of surfaces when removing the relation

· · ·· · · α β
· · ·· · · β

α

I II

Fig. 7 Marked ribbon surfaces when exchanging the position of two arrows

Lemma 4.5 [7] Let A = kQ be a gentle algebra of type Ãn. Then, Db(A) �
Db(kQp,q) with p, q ≥ 1 and Qp,q of the form

2
α2 · · ·

αp−1
p αp

1

α1

β1

p + q.

2′
β2

· · ·
βq−1

q′ βq

Proof First of all, the quiver Q is not an oriented cycle since A is finite-dimensional.
To prove the lemma, it suffices to show that Db(kQ) � Db(kQ′) if we exchange the
position of two arrows α and β in Q to the quiver Q′. Then, we need to prove the values
of φ of these two algebras coincide. Suppose that α is an anticlockwise arrow and β

is a clockwise one. Then, SA is the form of the first picture in Fig. 7. If we exchange
the position of α and β, then the edge corresponding to t(α) flips on the surface as in
the second figure of Fig. 7, i.e., two endpoints move to next marked points along fixed
direction on their own boundary components, and the value of φ stays unchanged by
Theorem 3.3. �
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Theorem 4.6 Let A = kQA/IA be a gentle one-cycle algebra. Then, A is derived
equivalent to such a gentle algebra B = kQB/IB that the marked ribbon surface SB
is of the form SI or SII, where

· · ·

· · ·

· · ·

0

1 r

r + 1
· · ·
s − 1
s

−1 −(s′ − 1)· · ·

· · ·
...

. .
.

−m
...−1
1

2

3

. .
.

s − 1
0

SI = S(0, s, s′, r)
s ≥ 1, s′ ≥ 0; 0 < r < s if s′ = 0

SII = S(m, s, 0, s)

m ≥ 0, s ≥ 2

Proof We divide our theorem into two statements as follows.

(1) If the cycle of A is not oriented, or the cycle of A is oriented and the number of
relations on the cycle is less than that of arrows, then SB is of the form SI.

(2) If the cycle of A is oriented with full relations, i.e., the number of relations on the
cycle equals that of arrows, then SB is of the form SII.

Suppose that both the number of vertices and arrows of A are n in this proof.

(1) For this case, there always exists a vertex on the cycle without relation.

(i) If QA has no branch, then by the proof of Lemma4.4 and Lemma 4.5, we
can remove the same number of clockwise relations and anticlockwise rela-
tion such that there only exist relations in one direction, and exchange the
position of arrows and relations and then obtain a gentle one-cycle algebra B
such that Db(A) � Db(B) and the marked ribbon surface SB is of the form
SI = S(0, s, s′, r), where s and s′ are the number of clockwise arrows and
anticlockwise arrows on the cycle of QA, respectively, and r is the number of
relations.

(ii) If QA has at least one branch, then we write A0 = kQ0/I 0 the origi-
nal algebra A = kQA/IA. By removing all branches, we obtain a gentle
algebra A1 = kQ1/I 1 of type Ãn . By Lemma 4.3, we have �φA0,A1 =
[(−u,−u), (−v,−v)] for some u, v ∈ N and Q1 is a cycle of length
t = n − (u + v). Let A2 = kQ2/I 2 be the algebra obtained by removing
all relations of A1, that is, Q2 = Q1, I 2 = 0, then we have �φA1,A2 =
[(−r1 + r2, 0), (r1 − r2, 0)] by Lemma 4.4 with r1 and r2 the number of
clockwise relations and anticlockwise relations, respectively. By Lemma 4.5,
we exchange the position of arrows and obtain an algebra A3 = kQ3 = kQp,q

satisfying p + q = n − (u + v) = t and �φA2,A3 = 0. Note that the marked
ribbon surface of A3 is S(0, p, q, 0) and φA3 = [(q, q), (p, p)]. Nowwe split
the vertex p + 1 of Q3 = Ãp,q into two vertices q ′ + 1 and p′ + 1 and then
add a path of the form
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q ′ + 1
a

q ′ + 2 · · · ◦ · · · p′ + 2 p′ + 1
b

to connect q ′ + 1 and p′ + 1, such that the number of clockwise arrows is v

and the number of anticlockwise arrows is u. We have a path algebra A4 =
kQ4 = Ap+v,q+u which is of the type Ãn with φA4 = φAp+v,q+u = [(q +
u, q + u), (p + v, p + v)] by Theorem 3.3. Thus, �φA3,A4 = φA4 − φA3 =
[(u, u), (v, v)]. Without loss of generality, we assume that r1 > r2. We construct
B = A5 = kQ5/I 5 with Q5 = Q4 and I 5 = 〈α1α2, · · · , αr1−r2αr1−r2+1〉 and
�φA4,B = [(r1 − r2, 0), (−(r1 − r2), 0)] by Lemma 4.4. Hence,

�φA,B =
5∑

i=1

�φAi−1,Ai = [(−u,−u), (−v,−v)] + [(−r1 + r2, 0), (r1 − r2, 0)]

+ 0 + [(u, u), (v, v)] + [(r1 − r2, 0), (−(r1 − r2), 0)] = 0 (4.1)

Therefore, we finally get a gentle one-cycle algebra B such that Db(A) � Db(B)

and the marked ribbon surface SB is of the form SI.
(2) If the cycle of A is oriented with full relations, then we suppose that all arrows

on the cycle are clockwise. If, moreover, A has no branch, SA = S(0, n, 0, n) is
of the form SII such that m = 0. If else, by removing all branches, we obtain an
algebra A1 = kQ1/I 1 of Ãt -typewith Q1 an oriented cyclewith full relations, and
�φA,A1 = [(−u,−u), (0, 0)]. Let B = kQB/IB be a gentle one-cycle algebra
with one branch of the following form on the cycle Q1 with full relations

1 · · · u u + 1,

then �φA1,B = [(u, u), (0, 0)] by Lemma 4.3, Since �φA,B = �φA,A1 +
�φA1,B = 0, we have Db(A) � Db(B), and in this case, SB is of the form
SII with m > 0. �


The above theorem provides a standard form of marked surfaces of gentle one-cycle
algebras up to derived equivalence. To be more precise, if A is a gentle one-cycle
algebra derived equivalent to such a gentle algebra that the marked ribbon surface S
is of the form SI or SII, then S is called to be the standard form of the marked surface
of A.

5 Derived-Unique Gentle One-Cycle Algebras

A k-algebra A is called derived-unique, if any algebra B which is derived equivalent
to A is Morita equivalent to A, see [19]. In this section, we characterize the derived-
unique gentle one-cycle algebras in terms of the marked ribbon surfaces.

Theorem 5.1 Let A = kQ/I be a gentle one-cycle algebrawithmarked ribbon surface
SA. Then, A is derived-unique if and only if SA is one of the following cases:

(1) S(0, 1, 1, 0), i.e., A is 2-Kronecker algebra;

123



The Geometric Model of Gentle One-Cycle Algebras 2503

(2) S(0, n, 0, r), r = n−1, n, i.e., Q is an oriented cycle and the number of relations
is n or n − 1.

Proof It suffices to establish derived-unique gentle once-cycle algebras in the standard
form provided in Theorem 4.6.

(1) If SA = S(0, s, s′, r) is of the form SI with s ≥ 1, s′ ≥ 1, r < s, then A
is type of Ãn , and we claim that A is not derived-unique except the case that
SA = (0, 1, 1, 0).

(i) The case that s′ ≥ 2. Let B be a gentle algebra with marked ribbon surface
SB as the first one in Fig. 8. By Corollary 3.3, A and B are derived equivalent
but not Morita equivalent, then A is not derived-unique.

(ii) If s′ = 1, r ≤ s − 2 and s ≥ 2, then as in the previous case, we can move
both endpoints of the arc indexed by s one step on two different boundary
component in the standard surface SI in Theorem 4.6 to obtain a surface such
that the corresponding gentle algebra is derived equivalent but not Morita
equivalent to A. Thus, A is not derived-unique in this case.

(iii) We finally come to the case that s′ = 1, r = s − 1 and s ≥ 2. In
this case, φA = [(s − 1, 0), (1, s)]. Now we construct a gentle algebra

· · ·

· · ·

· · ·

0

1 r

r + 1
· · ·

s − 1
s

−1· · ·

· · ·

−(s − 1)

· · ·
P in

0

1 s − 1

s

Ys

Y1

Y2 Ys−1

I II

Fig. 8 Two marked surfaces providing derived equivalences for the form of SI

· · ·

· · ·

0

1

2

3

4 r

r + 1
· · ·s − 1

· · ·

I

.

..

. . .

−m
.
..

−1

−2
1

2

3

. . .

s − 1
0

II

Fig. 9 Two marked surfaces providing derived equivalences for gentle algebras with a oriented cycle
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B whose marked ribbon surface SB is the second one in Fig. 8. Then,
�EP in = s + 1 since EP in = {Y1Ys−1,Ys−1Ys−2, . . . ,Y2Y1,Y1Ys,YsY1}.
By Corollary 3.3, the second integer pair of φB is (1, �EP in − 1) = (1, s);
then, φB = [(s − 1, 0), (1, s)] = φA. Therefore, A is derived equivalent but
not Morita equivalent to B and thus not derived-unique.

(iv) If A is 2-Kronecker algebra with the associated marked surface S(0, 1, 1, 0),
then it is derived unique. In fact, if B = kQB/I is a gentle one-cycle algebra
derived equivalent to A, then QB has two vertices and two arrows. By a case-
by-case discussion using the value of φ, B must be 2-Kronecker algebra.

(2) If SA = S(0, n, 0, r) is of the form SI with n ≥ 1, r < n, then we claim that A
is derived unique if and only if r = n − 1. Let B = kQB/IB be a gentle algebra
derived equivalent to A, then QB has one cycle with n arrows and n vertices.

(i) If r = n − 1, i.e., SA = S(0, n, 0, n − 1), then we have φA = [(n −
1, 0), (1, n)] = φB , and B is of the type Ãn . Indeed, if B has at least
one branch, then QB has at least one arrow α such that s(α) is a source,
or t(α) is a source. Thus, there is an arc Y1Y2 corresponding to s(α) or
t(α) satisfying its endpoints both are on the same boundary-component of
SB . Since φB = [(n − 1, 0), (1, n)], there is a unique marked point on
the inner boundary-component γ in. By Remark 2.12, there exists a unique
polygon P of the type (I). Note that Y1Y2 is not an edge of the inner
polygon P . Therefore, the second integer pair (b, c) of φB satisfies that
b = 1, c = �EP − b < n + 1 − 1 = n, which is impossible. Now we
know that QB is a cycle and φB = [(n − 1, 0), (1, n)]. So SB has only one
marked point on the inner boundary component and then only one polygon
P of the type (I). Since c = �EP − b = n, the polygon P satisfies that
�EP = n + 1, and then, SB must be of the form S(0, n, 0, n − 1). Therefore,
A is Morita equivalent to B and thus is derived-unique.

(ii) Now we prove that A is not derived-unique if r ≤ n − 2. Let B be a gentle
algebra with SB of the form as the first one in Fig. 9. Then, φA = φB ; hence,
Db(A) � Db(B) by Theorem 3.2 and A is not derived-unique.

(3) The case that SA = S(m, s, 0, s) is of the form SII with s + m = n.

(i) If m > 0, i.e., the quiver of A has one branch, then A is not derived-unique,
since the gentle algebra B with SB of the form as the second one in Fig. 9 shares
the same value of φ with A by Corollary 3.3. Then, A is not derived-unique.

(ii) If r = n, i.e., SA = S(0, n, 0, n), then we obtain φA = [(n, 0), (0, n)] by
Corollary 3.3. Db(A) � Db(B) yields that B has no branch with a similar
argument as above for the case that r = n − 1. Since φB = [(n, 0), (0, n)],
there is no marked point in the inner boundary component and then SB must
be S(0, n, 0, n) by the property that the full formal arc system cuts the marked
surface into polygons with a boundary edge. Therefore, A is derived-unique.
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