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1 Introduction

Let k be an algebraically closed field. For a finite dimensional k-algebra A, we denote by
mod A the category of finite dimensional right A-modules and by Db(A) the bounded derived
category of mod A. By a derived equivalence between two algebras A and B, we mean a k-linear
triangle equivalence between Db(A) and Db(B). Many homological properties preserve under
the derived equivalences, such as the finiteness of global dimension, the rank of Grothendieck
group and so on, see [9] for example. So it is natural to explore the condition to ensure the
derived equivalence, see [12]. However, it seems difficult to judge whether two general algebras
are derived equivalent.

The gentle algebras are known as an important class of algebras, whose derived cate-
gories have been extensively studied. This class of algebras is closed under derived equiv-
alences [14]. The indecomposable objects in derived categories of gentle algebras and the
morphisms between them have been explicitly described by Bekkert–Merklen [7] and Arnesen–
Laking–Pauksztello [2] respectively. Moreover, Avella-Alaminos and Geiss [6] constructed a
function which turns out to be a derived invariant. As a result, many explicit computations can
be carried out, and gentle algebras can be seen as a useful test-subject for many more general
conjectures related to derived categories.

Derived unique algebras, originally introduced by Kalck in [11], are those algebras for which
the notions of derived equivalence and Morita equivalence coincide. In this paper, by using the
combinatorial function introduced by Avella-Alaminos and Geiss for gentle algebras, we obtain
a standard form of gentle algebras with at most one cycle under the derived equivalences and

Received September 3, 2018, accepted November 29, 2018

Supported by the National Natural Science Foundation of China (Grant Nos. 11601098 and 11701321) and

Science Technology Foundation of Guizhou Province (Grant Nos. QSF[2016]1038 and [2018]1021)

1) Corresponding Author



650 Liu Y. and Zhang C.

classify these derived unique algebras. To be more precise, the mainly theorem in present paper
is as follows.

Theorem 1.1 Let A = kQ/I be a nonsimple gentle algebra with at most one cycle. Then A

is derived unique if and only if A is hereditary of type A2, or the 2-Kronecker algebra, or the
quiver Q of A is an oriented cycle with n arrows and I is generated by m paths of length two,
where m = n − 1 or n.

The paper is organized as follows: in Section 2, we shall introduce some basic notions and
definitions about gentle algebras including the combinatorial invariant introduced by Avella-
Alaminos and Geiss. In the third section, we provide a standard form of gentle algebras with
at most one cycle by observing changes of the invariant under certain transformations with
respect to the quiver and relation. Finally, we prove the main theorem in the last section.

2 The Combinatorial Derived Invariant for Gentle Algebras

Throughout this paper, we denote by kQ/I the quotient algebra of the path algebra kQ by an
admissible ideal with Q = (Q0, Q1, s, t) a finite quiver. Moreover, we always write the path in
Q from left to right, see [4]. In this section, we mainly recall some notions about gentle algebras
and the definition of combinatorial derived invariant introduced in [6].

Definition 2.1 Let A = kQ/I be a connected finite-dimensional k-algebra with I an admissible
ideal of kQ. A is called a special biserial algebra if the following conditions hold:

(1) ∀v ∈ Q0, #{α ∈ Q1|s(α) = v} ≤ 2 and #{β ∈ Q1|e(β) = v} ≤ 2;
(2) ∀γ ∈ Q1, #{α ∈ Q1|s(γ) = e(α) and αγ /∈ I} ≤ 1 and #{β ∈ Q1|e(γ) = s(β) and γβ /∈

I} ≤ 1;
(3) ∀β ∈ Q1, there exists a bound n, n′ such that β1β2 · · ·βn with βn = β contains a subpath

in I and any path β1β2 · · ·βn′ with β1 = β contains a subpath in I.
Moreover, A is called a gentle algebra if A satisfies the additional condition:
(4) All relations in I are monomials of length 2.
(5) ∀γ ∈ Q1, #{α ∈ Q1|e(α) = s(γ) and αγ ∈ I} ≤ 1 and #{β ∈ Q1|s(β) = e(γ) and γβ ∈

I} ≤ 1.

For any gentle algebra A = kQ/I, Avella-Alaminos and Geiss defined a function φ which
turn out to be a perfect derived invariant for those gentle algebras with at most one cycle,
see [6]. The notations of permitted threads and forbidden threads are useful in the definition
of the function.

Definition 2.2 Let A = kQ/I be a gentle algebra.
(1) A permitted path of A is a path C = α1α2 · · ·αn with no zero relations. A nontrivial

permitted thread of A is a maximal permitted path, i.e. for all β ∈ Q1, neither βC nor Cβ is a
permitted path. A trivial permitted thread is a trivial path εv over the vertex v of Q where the
v is such that #{α ∈ Q1|s(α) = v} ≤ 1, #{α ∈ Q1|e(α) = v} ≤ 1, and if β, γ ∈ Q1 are such
that e(β) = v = s(γ) then βγ /∈ I.

(2) A forbidden path of A is a path C = α1α2 · · ·αn formed by pairwise different arrows
with αiαi+1 ∈ I for all i ∈ {1, 2, . . . , n − 1}. A non-trivial forbidden thread of A is a maximal
forbidden path, i.e. for all β ∈ Q1, neither βC nor Cβ is a forbidden path. A trivial forbidden
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thread is a trivial path εv over the vertex v of Q where the v is such that #{α ∈ Q1|s(α) =
v} ≤ 1, #{α ∈ Q1|e(α) = v} ≤ 1, and if β, γ ∈ Q1 are such that e(β) = v = s(γ) then βγ ∈ I.

Now, we can define the function φ for gentle algebras.

Firstly, for a special biserial algebra, we can define two functions σ, ε : Q1 → {1,−1} as
follows:

(1) If β1 �= β2 are arrows with s(β1) = s(β2), then σ(β1) = −σ(β2).

(2) If γ1 �= γ2 are arrows with e(γ1) = e(γ2), then ε(γ1) = −ε(γ2).

(3) If β, γ are arrows with s(γ) = e(β) and βγ /∈ I, then σ(γ) = −ε(β).

The function φ can be defined by the following algorithm.

Definition 2.3 (algorithm)

Step 1 (1) Begin with a permitted thread of A, say H0.

(2) If Hi is defined, consider Πi, the forbidden thread which ends in e(Hi) and such that
ε(Hi) = −ε(Πi)

(3) Let Hi+1 be the permitted thread which starts in s(Πi) and such that σ(Hi+1) = −σ(Πi).

This process stops when Hn = H0 for some n ∈ N. Let m =
∑

1≤i≤n l(Πi−1), where l(C) is
the length of path C, then we obtain a pair (n, m).

Step 2 Repeat the Step 1 until all permitted threads of A appears.

Step 3 If there are oriented cycle in which each pair of consecutive arrows form a relation,
we add a pair (0, m) for each those cycles, where m is the length of the oriented cycle.

Step 4 Define φA : N
2 → N where φA(n, m) is the number of times that the pair (n, m)

arises in the algorithm.

Remark 2.4 By the Definition 2.3, for a gentle algebra, we can obtain a set of pairs

{(n1, m1), . . . , (ns, ms)},

which is determined by the algorithm in Definition 2.3. Therefore, we denote [(n1, m1), . . . ,
(ns, ms)] by the function φA, see [6].

We illustrate the algorithm by the following examples.

Example 2.5 (1) Let A = kQA/IA be a k-algebra and QA be of the form

(−1)
α−1 �� 0

α0

��
1

α1

��

and I = IA1 = 〈α1α0〉. Obviously, the algebra A1 = kQ/IA1 has three permitted threads
α−1α0α1, ε−1 and ε1. If beginning with the permitted thread α−1α0α1 of A1 and say H0, then
we have

H0 = α−1α0α1, Π−1
0 = α−1

−1,

H1 = ε−1, Π−1
1 = ε−1,

H2 = α−1α0α1 = H0.
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Thus, we obtain a pair (2, 1). Note that the trivial permitted threads ε1 does not appear, so
beginning with ε1, we have

H0 = ε1, Π−1
0 = α−1

0 α−1
1 ,

H1 = ε1 = H0,

and obtain another pair (1, 2). By Definitions 2.3 and 2.4,

φA1 = [(1, 2), (2, 1)]

and
φA1(1, 2) = 1, φA1(2, 1) = 1.

If I = IA2 = 〈α1α0, α0α1〉, the algebra A2 = kQ/IA2 has three permitted threads α−1α0,
α1 and ε−1. Similarly, if we assume that H0 is the permitted thread α−1α0, then

H0 = α−1α0, Π−1
0 = ε1,

H1 = α1, Π−1
1 = α−1

−1,

H2 = ε−1, Π−1
2 = ε−1,

H3 = α−1α0 = H0

and we get the pair (3, 1). Moreover, A2 satisfies the conditions of Step 3 in Definition 2.3,

φA2 = [(3, 1), (0, 2)],

and
φA2(3, 1) = 1, φA2(0, 2) = 1.

(2) Let B = KQB/IB, where QB has the form of

4

δ

��

α �� 2

β

��
3

λ
�� 1

and IB = 〈αβ, δλ〉. Then we have φB = [(2, 2), (2, 2)] and φB(2, 2) = 2.
(3) Let C = kQC/IC be a k-algebra with QC of the form

2
β2

���
��

��
��

1

β1

���������
3��

β3

and IC = 〈β1β2〉. Then we have
φC = [(2, 1), (1, 2)].

By the example (1) as above, we know that φA1 = φC .
(4) Let D = kQD/ID, QD be the quiver given by

2
β2

���
��

��
��

1

β1

���������
3

β3

��
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and ID1 = 〈β1β2〉, ID2 = 〈β1β2, β2β3〉 or ID3 = 〈β1β2, β2β3, β3β1〉 respectively. With a similar
argument as above, we have

φkQD/ID1
= [(1, 0), (2, 3)],

φkQD/ID2
= [(2, 0), (1, 3)],

and
φkQD/ID3

= [(3, 0), (0, 3)].

Due to the work of Avella-Alaminos and Geiss [6], we know that the combinatorial function
φ is a perfect invariant to differentiate derived equivalences between gentle algebras with at
most one cycle.

Proposition 2.6 Let A = kQ/I and B = kQ′/I ′ be two gentle algebras. If A and B are
derived equivalent, then φA = φB. Moreover, the converse is also ture if A and B are gentle
algebras with at most one cycle.

3 Derived Unique Algebras

In this section, we shall introduce the definition of derived unique algebras. Gentle algebras, as
an important class of algebras, provide some examples.

The definition of derived unique algebras was originally due to [11].

Definition 3.1 A k-algebra A is called derived unique if every k-algebra B derived equivalent
to A is already Morita equivalent to A.

Remark 3.2 Commutative algebras [13], local algebras [16], path algebras of n-Kronecker
quivers, preprojective algebras of Dynkin type [1] and of extended Dynkin type [10] are known
classes of derived unique algebras, which was also pointed out in [11].

Indeed, the 2-Kronecker algebras A = kQ with Q = 1 		

 2 , is a gentle algebra, whose
derived uniqueness can also be obtained by the function φ introduced in previous section.
Assume A′ = kQ′/I ′ is a gentle algebra such that Db(A′) 	 Db(A). Since the Grothendieck
group of gentle algebras a derived invariant, Q′ has two vertices. By the work of Avella-Alaminos
and Geiss [6], the number of arrows is also derived invariant, we know that Q′ has two arrows.
So if Q′ �= Q, then Q′ is one of the following form

Q′
1 = 2

α 		 1
β

�� Q′
2 =

��

��

�
2 �� 1 γ Q′

3 =
��

��

�
2 �� 1 δor�� ��

Then we can calculate the values of φ for all possible A′, i.e., A′
11 = kQ′

1/〈αβ〉, A′
12 =

kQ′
1/〈αβ, βα〉, A′

2 = kQ′
2/〈γ2〉 and A′

3 = kQ′
3/〈δ2〉. To be precise, the value φA = [(1, 1), (1, 1)],

and the values of these possible A′ are φA′
11

= [(1, 0), (1, 2)], φA′
12

= [(2, 0), (0, 2)], φA′
2

= φA′
3

=
[(2, 1), (0, 1)] respectively. By Proposition 2.6, 2-Kronecker algebra is derived unique.

Moreover, from the argument as above, we know that the algebras A′
2 and A′

3 are derived
equivalent by Proposition 2.6, and thus neither A′

2 or A′
3 is derived unique. In general, we have

the following example.

Example 3.3 Let A = kQ/I be an algebra with |Q0| > 2, where the quiver Q has a sink point
or a source point, then A is not derived unique since the APR-tilting module or APR-cotilting
module induces a derived equivalence, which is not a Morita equivalence.
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4 The Standard Forms of Gentle Algebras with at Most One Cycle

In this section, we mainly deduce a standard form of gentle algebras with at most one cycle just
using the combinatorial function φ. The strategy to achieve this is to introduce three elementary
transformations on the quiver and relation for gentle algebras with precisely one cycle, and then
observe the changes of value of combinatorial function φ under these transformations. Therefore,
we need to define a notion ΔφA,A′ to describe this change from a gentle algebra A to another
A′ as the following two steps.

Step 1 For a gentle algebra A = kQA/I with one cycle, one can calculate the combinatorial
function φA. Moreover, φA precisely consists of two pairs. The first step is just to fix a order
for the two pairs. Note that for any permitted thread H on the cycle of the A, it must be
a clockwise thread, or a trivial one, or an anticlockwise one. Our order is to put the pair
(a, b) obtained by Definition 2.3 with H0 = H in the first place if there exists such a clockwise
permitted thread H on the cycle; otherwise, there must be an anticlockwise permitted thread
H ′, then we put the pair (c, d) obtained by Definition 2.3 with H0 = H ′ in the second place.

Step 2 For two gentle algebras A and A′ with one cycle, the value of φ are

φA = [(a, b), (c, d)]

and
φA′ = [(a′, b′), (c′, d′)],

as in the first step. Now we define

φA′ + φA := [(a′ + a, b′ + b), (c′ + c, d′ + d)]

and
φA′ − φA := [(a′ − a, b′ − b), (c′ − c, d′ − d)],

where ΔφA,A′ := φA′ − φA is said to be the change of φ from the algebra A to A′. In addition,
for gentle algebras A1, · · · , An with one cycle,

ΔφA1,An
:= ΔφA1,A2 + ΔφA2,A3 + · · · + ΔφAn−1,An

=
n−1∑

k=1

ΔφAk,Ak−1 .

In particular, ΔφA,A = ΔφA,A′ +ΔφA′,A = [(0, 0), (0, 0)], which establishes the relation between
the change ΔφA,A′ of a transformation from A to A′ and the change ΔφA′,A of its inverse
transformation from A′ to A. As a direct consequence of Proposition 2.6, ΔφA,A′ = [(0, 0), (0, 0)]
implies that the algebras A and A′ are derived equivalent.

Now, we define three types of elementary transformations of gentle algebra with one cycle
A as follows:

Definition 4.1 Let A = kQ/I be a gentle algebra with precisely one cycle, where I = 〈S〉 is
generated by S. The elementary transformations of A is defined as follows.

Transformations of type I The transformations of type I are adding a relation of length
two to S or removing a relation from S, such that the algebra A′ we get is gentle.

Transformations of type II The transformations of type II are those diverting the direction
of an arrow α ∈ Q1 which satisfies αβ /∈ I, βα /∈ I for any β ∈ Q1, such that the new algebra
A′ is gentle.
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Transformations of type III The transformations of type III are those splitting a point i

where there is no relation into two points, say i′ and i′′, then adding an arrow to connect i′ and
i′′, such that the algebra A′ we obtain is gentle; or removing an arrow α ∈ Q1 which satisfies
αβ /∈ I, βα /∈ I for any β ∈ Q1, then identifying the starting point and endpoint of the arrow
such that the algebra A′ we get is gentle.

The following lemma is to observe the changes ΔφA,A′ from the algebra A to another A′

by applying the elementary transformations. Note that the adding-transformations of types I
and II can be seen as the inverse transformations of the according removing-transformations.
Then it suffices to describe the changes of the removing-transformations. Moreover, since the
elementary transformations of type III on one branch in the quiver are much more complicated,
we will deal with this case in Lemma 4.5.

Lemma 4.2 Let A = kQ/I be a gentle algebra with precisely one cycle, A′ = kQ′/I ′ be
another gentle algebra with one cycle obtained by elementary transformations on A.

(1) Transformations of type I

(i) (Remove a clockwise relation on the cycle) If A′ is obtained by removing a clockwise
relation on the cycle, then ΔφA,A′ = [(−1, 0), (+1, 0)].

(ii) (Remove an anticlockwise relation on the cycle) If A′ is obtained by removing an anti-
clockwise relation on the cycle, then ΔφA,A′ = [(+1, 0), (−1, 0)].

(iii) (Remove a relation on a branch) If A′ is obtained by removing a relation on a branch
in Q, then ΔφA,A′ = [(0, 0), (0, 0)]. In particular, Db(A) 	 Db(A′).

(2) Transformations of type II

(i) (Divert an arrow on the cycle) If A′ is obtained by diverting a clockwise arrow or an an-
ticlockwise arrow on the cycle, then ΔφA,A′ = [(+1, +1), (−1,−1)] or ΔφA,A′ = [(−1,−1), (+1,

+1)] respectively.

(ii) (Divert an arrow on a branch) If A′ is obtained by diverting an arrow on a branch, then
ΔφA,A′ = [(0, 0), (0, 0)].

(3) Transformations of type III

(i) (Remove a clockwise arrow on the cycle) If A′ is obtained by removing a clockwise arrow
on the cycle, then ΔφA,A′ = [(0, 0), (−1,−1)].

(ii) (Remove an anticlockwise arrow on the cycle) If A′ is obtained by removing an anti-
clockwise arrow on the cycle, then ΔφA,A′ = [(−1,−1), (0, 0)].

Proof The proof is to calculate φA, φA′ , and then the change ΔφA,A′ in all cases. We only
prove three typical cases: the statement (iii) of (1), the statement (ii) of (2) and the statements
(i) of (3).

First of all, we prove the statement (iii) of (1), by the definition of elementary transformation
of type I, a relation αβ ∈ S with the vertex t(α) = s(β) = j can be removed if and only if
#{γ ∈ Q1|s(γ) = j} = 1 and #{γ ∈ Q1|e(γ) = j} = 1. In this case, the permitted thread H

which satisfies e(H) = j and the permitted thread H ′ which satisfies s(H ′) = j are connected
to be a new permitted thread HH ′, and we get a trivial permitted thread εj . Obviously, both
the number of permitted threads and the total length of forbidden threads are invariant, then
the value of φ stays unchanged.
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For the proof of statement (ii) of (2), we observe first that all the permitted threads and
forbidden threads in a fixed branch should appear in exactly one pair in the algorithm of φA. If
we divert an arrow α : i → j on a branch of A, the permitted thread H of A which contains α is
divided to three parts in A′, the permitted thread H ′

1 such that e(H ′
1) = i, the forbidden thread

Π ′−1 such that s(Π ′−1) = i and e(Π ′) = j and the permitted thread H ′
2 such that s(H ′

2) = j

(it is possible that H ′
1 or H ′

2 is a trivial path). Moreover, the new arrow α′ : j → i should
connect two permitted threads of A which ends at j and starts at i respectively. Therefore,
the number of permitted threads is invariant. Note that the total length of forbidden threads
is invariant in this pair since the number of the arrows in this branch stays unchanged.

In what follows, we will show the statement (i) of (3). We assume that A = kQ/I with the
quiver Q is of the following form

r − 2
αr−1

r − 1
αr �� r

αr+1
r + 1

and the algebra A′ = kQ′/I is obtained by removing the clockwise arrow αr (in this case, the
arrow αr−1 : r − 2 → r − 1 is changed to αr−1 : r − 2 → r ). The following argument is divided
into four cases: (a) both αr−1 and αr+1 are clockwise arrows; (b) αr−1 is a clockwise arrow
but αr+1 is an anticlockwise arrow; (c) both αr−1 and αr+1 are anticlockwise arrows; (d) αr−1

is an anticlockwise arrow but αr+1 is a clockwise arrow.

For the case (a), we assume that the clockwise permitted thread H′
0 of A′ is · · ·αr−1αr+1 . . .,

and the clockwise permitted thread H0 = · · ·αr−1αrαr+1 · · · in A = kQ/I, then H′
i = Hi for

every i = 1, 2, . . ., and Π′
j = Πj for every j = 0, 1, 2, . . .. Thus, the first pair of ΔφA,A′ is (0, 0).

For the second pair, we assume Π′
0 is the anticlockwise forbidden thread αr+1 · · · in A′, and

the anticlockwise forbidden thread Π0 = αr+1 · · · in A. Then (Π′
0)

−1 of A′ is · · ·α−1
r+1, while

Π−1
0 = · · ·α−1

r+1 in A. To be precise, we have

(Π′
0)

−1 = · · ·α−1
r+1

H′
1 = εr (Π′

1)
−1 = α−1

r−1 · · ·
H′

2 = · · · · · ·

and for A,

Π−1
0 = · · ·α−1

r+1

H1 = εr Π−1
1 = α−1

r

H2 = εr−1 Π−1
2 = α−1

r−1 · · ·
H3 = · · · · · ·

The above comparison implies that H′
i = Hi+1 for i ≥ 2, and Π′

j = Πj+1 for any j ≥ 1. So the
second pair of ΔφA,A′ is (−1,−1). Therefore, ΔφA,A′ = [(0, 0), (−1,−1)]. The proof of case
(b), (c) and (d) is similar. �

Let m ≥ 0, n ≥ 0 be two integers and Ω(m, n, s, r) = kQ/I be the gentle algebra where Q
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is of the form

2
α2 �� 3

α3 �� · · ·
αs−2 �� s − 1

αs−1

���
��

��
��

�

(−m)
α−m �� · · ·

α−2 �� (−1)
α−1 �� 1

α1

����������
s



αs
��

��
��

��

0

α0

����������
n − 1��

αn−1
· · ·��

αn−2
s + 1��

αs+1

and I = 〈α0α1, α1α2, . . . , αr−1αr〉 (r ≤ s ≤ n), where we identify the index n with 0 as in
the cyclic group Z/nZ, see [8] for details. Note that the case r = s does only make sense
when s = n and the relation I = 〈α0α1, . . . , αn−2αn−1, αn−1α0〉. Moreover, φΩ(m,n,s,r) =
[(m + n − s + r, m + n − s), (s − r, s)].

The following theorem states that any gentle algebra A with at most one cycle is derived
equivalent to Ω(m, n, s, r) for some m ≥ 0, n ≥ 0 and r ≤ s ≤ n. For this reason, we call
Ω(m, n, s, r) is a derived standard form of A. Indeed, the derived classification of gentle algebras
at most one cycle is already known by [3, 5, 15], see also [6, Section 7], but our description
unifies their classification and we prove it totally by the combinatorial invariant φ.

Theorem 4.3 Let A = kQ/I be a gentle algebra with at most one cycle. Then there exist
m ≥ 0, n ≥ 0 and r ≤ s ≤ n, such that Db(A) 	 Db(Ω(m, n, s, r)). To be more precise,

(1) if Q is a tree, then Db(A) 	 Db(Ω(m, 0, 0, 0)) for some m > 0;
(2) if Q has precisely one cycle, then A is derived equivalent to either Ω(0, n, s, r) or

Ω(m, n, n, n).

Before the proof of the theorem, we need the following two lemmas.

Lemma 4.4 Let A = kQ/I be a gentle algebra with precisely one cycle. Then A is derived
equivalent to Ω(m, n, n, n) or an algebra of type Ãl for some integer l.

Proof If Q is already a cycle, then we are done. Now we assume that Q is a cycle with some
branches on it and φA = [(a, b), (c, d)]. Then there is an arrow α on a branch such that: s(α)
is a source point of A, or e(α) is a sink point of A. We only prove the former case, the latter
one can be deduced with a similar argument. If there exists a relation p = αβ, then we define
A′ = kQ′/I ′ where Q′

0 = Q0\{s(α)}, Q′
1 = Q1\{α} and I ′ = I\{αβ}; if there is no such

relation containing α, then we define A′ = kQ′/I. In fact, the algebra A′ can be viewed as
the gentle algebra obtained by removing α. We claim that φA′ is either [(a − 1, b − 1), (c, d)]
or [(a, b), (c − 1, d − 1)]. To be more precise, let H be the permitted thread in Definition 2.3
containing the arrow α, if moreover:

(1) H is a permitted thread in the calculation of the first pair (a, b), then φA′ = [(a− 1, b−
1), (c, d)];

(2) H is a permitted thread in the calculation of the second pair (c, d), then φA′ = [(a, b), (c−
1, d − 1)].

We only consider the case (1), and the proof of (2) is similar. When we remove the arrow
α of A, the trivial permitted thread εs(α) of A is deleted, so the number of permitted thread is
decreased by 1 in the calculation of the first pair. Obviously, the length of the forbidden thread
containing the arrow α is also decreased by 1. Therefore, both a and b are decreased by 1 for
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A′ in this case.

By the argument as above, we can remove all branches of A to get a new gentle algebra A′′,
whose quiver is a cycle, such that φA′′ = [(a − s, b − s), (c − t, d − t)] for some s, t ∈ N. Here,
s + t is the number of arrows on all branches.

Next we divide the proof of the lemma into two cases as follows.

If the cycle of A′′ is an oriented cycle and the composition of every two successive arrows
on the cycle is zero. Without loss of generality, we assume all arrows on the cycle of A′′ are
clockwise, i.e., A′′ = Ω(0, r, r, r). Then φA′′ = [(a− s, b− s), (c− t, d− t)] = [(r, 0), (0, r)], which
implies φA = [(a, b), (c, d)] = [(r + s, s), (t, r + t)]. Note that in this case, all the arrows on the
branches appear in the first pair in the algorithm of φA since the cycle is a 2-truncated cycle,
which implies t = 0. Set s = m and r = n. Then we have φA = [(m+n, m), (0, n)] = φΩ(m,n,n,n).
By the result from [6], Db(A) 	 Ω(m, n, n, n).

If the number of vertices on the cycle of A′′ is greater than the number of relations on the
cycle, then we can find a point i with no relations. Note that φA′′ = [(a− s, b− s), (c− t, d− t)]
for some s, t ∈ N. Then, by the transformations of type III, we can split this point i into
two points i′ and i′′, then adding s anticlockwise arrows and t clockwise arrows on the cycle.
By (i) and (ii) of (3) in Lemma 4.2, we get the algebra B of type Ãl for some l, such that
Db(B) 	 Db(A) since φB = [(a, b), (c, d)] = φA. �

The next lemma can be directly deduced from Lemma 4.2.

Lemma 4.5 Let A be a gentle algebra of type Ãn−1. Then there exists a gentle algebra
B = kQB/I with QB is of the following form

1
α2 �� ... αs−1 �� s − 1

αs

�����
��

��
�

0

α1

�����������

αn ����
��

��
��

� s

n − 1 αn−1
�� ...

αs+2
�� s + 1

αs+1



��������

and I = 〈α1α2, ..., αrαr+1〉, where 0 < s ≤ n, 0 ≤ r ≤ s and r = 0 means that B is hereditary,
such that Db(A) 	 Db(B). In this case, φA = [(n − s + r, n − s), (s − r, s)].

Proof Suppose that there are m clockwise arrows and m′ anticlockwise arrows in the quiver of
A (m+m′ = n). We assume that the number of clockwise relations and anticlockwise relations
of A are r+r′ and r′ without loss of generality, and we can obtain the gentle algebra A1 = kQ/I1

by removing r′ anticlockwise relations and r′ clockwise relations of A. Let φA = [(a, b), (c, d)].
By Lemma 4.2, we have ΔφA,A1 = [(0, 0), (0, 0)].

Now we divert the direction of all anticlockwise arrows by m′ transformations of type III,
we obtain the k-algebra A2 = kQ2/I2 where Q2 is a oriented cycle with n points, i.e., it has
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the form of
1

α2 �� · · ·
αm−1 �� m − 1

αm

����������

0

α1



��������
m

αm+1��								

n − 1

αn

����������
· · ·

αn−1
�� m + 1

αm+2
��

and I2 is an ideal generated by a set of clockwise relations of A. Moreover, by Lemma 4.2, we
have ΔφA1,A2 = [(−m′,−m′), (+m′, +m′)].

Note that the changes of φ of removing one clockwise relation or adding one clockwise
relation on the cycle is independent of the their position. So if we move the position of
a relation, then the value of φ is unchanged. Therefore, we can suppose that the I2 =
〈α1α2, α2α3, . . . , αrαr+1〉.

Next, we divert the direction of arrows αm+1, αm+2, . . . , αn−1 and αn be changed to an-
ticlockwise, and then we get the algebra A3 = kQ3/I3 where the quiver Q3 has the following
form

1
α2 �� · · ·

αm−1 �� m − 1

αm

����������

0

α1



��������
m��

αm+1								

n − 1
��

αn

��������
· · ·��

αn−1
m + 1��

αm+2

where I3 = 〈α1α2, α2α3, . . . , αrαr+1〉. By Lemma 4.2, we know the change of φ is ΔφA2,A3 =
[(+m′, +m′), (−m′,−m′)]. Now we obtain a gentle algebra A3 of required form by a series of
elementary transformations. Moreover, Db(A) 	 Db(A3) since

ΔφA,A3 = ΔφA,A1 + ΔφA1,A2 + ΔφA2,A3 = [(0, 0), (0, 0)]. �

Now we are ready to prove Theorem 4.3.
Proof (1) If A = kQ/I, where Q is a tree with m arrows, we claim that the φA is [(m+2, m)].
The method of this proof is similar to that of Lemma 4.4. Observe that there is an arrow α

such that s(α) is a source or e(α) is a sink.
We only discuss the case that s(α) is a source. If there is a relation αβ of length two, we

define A′ = kQ′/I ′ where Q′
0 = Q0\{s(α)}, Q′

1 = Q1\{α} and I ′ = I\{γ}. Otherwise, we
define A′ = kQ′/I. When we remove α, the trivial permitted thread εs(α) of A is deleted, and
both the number of the permitted threads and the length of the forbidden thread containing α

are decreased by 1, so φA′ = [(a−1, b−1)]. We can remove m−1 arrow α step by step, until we
get the algebra B = kQ where Q = 2 → 1. Then φB = [(3, 1)] = [(a−m + 1, b−m + 1)]. Thus
φA = [(m + 2, m)]. Therefore, Db(A) 	 Db(Ω(m, 0, 0, 0)) since φΩ(m,0,0,0) = [(m + 2, m)] = φA.

(2) For any gentle algebra A with one cycle, by Lemma 4.4, is derived equivalent to
Ω(m, n, n, n) or an algebra of type Ãl for some integer l. Then we have the statement as
required by Lemma 4.5. �
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5 The Proof of Our Main Theorem

Throughout this section, we denote by Q(n, s) the quiver and by I(n, s, r) the ideal of the gentle
algebra Ω(0, n, s, r) respectively for our convenience.

Theorem 5.1 Let A = kQ/I be a nonsimple gentle algebra with at most one cycle. Then A

is derived unique if and only if it is one of following cases:
(1) A is hereditary algebra of type A2;
(2) A = Ω(0, 2, 1, 0), i.e., A is the 2-Kronecker algebra;
(3) A = Ω(0, n, n, r), r = n− 1, or n, that is, the quiver Q of A is an oriented cycle with n

arrows, I is generated by m path of length two and m = n − 1 or n.

Proof We assume that n = |Q0|. Since the Grothendieck group is a derived invariant, the
number of vertices preserves under derived equivalences and we classify the derived unique
algebras according to n = |Q0|. We observe first that the nonsimple gentle algebra with n = 1
must be Ω(0, 1, 1, 1), which is derived unique obviously.

(1) For the case of n = 2, we should note that the hereditary of type A2 is derived unique

obviously. Then the quiver Q of A must be Q(2, 1) = 1 		

 2 or Q(2, 2) = 1
α

��
2

β

�� .

If Q = Q(2, 2), then I is either I(2, 2, 1) = 〈αβ〉 or I(2, 2, 2) = 〈αβ, βα〉 since A is finite-
dimensional. Note that both Ω(0, 2, 2, 1) = Q(2, 2)/I(2, 2, 1) and Ω(0, 2, 2, 2) = Q(2, 2)/I(2, 2, 2)
are derived unique by Proposition 2.6. If Q = Q(2, 1), then A = kQ = kQ(2, 1) is 2-Kronecker
algebra, which is also derived unique.

(2) Now we consider the case of n ≥ 3. If A is derived unique, then Q must be of type
Ãn−1 by Example 3.3. Moreover, we can assume that A = Ω(0, n, s, r) by Theorem 4.3. For
A = Ω(0, n, s, r) where 1 ≤ s < n, n ≥ 3, that is, the quiver Q is a cycle but not oriented,
we claim that A is not derived unique. Indeed, if r ≥ 1, by the transformation of type III, we
can remove an anticlockwise arrow on the cycle and add another arrow α : (−1) → 1 to obtain
another gentle algebra Ω(1, n − 1, s, r). Obviously, Db(A) 	 Db(Ω(1, n − 1, s, r)) by the proof
of Lemma 4.4. If r = 0, A = Ω(0, n, s, 0) is a hereditary algebra with at least 3 vertices. We
can consider the algebra A′ which is obtained by adding an arrow β : (−1) → 0 and a relation
βα0, Lemma 4.4 implies that ΔφA,A′ = [(+1, +1), (0, 0)]. Then by removing the clockwise
arrow α2, we obtain a gentle algebra A′′ such that ΔφA′,A′′ = [(−1,−1), (0, 0)] by Lemma 4.2.
Therefore, ΔφA,A′′ = ΔφA,A′ + ΔφA′,A′′ = [(0, 0), (0, 0)], which implies that Db(A) 	 Db(A′′).
So it suffices to prove that A = Ω(0, n, n, r) with 1 ≤ r ≤ n is derived unique if and only if
r = n − 1 or n.

For the sufficiency, we only prove the case r = n−1 and the proof of the derived uniqueness
of Ω(0, n, n, n) is similar. Let X be a gentle algebra such that Db(X) 	 Db(Ω(0, n, n, 1)). We
can suppose that X = Ω(m, n−m, s, r) by Theorem 4.3, then φX = [(n−s+r, n−s), (s−r, s)],
then

φX = [(n − s + r, n − s), (s − r, s)] = [(n − 1, 0), (1, n)] = φA.

Thus (n − s + r, n − s) = (n − 1, 0); (s − r, s) = (1, n) by the order we fix, which implies that
s = n and r = n − 1. Then X = Ω(m, n − m, n, 1). Moreover, by n = s ≤ n − m and m ≥ 0,
we have m = 0 and X = Ω(0, n, n, n− 1) = A. Therefore, Ω(0, n, n, n − 1) is derived unique.
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Conversely, we claim that A is not derived unique if 1 < r < n−1 (which forces that n > 3),
since Ω(0, n, n, r) = kQ(n, n)/〈α0α1, . . . , αr−2αr−1, αr−1αr〉 is derived equivalent to the algebra
A′ = kQ(n, n)/〈α0α1, . . . , αr−2αr−1, αrαr+1〉. Indeed, the algebra A′ can be obtained from A

by moving the last relation αr−1αr one step anticlockwise, which can be viewed as taking
removing and adding transformations of type I successively. By statement (1) of Lemma 4.2,
we have ΔφA,A′ = 0. Thus A is not derived unique. �
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