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Let A be a finite-dimensional algebra over an algebraically closed field. We prove 
that A is of strongly derived unbounded type (see Definition 1.1) if and only if there 
exists an integer m such that Cm(projA), the category of all minimal projective 
A-module complexes with degree concentrated in [0, m], is of strongly unbounded 
type, which is also equivalent to the statement that the repetitive algebra Â is 
of strongly unbounded representation type. As a corollary, we can establish the 
Finite–Strongly unbounded dichotomy on the representation type of Cm(projA), 
and also the Discrete–Strongly unbounded dichotomy on the representation type of 
homotopy category Kb(projA) and the repetitive algebra Â.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

Throughout this article, k is an algebraically closed field and all the algebras are associative finite-
dimensional connected basic k-algebras with identity. In representation theory of algebras, one of the main 
topics is to study their representation type. As early as 1940s, Brauer and Thrall began the investigation of 
representation type of finite-dimensional algebras [9,25]. Jans formulated the first and second Brauer–Thrall 
conjectures in his paper [20]. Roughly speaking, the first Brauer–Thrall conjecture says that an algebra is 
of bounded representation type if and only if it is of finite representation type, whereas the second Brauer–
Thrall conjecture states that the algebras of unbounded representation type are of strongly unbounded 
representation type. Here, we say an algebra is of strongly unbounded representation type if there are in-
finitely many d ∈ N such that for each d, there exist infinitely many isomorphism classes of indecomposable
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modules of dimension d. The study of the Brauer–Thrall conjectures stimulated the development of repre-
sentation theory of algebras to a large extent [3,4,21,23,24].

In recent years, the bounded derived categories of algebras have been studied widely since Happel’s 
work [17]. By a celebrated theorem from [17], there is a full embedding from the bounded derived cate-
gory of a finite-dimensional algebra to the stable module category of its repetitive algebra, which is an 
equivalence if and only if its global dimension is finite. The theorem connects the bounded derived cate-
gory and the module category, and hence provides a method to explore the property of bounded derived 
category of algebras by studying their repetitive algebra, for example the derived representation type of 
algebras [11,15]. Moreover, Vossieck established his definitive work on the classification and distribution of 
indecomposable objects in the bounded derived category of an algebra in terms of its repetitive algebra. 
He introduced and classified derived discrete algebras, and proved that an algebra is derived discrete if and 
only if its repetitive algebra is of discrete representation type [26, Theorem]. Motivated by Vossieck’s work, 
Han and the author introduced the cohomological range of a bounded complex, which leads to the concept 
of strongly derived unbounded algebras naturally [16, Definition 5]. We say an algebra is of strongly derived 
unbounded type if there are infinitely many r ∈ N such that for each r, there exist infinitely many isomor-
phism classes of indecomposable objects of cohomological range r in its bounded derived category. Han and 
the author also proved the dichotomy theorem on the representation type of bounded derived category, 
i.e., a finite-dimensional algebra is either derived discrete or of strongly derived unbounded type, but not 
both [16, Theorem 2]. The main purpose of this paper is to characterize the strongly derived unbounded 
algebras using the representation type of their repetitive algebras, which in turn provides a proof of the 
Discrete–Strongly unbounded dichotomy of the repetitive algebras combined with Han and the author’s 
theorem.

During the research on the bounded derived category Db(A) of an algebra A, another category turns out 
to be very crucial, that is Cm(projA), the category of all minimal complexes of finite-dimensional projective 
modules with degree concentrated in [0, m] for any fixed integer m ≥ 0. Bautista generalized the definition 
of derived discreteness for the Artin algebras over commutative Artin rings and characterized the derived 
discrete algebras in terms of generic objects in the category Cm(projA) (Ref. [5]). In the context of the 
representation type, Bautista introduced the finite, tame and wild representation type for Cm(projA), and 
then established the Tame–Wild dichotomy theorem of Cm(projA). Moreover, the description that, A is 
derived discrete if and only if Cm(projA) is of finite representation type for all m, is obtained [6]. In present 
paper, we define the strongly unboundedness of the category Cm(projA) for any fixed integer m in a natural 
way, and describe the algebras of strongly derived unbounded type as those such that the associated category 
Cm(projA) is of strongly unbounded type for some m. The characterization provides us a bridge to connect 
the strongly unboundedness of bounded derived category Db(A) and the repetitive algebra Â. Indeed, we 
prove the following main theorem.

Theorem. Let A be a finite-dimensional algebra. Then the following statements are equivalent:

(1) A is strongly derived unbounded;
(2) There exists an integer m ≥ 1, such that the category Cm(projA) is of strongly unbounded type;
(3) Kb(projA) is of strongly unbounded type;
(4) The repetitive algebra Â is of strongly unbounded representation type.

By the dichotomy theorem for bounded derived category mentioned above, a finite-dimensional algebra 
A is derived discrete or of strongly derived unbounded type [16, Theorem 2]. Combined with the equivalent 
characterizations of derived discrete algebras with representation type of Cm(projA) [6], the homotopy 
category Kb(projA) and repetitive algebra Â [26], we obtain the dichotomy on the representation type of 
Cm(projA), Kb(projA) and Â as follows.
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Corollary. Let A be a finite-dimensional algebra. Then we have

(1) Cm(projA) is either of finite representation type for any m, or of strongly unbounded type for all but 
finitely many m;

(2) Kb(projA) is either discrete or of strongly unbounded type;
(3) The repetitive algebra Â is either of discrete representation type or of strongly unbounded representation 

type.

The present paper is organized as follows. In the first section, we define the strongly unboundedness 
of Cm(projA) and prove some basic lemmas. In Section 2, we observe the strongly unboundedness of 
Cm(projA) under the derived equivalences and cleaving functors. Moreover, we study the strong unbound-
edness of Cm(projA) for representation-infinite algebras, simply connected algebras and finally prove the 
main theorem.

1. The strongly unboundedness of Cm(projA)

1.1. Notations and definitions

Let A be a finite-dimensional algebra, and modA be the category of all finite-dimensional right A-modules 
and projA be its full subcategory consisting of all projective right A-modules. Assume C(A) is the category 
of all complexes of finite-dimensional right A-modules. Denote by Cb(A) and C−,b(A) its full subcategories 
consisting of all bounded complexes and right bounded complexes with bounded cohomology respectively, 
by Cb(projA) and C−,b(projA) the full subcategories of Cb(A) and C−,b(A) respectively consisting of all 
complexes of projective modules. Moreover, K(A), Kb(projA) and K−,b(projA) are the homotopy categories 
of C(A), Cb(projA) and C−,b(projA) respectively, and Db(A) is the bounded derived category of modA

with [1] the shift functor.
From [16], for any complex X• ∈ Db(A), the cohomological length is

hl(X•) := max{dimHi(X•) | i ∈ Z},

the cohomological width of X• is

hw(X•) := max{j − i + 1 | Hi(X•) �= 0 �= Hj(X•)},

and the cohomological range of X• is defined as

hr(X•) := hl(X•) · hw(X•).

Note that these numerical invariants preserve under shifts and isomorphisms. Moreover, the dimension of 
an A-module M is equal to the cohomological range of the stalk complex with M in degree 0.

Definition 1.1. (See [16, Definition 5].) An algebra A is said to be of strongly derived unbounded type or 
strongly derived unbounded if there is a strictly increasing sequence {ri | i ∈ N} ⊆ N such that for each ri, 
up to shifts and isomorphisms, there are infinitely many indecomposable objects in Db(A) of cohomological 
range ri.

Recall that a complex X• = (Xi, di) ∈ Cb(A) is said to be minimal if Im di ⊆ radXi+1 for all i ∈ Z, and 
the width of X• is

w(X•) := max{j − i + 1 | Xj �= 0 �= Xi}.



C. Zhang / Journal of Pure and Applied Algebra 220 (2016) 1462–1474 1465
For any integer m ≥ 1, Cm(projA) is the subcategory of Cb(projA) consisting of all minimal complexes 
P • = (P i, di) such that P i = 0 for any i /∈ {0, 1, · · · , m}. Following [5,6], for P • ∈ Cm(projA), the dimension
of P • is

dim(P •) =
m∑
i=0

dimP i.

Now we shall define the strongly unboundedness of Cm(projA).

Definition 1.2. Let A be a finite-dimensional algebra and m ≥ 1 be an integer. The category Cm(projA)
is said to be strongly unbounded or of strongly unbounded type if there is a strictly increasing sequence 
{di | i ∈ N} ⊆ N such that for each di, up to isomorphisms, there are infinitely many indecomposable 
objects in Cm(projA) of dimension di.

Remark 1.3. For any algebra A and fixed m ≥ 1, there is a full embedding from the category Cm(projA)
to Cm+1(projA), thus the strongly unboundedness of Cm(projA) implies the strongly unboundedness of 
Cm+1(projA). In particular, the statement that Cm(projA) is strongly unbounded for some m is equivalent 
to that Cm(projA) is of strongly unbounded type for all but finitely many m.

To study the strongly derived unboundedness of Cm(projA), we need two lemmas as follows.

Lemma 1.4. (See [5, Lemma 2.2].) Let A be a finite-dimensional algebra with dimA = d, and P • ∈
Cm(projA) such that hl(P •) = c. Then for any i ∈ [0, m],

dimP i ≤ c(d + d2 + · · · + dm−i+1).

Proof. Since P • = (P i, di) is a minimal complex, i.e., Im di ⊆ radP i+1, then for any i ∈ [0, m],

dimP i ≤ dimA · dim(P i/ radP i)

≤ dimA · dim(P i/ Im di−1)

= dimA ·
(
dim(P i/Ker di) + dim(Ker di/ Im di−1)

)
= dimA ·

(
dim Im di + dimHi(P •)

)
≤ dimA ·

(
dimP i+1 + dimHi(P •)

)
≤ d ·

(
dimP i+1 + c

)
.

Thus we can get the inequality as required recursively. �
Lemma 1.5. Let A be a finite-dimensional algebra and m ≥ 0 be an integer. Suppose P •, Q• are two objects 
in Cm(projA). Then

(1) P • is indecomposable in Cm(projA) if and only if P • is indecomposable as an object in Db(A).
(2) P • ∼= Q• in Cm(projA) if and only if P • ∼= Q• in Db(A).

Proof. (1) Since Db(A) � K−,b(projA), which is Krull–Schmidt, the complex P • is indecomposable in 
Db(A) if and only if it is an indecomposable complex in Kb(projA), and if and only if its endomorphism 
algebra EndK(A)(P •) is a local algebra. Moreover, the minimality of complex P • implies that all null 
homotopic cochain maps in EndC(A)(P •) are in rad EndC(A)(P •). Thus
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EndK(A)(P •)/ radEndK(A)(P •) ∼= EndC(A)(P •)/ radEndC(A)(P •),

which implies P • is indecomposable in Kb(projA) if and only if P • is indecomposable in Cm(projA).
(2) If P • ∼= Q• in Cm(projA), then they are isomorphic in Db(A). Conversely, suppose P • ∼= Q• in Db(A)

and there is a quasi-isomorphism f• : P • → Q•. Then we have a triangle in K(A) of form

P • f•
−−→ Q• → L• → P •[1]

such that L• is an acyclic complex. Applying HomK(A)(Q•, −) to the triangle, we have HomK(A)(Q•, P •) ∼=
HomK(A)(Q•, Q•) induced by f• since HomK(A)(Q•, L•[n]) = 0 for any n ∈ Z, which implies f• is a split 
epimorphism in K(A). Note that P • and Q• are quasi-isomorphic. Then f• is a chain homotopy equivalence, 
i.e., there is a morphism g• such that 1 − g•f• and 1 − f•g• are null homotopic. Since P •, Q• are minimal, 
1 − g•f• and 1 − f•g• are nilpotent. Thus f• and g• are split monomorphisms in Cm(projA). Therefore, 
P • ∼= Q• in Cm(projA). �

The following lemma implies the strongly unboundedness of Cm(projA) can be also defined in terms of 
the cohomological range.

Lemma 1.6. Let A be a finite-dimensional algebra and m ≥ 1 be an integer. The category Cm(projA) is 
strongly unbounded if and only if there is an increasing sequence {ri | i ∈ N} ⊆ N such that for each ri, there 
are infinitely many indecomposable objects in Cm(projA) of cohomological range ri up to isomorphisms.

Proof. We suppose that there exist an increasing sequence {ri | i ∈ N} ⊆ N and pairwise non-isomorphic 
objects {P •

ij | i, j ∈ N} in Cm(projA) such that hr(P •
ij) = ri. Note that for any object P • ∈ Cm(projA), 

hr(P •) ≤ (m + 1) · dim(P •). Moreover by Lemma 1.4, dim(P •) ≤ hr(P •) · (m + 1) · (d + d2 + · · · + dm+1). 
Set N = (m + 1) · (d + d2 + · · · + dm+1), then for any i, j ∈ N, we have

1
m + 1 · hr(P •

ij) ≤ dim(P •
ij) ≤ N · hr(P •

ij).

In order to show that Cm(projA) is of strongly unbounded type, we shall find inductively an increasing 
sequence {di | i ∈ N} ⊆ N and infinitely many indecomposable objects {Q•

ij ∈ Cm(projA) | i, j ∈ N} which 
are pairwise different up to isomorphisms such that dim(Q•

ij) = di for all j ∈ N. For i = 1, 0 < dim(P •
1j) ≤

Nr1. Then there is 0 < d1 ≤ Nr1 and infinitely many indecomposable objects {Q•
1j | j ∈ N} ⊆ {P •

1j | j ∈ N}
of dimension d1. Assume that we have found di. We choose some rl with rl > (m + 1) · di. Since

di <
1

m + 1 · rl = 1
m + 1 · hr(X•

lj) ≤ dim(P •
lj) ≤ N · hr(X•

lj) = N · rl,

we can choose di < di+1 ≤ N ·rl and infinitely many indecomposable objects {Q•
i+1,j | j ∈ N} ⊆ {P •

lj | j ∈ N}
which are pairwise non-isomorphic such that dim(Q•

i+1,j) = di+1 for all j ∈ N.
Conversely, if Cm(projA) is of strongly unbounded, then we can construct an increasing sequence {ri |

i ∈ N} ⊆ N and pairwise non-isomorphic objects {Q•
ij | i, j ∈ N} such that hr(Q•

ij) = ri in a similar way by 
the inequality

1
N

· dim(P •) ≤ hr(P •) ≤ (m + 1) · dim(P •),

for any P • ∈ Cm(projA). �
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2. The proof of Theorem

2.1. Simply connected algebras

Simply connected algebras play an important role in the representation theory of algebras since any 
representation-finite algebra can be transformed to a simply connected algebra using covering technique. 
We first recall the definition of simply connected algebras from [2]. Fix a connected quiver (Q, I, s, t)
with I admissible. For any α ∈ Q1, we write its formal inverse α−1 with source s(α−1) = t(α) and target 
t(α−1) = s(α). A walk in Q is a path w = w1w2 · · ·wn with wi ∈ Q1 or w−1

i ∈ Q1 such that s(wi+1) = t(wi). 
A relation r =

∑m
i=1 tiui ∈ I (m ≥ 1) with ui pairwise distinct and ti ∈ k \ {0} is called minimal if 

r =
∑

i∈S tiui /∈ I for any non-empty proper subset S ⊂ {1, 2, · · · , m}. The homotopy relation is the 
smallest equivalence relation ∼I on the set of walks such that

(1) αα−1 ∼I ex and α−1α ∼I ey for any x α−→ y;
(2) u1 ∼I u2 for any minimal relation t1u1 + t2u2 + · · · + tmum;
(3) u ∼I v implies uw ∼I vw and wu ∼I wv for any w.

The fundamental group Π1(Q, I, x0) of (Q, I) is defined to be the group consisting of homotopy classes of 
walks from x0 to x0 for any vertex x0 ∈ Q0 [12]. Note that the definition is independent of the choice of x0, 
and we write Π1(Q, I) for short. A triangular algebra A is said to be simply connected if for any presentation 
A ∼= kQ/I, the fundamental group Π1(Q, I) is trivial.

The following lemma implies that for a representation-infinite algebra A, the category C1(projA) is of 
strongly unbounded type.

Lemma 2.1. If A is a representation-infinite algebra, then C1(projA) is of strongly unbounded type.

Proof. If A is representation-infinite, then A is of strongly representation unbounded type by Nazarova–
Roiter’s theorem on the typical Brauer–Thrall conjecture II [21], i.e., there exist an infinite sequence 
{di | i ∈ N} ⊆ N and infinitely many indecomposable A-modules {Mij | i, j ∈ N} which are pairwise 
different up to isomorphisms such that dim(Mij) = di for all j ∈ N. For any Mij , we can take a minimal 
presentation P−1 d−→ P 0 → Mij → 0. Let

P •
ij = · · · → 0 → P−1 d−→ P 0 → 0 → · · ·

with P−1 in degree 0. Then P •
ij ∈ C1(projA) is indecomposable by [16, Proposition 2] with dimH1(P •

ij) = di. 
Moreover, P •

ij are non-isomorphic for different i, j ∈ N. Since P •
ij is a minimal presentation of Mij , dimP−1 ≤

(dimA)2 · di and we have

di ≤ hr(P •
ij) ≤ 2 · (dimA)2 · di.

With the similar argument in the proof of Lemma 1.6, we can construct a sequence {ri | i ∈ N} ⊆ N and 
pairwise non-isomorphic objects {Q•

ij | i, j ∈ N} such that hr(Q•
ij) = ri. Thus C1(projA) is of strongly 

unbounded type by Lemma 1.6. �
The following lemma observes the strongly unboundedness of Cm(projA) under the derived equivalences.

Proposition 2.2. Let A be a finite-dimensional algebra with Cm(projA) strongly unbounded for some m and 
gl.dimA < ∞. If there is an algebra B derived equivalent to A, then Cm′(projB) is of strongly unbounded 
type for some m′.
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Proof. Assume that Cm(projA) is strongly unbounded, then there exist an increasing sequence {ri | i ∈
N} ⊆ N and pairwise non-isomorphic objects {P •

ij | i, j ∈ N} in Cm(projA) such that hr(P •
ij) = ri

by Lemma 1.6. Moreover, since A and B are derived equivalent, there is a two-sided tilting complex in 
Db(Aop ⊗B)

AT
•
B = 0 → T−l → T−l+1 → · · · → T−1 → T 0 → 0,

such that F = − ⊗L
A T •

B : Db(A) → Db(B) is an equivalence [22]. Note that gl.dimA < ∞ implies 
gl.dimB < ∞ [17, Chapter III, Lemma 1.5]. If gl.dimB = n, then there is a minimal projective B-B-bimodule 
resolution of B [18, Lemma 1.5]

R• = 0 −→ R−n d−n−−−→ R−n+1 d−n+1−−−−−→ · · · −→ R−1 d−1−−−→ R0 −→ 0.

Then for any i, j ∈ N, F (P •
ij) = P •

ij ⊗L
A T •

B
∼= P •

ij ⊗L
A T • ⊗L

B R•
B, which is a projective B-module complex of 

width less than m + l + n. Thus, without loss of generality, we can assume F (P •
ij) ∈ Cm+l+n(projB) with 

suitable shifts and isomorphisms for any i, j ∈ N. By [16, Proposition 1(3)], we have two integers N , N ′, 
such that

1
N ′ · hr(P •

ij) ≤ hr(F (P •
ij)) ≤ N · hr(P •

ij).

With a similar discussion as the proof of Lemma 1.6, we shall find inductively an increasing sequence 
{r′s | s ∈ N} and infinitely many indecomposable pairwise non-isomorphic objects {Q•

st ∈ Cm+l+n(projB) |
s, t ∈ N} ⊆ {F (P •

ij) | i, j ∈ N} such that hr(Q•
st) = r′s. Thus the lemma follows by Lemma 1.6. �

Corollary 2.3. Let A be a simply connected algebra. If A is strongly derived unbounded, then there exists an 
integer m such that Cm(projA) is of strongly unbounded type.

Proof. By the proof of [16, Lemma 2], any simply connected algebra is tilting equivalent to a hereditary 
algebra of Dynkin type or a representation-infinite algebra. If A is strongly derived unbounded, then A is 
tilting equivalent to a representation-infinite algebra. Since simply connected algebras are triangular algebras 
and then of finite global dimension, by the previous proposition and Lemma 2.1, Cm(projA) is of strongly 
unbounded type for some integer m. �
2.2. Cleaving functors and the strongly unboundedness of Cm(projA)

In the context of cleaving functors, bound quiver algebras are viewed as bounded categories, see [14] for 
details. In the rest of this paper, we will replace bound quiver algebras by bounded categories.

A k-linear category A is a category together with k-vector space structure on the set A(x, y) of all 
morphisms from x ∈ A to y ∈ A such that the composition of morphisms is bilinear. We say a k-linear 
category A is a locally bounded category if

(1) different objects in A are non-isomorphic;
(2) for any a ∈ A, the endomorphism algebra A(a, a) is local;
(3) dimk

∑
x∈A A(a, x) < ∞ and dimk

∑
x∈A A(x, a) < ∞ for all a ∈ A.

A locally bounded category is a bounded category if it has only finitely many objects. Note that a bound 
quiver algebra A = kQ/I with I admissible can be viewed as a bounded category by seeing the vertexes 
i ∈ Q0 as objects and the combinations of paths in kQ/I as morphisms. Conversely, a bounded category A
admits a presentation A ∼= kQA/IA with QA finite and IA admissible.
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Let A be a locally bounded category. A right A-module M is just a covariant k-linear functor from A to the 
category of k-vector spaces. Denote by ModA the category of all right A-modules M with dimM(a) < ∞
for any a ∈ A. For any M ∈ ModA, the dimension vector of M is dimM := (dimM(a))a∈A, and the support
of M is SuppM := {a ∈ A | M(a) �= 0}. Denote by modA the full subcategory of ModA consisting of all 
A-modules M such that SuppM is finite. The dimension of M ∈ modA is dimM :=

∑
a∈A dimk M(a). 

The indecomposable projective A-modules are Pa = A(a, −) and indecomposable injective A-modules are 
Ia = DA(−, a) for all a ∈ A, where D = Homk(−, k). Moreover, all the concepts and notations defined for 
a bound quiver algebra make sense for a bounded category.

To a k-linear functor F : B → A between bounded categories, we associate a restriction functor F∗ :
modA → modB, which is given by F∗(M) = M ◦ F and exact. The restriction functor F∗ admits a left 
adjoint functor F ∗, called the extension functor, which sends a projective B-module B(b, −) to a projective 
A-module A(Fb, −). If gl.dimB < ∞ then F∗ extends naturally to a derived functor F∗ : Db(A) → Db(B), 
which has a left adjoint LF ∗ : Db(B) → Db(A). Note that LF ∗ is the left derived functor associated with 
F ∗ and maps Kb(projB) into Kb(projA). We refer to [27] for the definition of derived functors.

A k-linear functor F : B → A between bounded categories with gl.dimB < ∞ is called a cleaving functor
[7,26] if it satisfies the following equivalent conditions:

(1) The linear map B(b, b′) → A(Fb, Fb′) associated with F admits a natural retraction for all b, b′ ∈ B;
(2) The adjunction morphism φM : M → (F∗ ◦ F ∗)(M) admits a natural retraction for all M ∈ modB;
(3) The adjunction morphism ΦX• : X• → (F∗ ◦LF ∗)(X•) admits a natural retraction for all X• ∈ Db(B).

Proposition 2.4. Let B be a bounded category of finite global dimension and Cm(projB) be of strongly 
unbounded type for some m. If there is a cleaving functor F : B → A, then Cm(projA) is of strongly 
unbounded type.

Proof. Suppose there exist an increasing sequence {ri | i ∈ N} ⊆ N and pairwise non-isomorphic objects 
{P •

ij | i, j ∈ N} in Cm(projB) such that hr(P •
ij) = ri. Since F is a cleaving functor, LF ∗(P •

ij) = F ∗(P •
ij)

for any i, j ∈ N, which is projective A-module complex of width less than m by the definition of F ∗. Then, 
with suitable isomorphisms, we can assume LF ∗(P •

ij) lies in Cm(projA). Moreover, for any i, j ∈ N, P •
ij is a 

direct summand of (F∗◦LF ∗)(P •
ij). Thus for any P •

ij , we can choose an indecomposable direct summand Q•
ij

of LF ∗(P •
ij), such that P •

ij is a direct summand of F∗(Q•
ij). Note that for any i ∈ N, the set {Q•

ij | j ∈ N}
contains infinitely many elements which are pairwise non-isomorphic since the set {P •

ij | j ∈ N} contains 
infinitely many pairwise non-isomorphic elements. Moreover, by the proof of [16, Proposition 5(1)], there 
exist two integers N , N ′, such that for any i, j ∈ N, we have the inequality 1

N ′ ·hr(P •
ij) ≤ hr(Q•

ij) ≤ N ·hr(P •
ij). 

Here we give the proof for the convenience of readers.
On one hand, for any a ∈ A, we have

Hm(LF ∗(P •
ij))(a) ∼= HomDb(A)(LF ∗(P •

ij), Ia[m])
∼= HomDb(B)(P •

ij , F∗(Ia)[m])
∼= Hm(RHomB(P •

ij , F∗(Ia))).

Since gl.dimB < ∞, F∗(Ia) admits a minimal injective resolution

0 → F∗(Ia) → E0
a → E1

a → · · · → Era
a → 0,

and there is a bounded converging spectral sequence

ExtpB(H−q(P •
ij), F∗(Ia)) ⇒ Hp+q(RHomB(P •

ij , F∗(Ia))),
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thus hw(Q•
ij) ≤ hw(LF ∗(P •

ij)) ≤ hw(P •
ij) + gl.dimB, and

dimHm(Q•
ij) =

∑
a∈A

dimHm(Q•
ij)(a)

≤
∑
a∈A

dimHm(LF ∗(P •
ij))(a)

=
∑
a∈A

dimHm(RHomB(P •
ij , F∗(Ia)))

≤
∑
a∈A

∑
p+q=m

dim ExtpB(H−q(P •
ij), F∗(Ia))

≤
∑
a∈A

ra∑
p=0

dimHp−m(P •
ij) · dimEp

a

≤
∑
a∈A

hl(P •
ij) · (ra + 1) · max

0≤p≤ra
{dimEp

a}

≤ n0(A) · hl(P •
ij) · (gl.dimB + 1) · max

a∈A, 0≤p≤ra
{dimEp

a},

where n0(A) denotes the number of objects in A.
Set N0 = n0(A) · (gl.dimB + 1) · max

a∈A, 0≤p≤ra
{dimEp

a}. Then

hr(Q•
ij) = hw(Q•

ij) · hl(Q•
ij)

≤ (hw(P •
ij) + gl.dimB) ·N0 · hl(P •

ij)

≤ N0 · (gl.dimB + 1) · hr(P •
ij).

On the other hand, assume that the indecomposable projective B-module Pb = B(b, −) for all b ∈ B and 
indecomposable projective A-module Qa = A(a, −) for a ∈ A. Then

dimHm(P •
ij) ≤ dimHm(F∗(Q•

ij))

=
∑
b∈B

dim HomDb(B)(Pb, F∗(Q•
ij)[m])

=
∑
b∈B

dim HomDb(A)(LF ∗(Pb), Q•
ij [m])

=
∑
b∈B

dim HomDb(A)(F ∗(Pb), Q•
ij [m])

=
∑
b∈B

dim HomDb(A)(QF (b), Q
•
ij [m])

≤ n0(B) ·
∑
a∈A

dim HomDb(A)(Qa, Q
•
ij [m])

≤ n0(B) · dimHm(Q•
ij),

where n0(B) denotes the number of objects in B. Thus hl(P •
ij) ≤ n0(B) · hl(Q•

ij), hw(P •
ij) ≤ hw(Q•

ij), and 
hr(Q•

ij) ≥ 1
n0(B) · hr(P •

ij).
Consequently, with a similar discussion as in the proof of Lemma 1.6, Cm(projA) is of strongly unbounded 

type. �
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2.3. The proof of the main theorem

Let A be a bounded category. Recall that the repetitive category Â of A has the pairs (a, i) as objects, 
where a ∈ A and i ∈ Z, while the morphisms from (a, i) to (b, i) and (b, i + 1) are determined by A(a, b)
and A(b, a) respectively, and zero else [19]. Note that Â is self-injective locally bounded category. Moreover, 
there is a full embedding F : Db(A) → mod Â of triangulated categories [17].

Recall from [26], A is said to be derived discrete if for any d ∈ N, there are only finitely many indecom-
posables in Db(A) with cohomological range d. Moreover, Kb(projA) is discrete if for any d ∈ N, there are 
only finitely many indecomposables in Kb(projA) of cohomological range d.

Definition 2.5. A locally bounded category B is said to be of discrete representation type if for any d ∈ N
|B|, 

there are only finitely many indecomposable objects M ∈ modB with dimM = d. Moreover, we say B is 
of strongly unbounded representation type if there are infinitely many d ∈ N

|B| such that for each d, there 
are infinitely many indecomposables in modB with dimension vector d.

The following lemma is the classification theorem of derived discrete algebras due to Vossieck [26, Theo-
rem].

Lemma 2.6. Let A be a bounded category. Then the following statements are equivalent:

(1) Â is of discrete representation type;
(2) A is derived discrete;
(3) Kb(projA) is discrete;
(4) A is piecewise hereditary of Dynkin type or admits a presentation kQ/I with Q one-cycle gentle quiver 

such that the numbers of clockwise and of counterclockwise paths of length two which belongs to I are 
different.

Definition 2.7. Let A be a bounded category. The category Kb(projA) is said to be of strongly unbounded 
type if there is an increasing sequence {ri | i ∈ N} ⊆ N such that for each ri, up to shifts and isomorphisms, 
there are infinitely many indecomposable objects in Kb(projA) of cohomological range ri.

Now we can prove the main theorem.

Theorem 2.8. Let A be a bounded category. Then the following statements are equivalent:

(1) A is strongly derived unbounded;
(2) There exists an integer m ≥ 1, such that the category Cm(projA) is of strongly unbounded type;
(3) Kb(projA) is of strongly unbounded type;
(4) Â is of strongly unbounded representation type.

Proof. (1) ⇒ (2): We assume for any integer m > 0, Cm(projA) is not of strongly unbounded type. Then 
A is representation-finite by Lemma 2.1. Thus for any object a ∈ A, we have A(a, a) is a uniserial local 
algebra, and thus A(a, a) ∼= k or A(a, a) ∼= k[x]/(xl) with l ≥ 2. Moreover, we will exclude the possibility 
that A(a, a) ∼= k[x]/(xl), l ≥ 3. Indeed, we consider the functor F : Al

3l → A given by F (i) = a and 
F (αi) = x, where Al

3l is the bounded category defined by the quiver

3l α3l−1−−−−→ 3l − 1 α3l−2−−−−→ · · · α2−−→ 2 α1−−→ 1,
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and the admissible ideal generated by all paths of length l. Note that F is a cleaving functor. If l ≥ 3, then we 
assume w1 = α3l−1, w2 = α3l−2 · · ·α2l, w3 = α2l−1 · · ·αl+1, w4 = αl · · ·α2, w5 = α1, w′

1 = α3l−1 · · ·α2l+1, 
w′

2 = α2l, w′
3 = w3, w′

4 = αl, and w′
5 = αl−1 · · ·α1. By the construction in [16, Lemma 4], there exists a 

family of complexes {P •
λ,d | λ ∈ k, d ≥ 1} in Db(Al

3l), where

P •
λ,d := 0 −→ P d

1
δ0−−→ P d

l ⊕ P d
2

δ1−−→ P d
l+1 ⊕ P d

l+1
δ2−−→ P d

2l ⊕ P d
2l

δ3−−→ P d
2l+1 ⊕ P d

3l−1
δ4−−→ P d

3l −→ 0

with the differential maps

δ0 :=
(

P (w′
5)Id

P (w5)Jλ,d

)
, δi :=

(
P (w′

5−i)Id 0
0 P (w5−i)Id

)
, for i = 1, 2, 3,

and δ4 := (P (w′
1)Id, P (w1)Id). Here Jλ,d denotes the d × d Jordan block with eigenvalue λ ∈ k, and the 

map P (u) from Pt(u) to Ps(u) is the left multiplication by the path u. It is straightforward to check that 
{P •

λ,d | λ ∈ k, d ≥ 1} are pairwise non-isomorphic indecomposables, and dimP •
λ,d = dimP •

λ′,d′ if and only 
if d = d′. Then C5(projAl

3l) is strongly unbounded, and thus C5(projA) is of strongly unbounded type by 
Proposition 2.4, which is a contradiction. Therefore, for any a ∈ A, A(a, a) ∼= k or A(a, a) ∼= k[x]/(x2). By 
[7, Section 9], A is standard since A contains no Riedtmann contours.

If A is simply connected, then A is not strongly unbounded by Corollary 2.3. Assume A is not simply 
connected, then there is a Galois covering π : Ã → A with non-trivial free Galois group G and Ã simply 
connected [10,13]. Now we consider any finite full convex subcategory B of Ã. Then B is also simply 
connected. Since the composition of the embedding i : B ↪→ Ã and π is cleaving functor, B is not strongly 
derived unbounded by Corollary 2.3. Thus B is piecewise hereditary of Dynkin type [16, Lemma 2]. Then 
B is piecewise hereditary of type A with the same argument as that in the proof of [26, Lemma 4.4] and Ã
admits a presentation given by a gentle quiver (Q, I) (Ref. [1, Theorem]), and so does A. By Bekkert and 
Merklen’s classification on the indecomposable objects in the derived category of a gentle algebra [8], if A
contains a generalized band w then we can construct a family of pairwise non-isomorphic indecomposables 
P •
w,f for f = (x − λ)d ∈ k[x] in Cm(projA) for some integer m, such that P •

w,f and P •
w,f ′ have the same 

dimension if and only if deg(f) = deg(f ′), where λ ∈ k \ {0} and d > 0. Then Cm(projA) is of strongly 
unbounded type, which is a contradiction to the assumption. Thus A contains no generalized bands and 
then A is derived discrete by [8, Theorem 4]. It contradicts to the strongly derived unboundedness of A and 
hence Cm(projA) is of strongly unbounded type for some m > 0.

(2) ⇒ (3): Suppose that there exists an integer m ≥ 1, such that Cm(projA) is of strongly unbounded 
type. Then by Lemma 1.6, there exist an increasing sequence {ri | i ∈ N} ⊆ N and pairwise non-isomorphic 
objects {P •

ij | i, j ∈ N} in Cm(projA) such that hr(P •
ij) = ri. Since the elements in {P •

ij | i, j ∈ N}, seen as 
objects in Kb(projA), are also pairwise non-isomorphic indecomposables, Kb(projA) is strongly unbounded.

(3) ⇒ (1): Trivial.
(2) ⇒ (4): If Cm(projA) is of strongly unbounded type, then there exist an increasing sequence {ri | i ∈

N} ⊆ N and pairwise non-isomorphic complexes {P •
ij | i, j ∈ N} in Cm(projA) such that hr(P •

ij) = ri by 
Lemma 1.6. Note that {P •

ij | i, j ∈ N} are pairwise non-isomorphic indecomposables viewed as objects in 
Db(A) by Lemma 1.5. Assume {Sa | a ∈ A} and {Sh | h ∈ Â} are the sets of all simple A-modules and 
Â-modules respectively.

Now we consider the full embedding F : Db(A) → mod Â. Note that P •
ij is generated by the cohomologies 

via triangles and the cohomologies can be also obtained by triangles with the simples. Since F sends a triangle 
in Db(A) to a triangle in mod Â, by the additivity of dimension functor dim(−) in mod Â, we have the 
following estimate for any i, j ∈ N (see also [26])
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dimF (P •
ij) ≤

∑
a∈A

m∑
l=0

dimH l(P •
ij)(a) · dimF (Sa[l]) ≤ hr(P •

ij) ·
∑
a∈A

m∑
l=0

dimF (Sa[l]).

Set d =
∑

a∈A

∑m
l=0 dimF (Sa[l]). Then dimF (P •

ij) ≤ ri · d.
On the other hand, for any i, j ∈ N, we have

hr(P •
ij) ≤ hw(P •

ij) ·
∑
l∈Z

dimH l(P •
ij) ≤ (m + 1) ·

m∑
l=0

dim HomDb(A)(A[−l], P •
ij)

= (m + 1) ·
m∑
l=0

dim HomÂ(F (A[−l]), F (P •
ij))

≤ (m + 1) ·
m∑
l=0

∑
h∈Â

ch(F (A[−l])) dim HomÂ(Sh, F (P •
ij))

≤ (m + 1) ·
m∑
l=0

∑
h∈Â

ch(F (A[−l])) dim HomÂ(Ph, F (P •
ij))

≤ (m + 1) ·
m∑
l=0

∑
h∈Â

ch(F (A[−l])) dimF (P •
ij)(h),

where ch(F (A[−l])) denotes the number of composition factors of F (A[−l]) isomorphic to Sh, and Ph is the 
indecomposable projective Â-module associated with h ∈ Â. Set c = sup{ch(F (A[−l])) | 0 ≤ l ≤ m, h ∈ Â}. 
Then for any i, j ∈ N, hr(P •

ij) ≤ c · (m + 1)2 · dimF (P •
ij).

To prove Â is of strongly unbounded representation type, we shall find inductively infinitely many vectors 
{di | i ∈ N} and infinitely many indecomposable objects {M•

ij ∈ mod Â | i, j ∈ N} which are pairwise 
different up to isomorphisms such that dimM•

ij = di for all j ∈ N. For i = 1, we have 0 < dimF (P •
1j) ≤ r1·d. 

Then there exist d1 ∈ N
|Â| with 0 < d1 ≤ r1 ·d and infinitely many indecomposable objects {M1j | j ∈ N} ⊆

{F (P •
1j) | j ∈ N} of dimension vector d1. Assume that we have done for i. Set di =

∑
j∈Z

(di)j . Then we can 
choose rl with rl > c(m + 1)2 · di, and thus di < 1

c(m+1)2 · hr(P •
lj) ≤ dim(F (P •

lj)). Since dimF (P •
lj) ≤ rl · d, 

we can choose a vector di+1, which is different from {ds | s = 1, 2, · · · , i}, such that di+1 ≤ rl · d, and 
infinitely many pairwise non-isomorphism indecomposable objects {Mi+1,j | j ∈ N} ⊆ {F (P •

lj) | j ∈ N}
with dimMi+1,j = di+1 for all j ∈ N.

(4) ⇒ (1): If A is not strongly derived unbounded, then by [16, Theorem 2], A is derived discrete. Thus 
Â is representation discrete by Lemma 2.6, which is a contradiction with the assumption. �

Recall that for an algebra A and a fixed integer m, the category Cm(projA) is said to be of finite 
representation type if Cm(projA) contains only finitely many indecomposables up to isomorphisms [6]. As 
a corollary of the previous theorem, we obtain the dichotomy on the representation type of Cm(projA), 
Kb(projA) and also the repetitive algebra Â.

Corollary 2.9. Let A be a finite-dimensional algebra. Then we have

(1) Cm(projA) is either of finite representation type for any m, or of strongly unbounded type for all but 
finitely many m;

(2) Kb(projA) is either discrete or of strongly unbounded type;
(3) The repetitive algebra Â is either of discrete representation type or of strongly unbounded representation 

type.
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Proof. By [6, Theorem 2.4(1)], A is derived discrete if and only if Cm(projA) is of finite representation type 
for any m. Moreover, A is strongly derived unbounded if and only if Cm(projA) is of strongly unbounded 
type for some integer m ≥ 1 by the previous theorem, which is also equivalent to that Cm(projA) is of 
strongly unbounded type for almost all m. Since any algebra A is either derived discrete or strongly derived 
unbounded by [16, Theorem 2], the statement (1) follows. Similarly, the statements (2) and (3) hold by 
Lemma 2.6 and the previous theorem. �
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