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Let A be a finite-dimensional k-algebra. In this paper, we mainly study the representation
type of subcategories of the bounded derived category Db(A). First, we define the repre-
sentation type and some homological invariants including cohomological length, width,
range for subcategories. In this framework, we provide a characterization for derived
discrete algebras. Moreover, for a finite-dimensional algebra A, we establish the first
Brauer–Thrall type theorem of certain contravariantly finite subcategories C of Db(A),
that is, C is of finite type if and only if its cohomological range is finite.

Keywords: Cohomological range; derived discrete algebras; contravariantly finite subcat-
gories.

Mathematics Subject Classification 2010: 16E05, 16E10, 16G20, 18E30

1. Introduction

Throughout this paper, k is an algebraically closed field, all algebras are con-
nected basic finite-dimensional associative k-algebras with identity, and all modules
are finite-dimensional right modules. The bounded derived categories of finite-
dimensional algebras have been studied widely since Happel [9]. Derived represen-
tation type, including the classification and distribution of indecomposable objects
in the bounded derived category, is still an important theme in representation the-
ory of algebras. Vossieck defined the derived discrete algebras using the cohomol-
ogy dimension vector of objects in the bounded derived category and classified
the derived discrete algebras: piecewise hereditary algebras of Dynkin type and
a special class of gentle algebras, in his paper [12]. In [13], the cohomological
range of a bounded complex is introduced, which leads to the concepts of derived
bounded algebras and strongly derived unbounded algebras naturally. Moreover,
Brauer–Thrall type theorems for derived categories are established, in which the
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cohomological range of complexes plays a similar role as the dimension of modules
in the classical Brauer–Thrall theorems. The first Brauer–Thrall theorem for the
derived category states that the finiteness of the global cohomological range of an
algebra implies the derived finiteness of this algebra, while the second one says that
any algebra is either derived discrete or strongly derived unbounded.

Certain subcategories of the bounded derived category, for instance, the
bounded homotopy category of projective modules, play an important role in the
research of finite dimensional algebras. The representation type of these subcate-
gories of derived category is an interesting theme. In this paper, we mainly study the
representation type of the subcategories of the bounded derived category. We define
the subcategories of finite and discrete type. Then we provide a characterization of
derived discrete algebras by the dimension of the Hom-spaces between indecompos-
ables in the bounded derived category. Moreover, we obtain an alternative defini-
tion of the cohomological width for subcategories closed under gluing and cutting of
objects, i.e. subcategories whose objects closed under taking projective resolutions
and certain permissible brutal truncations, see Sec. 3 for the precise definition.
Finally, we consider what kind of conditions ensure that the first Brauer–Thrall
type theorem for subcategories of the bounded derived category holds. By using
the method of Auslander’s classical proof for the first Brauer–Thrall conjecture
for module categories, we establish the first Brauer–Thrall type theorem for those
cohomology-homogeneous contravariantly finite subcategories C closed under glu-
ing and cutting of objects, that is, C is of finite type if and only if its cohomological
range is finite. The theorem can be regarded as a generalization of [13, Theorem 1].

The paper is organized as follows: in Sec. 2, we introduce the definition of coho-
mological invariants and representation type of subcategories, and then characterize
the discreteness of the bounded derived category itself. In Sec. 3, we prove that the
width equals the cohomological width plus one for subcategories closed under gluing
and cutting of objects. The last section of this paper proves the first Brauer–Thrall
type theorem for those contravariantly finite and cohomology-homogeneous subcat-
egories closed under gluing and cutting of objects.

2. Some Definitions for Subcategories

Let A be a finite-dimensional algebra, and modA be the category of all finite-
dimensional right A-modules and projA be the full subcategory of modA consisting
of all projective right A-modules. Assume C(A) is the category of all complexes
of finite-dimensional right A-modules. Denote by Cb(A) and C−,b(A) its full sub-
categories consisting of all bounded complexes and right bounded complexes with
bounded cohomology respectively, by Cb(projA) and C−,b(projA) the full subcat-
egories of Cb(A) and C−,b(A) respectively consisting of all complexes of projective
modules. Moreover, K(A), Kb(projA) and K−,b(projA) are the homotopy cate-
gories of C(A), Cb(projA) and C−,b(projA) respectively, and Db(A) is the bounded
derived category of modA with [1] the shift functor.
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In [13], for any complex X• ∈ Db(A), the cohomological length is defined to be

hl(X•) := max{dimHi(X•) | i ∈ Z},

the cohomological width of X• is

hw(X•) := max{j − i + 1 |Hi(X•) �= 0 �= Hj(X•)},

and the cohomological range of X• is defined as

hr(X•) := hl(X•) · hw(X•).

Note that these numerical invariants are preserved under shifts and isomorphism.
Thanks to the well-known equivalence Db(A) � K−,b(projA), we always view any
subcategory of Db(A) as a subcategory of K−,b(projA). Moreover, throughout this
paper, by a subcategory of K−,b(projA) we always mean a full subcategory closed
under isomorphisms and summands.

Definition 2.1. Let C be a subcategory of K−,b(projA). Then

(1) the cohomological length of C is

hl(C) := sup{hl(X•) |X• ∈ C is indecomposable};

(2) the cohomological width of C is

hw(C) := sup{hw(X•) |X• ∈ C is indecomposable};

(3) the cohomological range of C is

hr(C) := sup{hr(X•) |X• ∈ C is indecomposable}.

If the subcategory C does only contain the zero object then we set hl(C) =
hw(C) = hr(C) = 0. and we formally define the cohomological length, width and
range to be ∞ if the corresponding supremum does not exist. Moreover, it is obvious
that if we take C = K−,b(projA) then the definitions of these invariants are exactly
the global cohomological length, width, range of A originally introduced in [13]
respectively.

Now we define the representation type of the subcategories of K−,b(projA).

Definition 2.2. Let C be a subcategory of K−,b(projA). Then

(1) we say C is of finite type if there are only finitely many indecomposables in C
up to isomorphism and shifts;

(2) we say C is of discrete type if for any integer r, there are only finitely many
indecomposable objects in C with cohomological range r up to isomorphism
and shifts.

Recall that in [12], an algebra A is said to be derived discrete if for any
d = (di)i∈Z ∈ N

Z, there are only finitely many indecomposables in Db(A) with
cohomology dimension vector d.
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Lemma 2.3. Suppose that A is a finite-dimensional k-algebra. Then K−,b(projA)
is of discrete type if and only if A is derived discrete.

Proof. If K−,b(projA) is of discrete type, then A is derived discrete obviously.
For the other part, it is suffice to notice that for any r ∈ N, only finitely many
cohomology dimension vectors d take the value r as the cohomological range up to
shifts.

The following proposition characterizes finite-dimensional derived discrete alge-
bras in terms of the dimension of Hom-spaces between indecomposables in the
derived category. However, this is not true in general for derived-discrete abelian
categories and the reference [8] gives an explicit example.

Theorem 2.4. Let A be a finite-dimensional k-algebra. Then the following asser-
tions are equivalent :

(1) hl(K−,b(projA)) < ∞;
(2) K−,b(projA) is of discrete type;
(3) dim HomDb(A)(X•, Y •) ≤ 6 for any indecomposables X•, Y • ∈ Db(A);
(4) dim HomDb(A)(X•, Y •) ≤ l for any indecomposable objects X•, Y • ∈ Db(A)

and some integer l ≥ 6.

Moreover, hw(K−,b(projA)) < ∞ if and only if A is a piecewise hereditary algebra;
hr(K−,b(projA)) < ∞ if and only if A is piecewise hereditary of Dynkin type.

Proof. The equivalence of (1) and (2) follows from [13, Proposition 6].
(2) ⇒ (3): Since A is derived discrete, A is either piecewise hereditary of Dynkin

type or derived equivalent to Db(Λ(r, n, m)) by Bobiński–Geiss–Skowroński’s clas-
sification of derived discrete algebras [6, Theorem A], where Λ(r, n, m) (n ≥ r ≥ 1,
m ≥ 0) is given by the quiver

1
α1 �� · · ·

αn−r−2�� n − r − 1

αn−r−1

�����������

(−m)
α−m �� · · ·

α−2 �� (−1)
α−1 �� 0

α0

�����������
n − r

αn−r
�����������

n − 1

αn−1

����������
· · ·

αn−2
�� n − r + 1

αn−r+1
��

with the relations αn−1α0, αn−2αn−1, . . . , αn−rαn−r+1.
Let F : Db(A) → Db(B) be an equivalence as triangulated categories, then for

any indecomposables X•, Y • in Db(A),

dimHomDb(A)(X
•, Y •) = dimHomDb(B)(FX•, FY •).

If B =Λ(r, n, m) for some r, m, n, then by [7, Theorem 6.1], dimHomDb(A)

(X•, Y •) = dimHomDb(B)(FX•, FY •) ≤ 2. If B = kQ for a Dynkin quiver Q,
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then we have HomDb(A)(X•, Y •) ∼= HomDb(kQ)(FX•, FY •), where FX•, FY • are
indecomposable stalk complexes. By [1, Chap. 4, Corollaries 2.14, 2.15], for any
kQ-modules N and non-projective kQ-module M , we have

HomkQ(M, N) ∼= HomkQ(τM, τN),

Ext1kQ(N, M) ∼= DHomkQ(M, τN) ∼= DHomkQ(τM, τ2N).

So without loss of generality, we can assume that M is an indecomposable projective
kQ-module Pi. Then the dimension of the Hom-spaces or Ext-spaces is the ith
component of the dimension vectors of some indecomposable kQ-module. Since Q

is of Dynkin type, dimHomDb(A)(X•, Y •) = dimHomDb(B)(FX•, FY •) ≤ 6.
(3) ⇒ (4): It is clear.
(4) ⇒ (1): Take X• to be an indecomposable projective stalk complex Pi[j],

then for any indecomposable Y • in Db(A), we have dimHj(Y •) ≤ nl, where n is
the number of simple A-modules. It follows that hl(K−,b(projA)) ≤ nl < ∞.

The rest of statement was originally proved in [13].

3. Homological Invariants of Subcategories

In this section, we will study the homological invariants of subcategories introduced
in the above section. Throughout this paper, we assume that all the complexes
(P •, d•) are minimal unless stated otherwise, that is, Imdi ⊆ radP i+1 for any i.

The following result due to [13, Proposition 2] sets up the connection between
the indecomposable objects in Kb(projA) and those in K−,b(projA).

Proposition 3.1. Let P • ∈ K−,b(projA) be a complex and −n := min{i ∈
Z |Hi(P •) �= 0}. Then P • is indecomposable if and only if so is the brutal truncation
σ≥j(P •) ∈ Kb(projA) for some (equivalently, all) j < −n.

To be precise, the above proposition provides two natural methods as follows to
construct indecomposable objects from known ones:

(1) (Gluing) If Q• ∈ Kb(projA) is a indecomposable complex of the form

Q• = 0 −→ Q−n δ−n

−→ Q−n+1 δ−n+1

−→ · · · δ−2

−→ Q−1 δ−1

−→ Q0 −→ 0

with H−n(Q•) = Kerδ−n �= 0. We take a minimal projective resolution of Kerδ−n,
say

Q′• = · · · −→ Q−n−2 δ−n−2

−→ Q−n−1 −→ 0.

Gluing Q′• and Q• together, we get a minimal complex

Q′′• = · · · −→ Q−n−2 δ−n−2

−→ Q−n−1 δ−n−1

−→ Q−n δ−n

−→ · · · δ−1

−→ Q0 −→ 0,

where δ−n−1 is the composition Q−n−1 � Kerδ−n ↪→ Q−n. Then by Proposi-
tion 3.1, Q′′• is indecomposable.
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(2) (Cutting) If P • ∈ K−,b(projA) is a minimal indecomposable complex of the
form

P • = · · · −→ P−n−2 d−n−2

−→ P−n−1 d−n−1

−→ P−n d−n

−→ · · · d−1

−→ P 0 −→ 0,

where Hi(P •) = 0 for i < −n. Then the brutal truncation

σ≥j(P •) = 0 −→ P j dj

−→ · · · d−1

−→ P 0 −→ 0

is indecomposable for j < −n.

Definition 3.2. Let P • be a minimal indecomposable complex in K−,b(projA). If
another indecomposable complex Q• can be obtained from P • via the two methods
above, then we say Q• is generated from P • via gluing and cutting.

Moreover, let C ⊆ K−,b(projA) be a subcategory, we say C is closed under
gluing and cutting of objects if for any indecomposable object P • in C, the objects
generated from P • via gluing and cutting also lie in C.

Proposition 3.3. Let C be a subcategory of K−,b(projA) closed under gluing and
cutting of objects. Then

(1) for any indecomposable complex P • ∈ C such that P−n−1 = 0 and H−n(P •) �= 0,

we have

hw(C) > pdH−n(P •).

(2) hw (C) ≥ sup{pdM |M is an indecomposable module in C}.

Proof. Note that P • is of the form

0 −→ P−n d−n

−→ · · · −→ P−1 d−1

−→ P 0 −→ 0

with H−n(P •) �= 0. We assume the pdH−n(P •) = m, by gluing a minimal resolu-
tion of H−n(P •) to P •, we get an indecomposable object Q• ∈ C of the form

0 −→ P−n−m−1 −→ · · · −→ P−n−1 d−n−1

−→ P−n d−n

−→ · · · −→ P−1 d−1

−→ P 0 −→ 0.

Then σ≥−n−mQ• is also indecomposable in C with H−n−m(σ≥−n−mQ•) �= 0 �=
H0(σ≥−n−mQ•), so its cohomological width is n +m +1. The first assertion
follows. The second one follows by a similar argument on the brutal truncations of
the minimal resolution of M .

Definition 3.4. Let P • ∈ K−,b(projA) be a minimal complex. We define its width

width(P •) :=

{
max{j − i + 1 |P i �= 0 �= P j}, if P • ∈ Kb(projA);

∞, if P • /∈ Kb(projA).

Moreover, for any subcategory C ⊆ K−,b(projA), we define the width of C to be

width(C) = sup{width(P •) |P • is indecomposable in C}.
The following proposition implies that for those full subcategories closed under

gluing and cutting of objects, the width equals the cohomological width plus one,
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though the width and the cohomological width of any complex P • have no evident
relation except width(P •) ≥ hw(P •).

Proposition 3.5. Let C be a full subcategories of K−,b(projA) closed under gluing
and cutting of objects. If hw(C) < ∞, then width(C) = hw(C) + 1.

Proof. To prove the statement, it suffices to show width(C) ≥ hw(C) + 1 and
width(C) ≤ hw(C) + 1.

First, we prove width(C) ≥ hw(C)+ 1. It is enough to prove that for any
indecomposable object P • ∈ C with hw(P •) = n, there is an indecomposable
object Q• ∈ C such that width(Q•) ≥ n + 1. It is clear that width(P •) ≥ n. If
width(P •) ≥ n + 1, then Q• = P • is the complex as required. If width(P •) = n,
then P • is of the form

0 −→ P−n+1 d−n+1

−→ · · · −→ P−1 d−1

−→ P 0 −→ 0

such that H−n+1(P •) = Kerd−n+1 �= 0 and H0(P •) �= 0. Now by gluing the
minimal resolution of Kerd−n+1, we can construct an indecomposable object Q• ∈ C
with width(Q•) ≥ n + 1, since C is closed under gluing on objects.

Next, we will show width(C) ≤ hw(C) + 1. If there is an indecomposable
object P • ∈ K−,b(projA)\Kb(projA), then width(C) = ∞. By Proposition 3.1,
the complex σ≥−jP

• is indecomposable object in C for any j >> 0. Then we have
hw(C) = ∞ since hw(σ≥−jP

•) = j + 1. Now it is sufficient to show that for any
minimal indecomposable complex P • ∈ Kb(projA) with width(P •) = n+1, there is
a minimal indecomposable complex Q• ∈ Kb(projA) such that hw(Q•) ≥ n. Note
that H0(P •) �= 0 since P • is minimal. If either H−n(P •) or H−n+1(P •) is nonzero,
then Q• = P • is the complex as required. We assume H−n(P •) = H−n+1(P •) = 0.
By Proposition 3.1, σ≥−n+1(P •) is indecomposable with cohomological width
n. Thus the assertion follows since C is closed under gluing and cutting of
objects.

Remark 3.6. By the proof of previous proposition, if C is a subcategory of
K−,b(projA) closed under gluing and cutting of objects with hw(C) = n, then

(1) C ⊆ Kb(projA);
(2) there is an indecomposable complex P • in C with width(P •) = n + 1 and

hw(P •) = n.

The following corollary is a direct consequence of the previous proposition,
which implies that the cohomological width of Hom-complexes between the inde-
composables in the subcategory are controlled by the cohomological width of this
subcategory.

Corollary 3.7. If C is a subcategory of K−,b(projA) closed under gluing and cut-
ting of objects, then hw(C) < ∞ if and only if width(C) < ∞. Moreover, if hw(C) =
n, then for any objects X•, Y • ∈ C, we have hw(Hom•

A(X•, Y •[i])) ≤ 2n + 1.
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Proof. The first part is clear. For the second one, it is known that

HiHom•
A(X•, Y •) ∼= HomDb(A)(X

•, Y •[i]).

Moreover, by the assumption, the widths of X• and Y • are not larger than n + 1.
The corollary follows.

4. The First Brauer–Thrall Type Theorem for Subcategories

Recall that from [13], the first Brauer–Thrall type theorem for the bounded derived
category is that hr(K−,b(projA)) < ∞ if and only if K−,b(projA) is of finite type.
In this section, we try to explore the conditions to ensure the truth of first Brauer–
Thrall type theorem for subcategories, i.e. hr(C) < ∞ if and only if C is of finite
type.

Definition 4.1. Let X• be a complex in C−,b(A). Then we define the dimension
of X• is

dimX• =
∑
i∈Z

dimX i.

If a complex P • in Kb(projA) satisfies P i �= 0 if and only if n ≤ i ≤ m, then
we say P • lies in the interval [n, m]. Similarly if P • satisfies Hi(P •) �= 0 if and
only if n ≤ i ≤ m then we say the cohomology of P • lies in the interval [n, m]. The
following lemma implies that the dimension of the minimal complex of fixed width
can be controlled by the cohomological length.

Lemma 4.2 (see [4, Lemma 2.2]). Let P • be a complex in Kb(projA) lies in
the interval [0, m] with hl(P •) = c, and dimA = d. Then for any 0 ≤ i ≤ m,

dimP i ≤ c(d + d2 + · · · + dm−i+1).

Proof. Since P • = (P i, di) is a minimal complex, i.e. Imdi ⊆ radP i+1, then for
any i ∈ [0, m],

dimP i ≤ dimA · dim(P i/radP i)

≤ dimA · dim(P i/Imdi−1)

= dimA ·
(
dim(P i/Kerdi) + dim(Kerdi/Imdi−1)

)
= dimA ·

(
dimImdi + dimHi(P •)

)
≤ dimA ·

(
dimP i+1 + dimHi(P •)

)
≤ d ·

(
dimP i+1 + c

)
.

Thus we can get the inequality as required recursively.

Proposition 4.3. Let C be a full subcategories of K−,b(projA) closed under gluing
and cutting of objects. If hr(C) = n < ∞, then there is an integer f(n), such that
dimP • < f(n) for any indecomposable object P • ∈ C.
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Proof. By assumption that hr(C) = n, we know hw(C) ≤ n and thus width(C) ≤
n + 1, see Proposition 3.5. Since hl(C) ≤ n, by the previous lemma, the dimension
of the indecomposable objects in C have a common bound, and the proposition
follows.

We need the following classical lemma, see [3, Corollary VI. 1.3] for the proof,
which is also valid since Cb(A) is also a length category.

Lemma 4.4 (Harada-Sai). Let A be a finite-dimensional algebra and l be an inte-
ger. Then the composition of X•

1 → X•
2 → X•

3 → · · · → X•
2l of non-isomorphisms

between indecomposable objects in Cb(A) of dimension at most l is zero.

Recall that a subcategory C of K−,b(projA) is contravariantly finite if any object
X• ∈ K−,b(projA) admits a right C-approximation, that is, a map fX• : C• → X•

with C• ∈ C such that any morphism C′• → X• in K−,b(projA) with C′• ∈ C
factors through fX• . We define the orbit with respect to the shift functor of X• ∈ C
to be

OX• = {X•[i] ∈ C | i ∈ Z}.

The subcategory C is said to be cohomologically homogeneous if there are two inte-
gers s, t such that for any X• ∈ C, we can find an object X•[i] ∈ OX• , whose
maximal degree of nonzero cohomology lies in the interval [s, t].

Now we are ready to prove the following theorem. The idea of the proof is essen-
tially due to Auslander’s classical argument on the first Brauer–Thrall conjecture,
see [2, 3, 11].

Theorem 4.5. Let A be a finite-dimensional algebra, and C be a contravariantly
finite and cohomologically homogeneous subcategory closed under gluing and cutting
of objects. Then hr(C) < ∞ if and only if C is of finite type.

Proof. If C is of finite type then hr(C) < ∞ obviously.
Now we prove hr(C) < ∞ implies that C is of finite type. The strategy of the

proof is to construct finitely many indecomposable objects {P •
i ∈ C | i ∈ I} with I

a finite set, such that any indecomposable object P • in C satisfies P •[j] ∼= P •
i for

some P •[j] ∈ OP• and i ∈ I.
Since C is cohomologically homogeneous, there is a finite interval [s, t] such

that any P • ∈ C admits a shift P •[j] ∈ C, whose maximal degree of nonzero
cohomology, say m, lies in [s, t]. Then we can choose a simple A-module S, for
example, a direct summand of the top of Hm(P •), such that f : P •[j] → S[m]
is nonzero. We take a right C-approximation of C•

1 → S[m] and then f is the
composition P •[j] → C•

1 → S[m]. Thus we can take an indecomposable direct
summand P •

1 of C•
1 such that P •[j]

g→ P •
1 → S[m] is nonzero. If g is an isomorphism

then stop. Otherwise, since [9, Sec. 4.5], any object in C ⊆ Kb(projA) admits a
right almost split map, and then we can take a right almost split map Q•

1 → P •
1 .

Compose it with a right C-approximation C•
2 → Q•

1 with C•
2 ∈ C and then g is the

2050032-9



April 20, 2019 11:3 WSPC/S0219-4988 171-JAA 2050032

C. Zhang

composition P •[j] → C•
2 → P •

1 . Take an indecomposable direct summand P •
2 of

C•
2 such that the composition P •[j] h→ P •

2 → P •
1 is nonzero. If h is an isomorphism

then stop. Otherwise, we repeat the argument as above and then obtain a sequence
of indecomposable objects in C

P •
r → · · · → P •

2 → P •
1

with nonzero composition. Since hr(C) = n < ∞, the dimension of the indecom-
posable objects has a common bound f(n) by Proposition 4.3. Moreover, by the
Harada-Sai lemma, the composition of 2f(n) non-invertible maps in Cb(A) is zero
and so is in Kb(projA). Therefore, the above argument stops in finitely many steps,
i.e. P •[j] is isomorphic to some P •

i .
Next, it suffices to show that there are only finitely many indecomposable

objects P •
i possibly appearing in these sequences. Indeed, we start from the simple

A-modules with only finitely many shifts S[m] with s ≤ m ≤ t, and these P •
i ’s in

the sequences are indecomposable direct summands of the C-approximations within
at most 2f(n) steps, which are only finitely many clearly.

Example 4.6. Let A be a finite-dimensional algebra of finite global dimension, S =
{P •

1 , P •
2 , . . . , P •

n} be a finite set of indecomposable objects in Kb(projA), and CS be
the full subcategory determined by S. The closure with respect to gluing and cut-
ting of objects C of CS , that is, the minimal full subcategory closed under gluing and
cutting of objects, consists of only finitely many indecomposable objects. Indeed,
the objects in C generated by the ones in S by taking the projective resolutions,
and then taking certain brutal truncations. Then C is contravariantly finite since
for any object X• ∈ Db(A), a natural C-approximation is the direct sum of all inde-
composables in C. Moreover, it is obvious that C is cohomologically homogeneous.
In this setting, hr(C) < ∞ and C has only finitely many indecomposable objects.

Example 4.7. Let A be a finite-dimensional algebra and Db(A) be the bounded
derived category. Recall that from [5], a t-structure of Db(A) is a pair of isomorphism
closed full subcategories (C≤0, C≥0) satisfying

(1) C≤0 is closed under [−1], and C≥0 is closed under [1];
(2) HomDb(A)(X•, Y •[1]) = 0, for any X• ∈ C≤0, Y • ∈ C≥0;
(3) For any X• ∈ Db(A), we have a triangle

X•
1 → X• → X•

2 [1] → X•
1 [−1]

with X•
1 ∈ C≤0, X•

2 ∈ C≥0.

Given a torsion pair (T ,F) in modA, one can define two subcategories of Db(A)
as follows

D≤0 = {X• ∈ Db(A) |Hi(X•) = 0, i > 0; H0(X•) ∈ T };

D≥0 = {X• ∈ Db(A) |Hi(X•) = 0, i < −1; H−1(X•) ∈ F}.
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Then (D≤0,D≥0) is a t-structure of Db(A) [10, Propositon 2.1], we call it
the t-structure induced by (T ,F). Note that if we take (T ,F) = (modA, 0) then
(D≤0,D≥0) is the standard t-structure.

Let A be a finite-dimensional algebra, and (D≤0,D≥0) be the t-structure induced
by a torsion pair (T ,F) in modA. It is clear that D≤0 is a contravariantly finite
and cohomologically homogeneous subcategory closed under gluing and cutting of
objects. Then hr(D≤0) < ∞ if and only if D≤0 is of finite type.

For a finite-dimensional algebra and we take the subcategory C in the theorem
to be K−,b(projA), which is equivalent to Db(A). Then we recover the first Brauer–
Thrall type theorem of derived category established in [13] with a totally different
method.

Corollary 4.8. Let A be a finite-dimensional algebra. Then hr(Db(A)) < ∞ if and
only if Db(A) is of finite type.
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