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ABSTRACT

We introduce the notation of weakly derived tameness, and establish the
equivalence of derived tameness and weakly derived tameness for algebras of
�nite global dimension. Moreover, we observe the relation between derived
representation type and cleaving functors, and obtain a method to judge
an algebra to be derived wild. As an application, we determine the derived
representation type of self-injective Nakayama algebras.
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1. Introduction

Throughout this paper, we denote by k an algebraically closed �eld. We assume that the algebras
are associative �nite-dimensional connected basic k-algebras with identity. During the research of
representation theory of algebras, onemain topic is the study of representation type. The representation-
�nite algebras are well-understood, for example, hereditary algebras of Dynkin type, Nakayama algebras
and so on, see [3, Chapter VI]. In the intensive research of indecomposables in module category of
representation-in�nite algebras, Drozd proved his celebrated Tame andWild theorem, that is, any �nite-
dimensional algebra is either tame orwild, but not both, where tamenessmeans that all indecomposables
with �xed dimension can be parameterized by only one continuous parameter [13].

In the study of representation type of �nite-dimensional algebras, one of themost e�ective techniques
is observing the algebras connected by cleaving functors, which was �rst adapted in [5] for the study
of the representation-�nite algebras. In the context of cleaving functors, we should view the bounded
quiver algebras as bounded categories by seeing the vertices as objects and the combinations of paths as
morphisms. A functor F : B → A is a cleaving functor, roughly speaking, if F acts on themorphismswith
natural retractions. The authors established in [5] that A representation-�nite implies B representation-
�nite. Moreover, Geiss explored a su�cient condition to judge an algebra to be wild in terms of cleaving
functors: if there is a cleaving functor from a wild locally bounded category to another locally bounded
category, say A, then A is also of wild type [15].

The bounded derived categories of �nite-dimensional algebras have been studied widely by Happel
[17, 18]. The study of the derived representation type of an algebra becomes an important theme in
representation theory of algebras. In particular, the notations of derived tameness and derived wildness
were introduced [12, 16], and the tame-wild dichotomy for bounded derived categories of �nite-
dimensional algebras is established [7], see also [4, Theorem 2.4]. The derived representation type of
an algebra measures the complexity of its bounded derived category on the level of indecomposable
objects. In compare with the module category, the bounded derived category is more complicated and
the derived representation type is determined just for hereditary algebras [2], radical square zero algebras
[6, 8], local and two-point algebras [9], gentle algebras [10], tree algebras [11], tubular algebras [19].
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In the present paper, wemainly observe the relation between derived representation type and cleaving
functors and obtain a method to judge a �nite-dimensional k-algebra to be derived wild:

Theorem. Let F : B → A be a cleaving functor between bounded categories with gl.dimB < ∞. Then B
derived wild implies A derived wild.

As an application, we determine the derived representation type of self-injective Nakayama algebras,
or equivalently,m-truncated cycle algebras, from which we �nd a class of representation-�nite algebras
with very complicated bounded derived categories on the level of indecomposable objects. This result
follows also from [4, Corollary 2.6] and [22].

Proposition. An m-truncated cycle algebras is derived tame if and only if m = 2.

This paper is organized as follows. In the �rst section, we introduce the notation of weakly derived
tameness and prove that an algebra of �nite global dimension is weakly derived tame if and only if it is
derived tame. In Section 2, we obtain a method to judge an algebra to be derived wild by using cleaving
functors. In the last section, we determine the derived representation type of self-injective Nakayama
algebras as an application.

2. Weakly derived tameness

Throughout this article, bounded quiver algebras are viewed as bounded categories [14]. Recall that a
locally bounded category is a k-linear category A satisfying:
(1) di�erent objects in A are not isomorphic;
(2) the endomorphism algebra A(a, a) is local for all a ∈ A;
(3) dimk

∑
x∈A A(a, x) < ∞ and dimk

∑
x∈A A(x, a) < ∞ for all a ∈ A.

A bounded category is a locally bounded category having only �nitely many objects. Note that a bounded
quiver algebra A = kQ/I with Q a �nite quiver and I an admissible ideal can be viewed as a bounded
category by taking the vertices in Q0 as objects and the k-linear combinations of paths in kQ/I as
morphisms. Conversely, a bounded category A admits a presentation A ∼= kQ/I for a �nite quiver Q
and an admissible ideal I.

Let A be a locally bounded category and 3 be a k-algebra. A 3-A-bimodule M is a contravariant
k-linear functor from A to the category of le� 3-modules. If 3 = k, 3-A-bimodules are just right
A-modules. We denote ModA the category of all right A-modules and by modA the full subcategory of
ModA consisting of all A-modules satisfying dimM(x) < ∞, for any x ∈ A.

Recall that for any M ∈ modA, the dimension vector of M is the vector dimM = (dimM(x))x∈A. A
locally bounded category A is called tame if for any d ∈ N

|A|, there are �nitely many k[x]-A-bimodules
M1, M2, · · · , Mr which are k[x]-free modules of �nite rank, such that any indecomposable right
A-module with dimension vector d is of form S ⊗k[x] Mi, for some 1 ≤ i ≤ r and some simple
k[x]-module S, λ ∈ k. A is called wild if there is a k〈x, y〉-A-bimoduleM which is k〈x, y〉-free module of
�nite rank, such that the functor − ⊗k〈x,y〉 M : modk〈x, y〉 → modA preserves indecomposability and
isomorphism classes, see [15] for example.

In [15], Geiss introduced the de�nition of weakly tameness and proved the equivalence of tameness
and weakly tameness for locally bounded category by using geometric method. A locally bounded
category A is called weakly tame if for any d ∈ N

|A|, there are �nitely many k[x]-A-bimodules M1,
M2, · · · ,Mr which are k[x]-free modules of �nite rank, such that each indecomposable right A-module
with dimension vector d is a direct summand of S ⊗k[x] Mi, for some simple k[x]-module S.

LetA be a bounded category.We denote byKb(projA) the homotopy category of bounded complexes
of projective right A-modules and by Db(A) the bounded derived category of modA. For any X• ∈

Db(A), the cohomology dimension vector ofX• is de�ned to be the vectorDim(X•) = (dimkH
n(X•))n∈Z.
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Recall from [16] that a bounded category A is derived tame if for any h ∈ N
(Z), there exist a localization

R = k[x]f with respect to some f ∈ k[x] and bounded complexes X•
1 ,X

•
2 , · · · ,X

•
r of R-A bimodules

which are R-free of �nite rank, such that almost all indecomposable objects of cohomology dimension
vector h in Db(A) are of form S ⊗R X•

i for some i and simple R-module S. Note that for any X•
i as

above, we can �nd a bounded complex Y•
i of k[x]-A bimodules such that S ⊗R X•

i
∼= S ⊗k[x] Y

•
i for

all simple R-module S. So equivalently, A is derived tame if for any h ∈ N
(Z), there exist bounded

complexes X•
1 ,X

•
2 , · · · ,X

•
r of k[x]-A bimodules which are k[x]-free of �nite rank, such that almost all

indecomposable objects of cohomology dimension vector h in Db(A) are of form S ⊗k[x] X
•
i for simple

k[x]-module S, see [6, 8, 10] for details. Moreover, A is derived wild if there exists a bounded complex
M• of k〈x, y〉-A-modules which are k〈x, y〉-free of �nite rank, such that the functor − ⊗k〈x,y〉 M

• :
mod k〈x, y〉 → modA preserves indecomposability and isomorphism classes.

Now we de�ne weakly derived tameness for bounded categories.

De�nition 2.1. Abounded categoryA isweakly derived tame if for anyh ∈ N
(Z), there exist a localization

R = k[x]f with respect to some f ∈ k[x] and bounded complexes X•
1 ,X

•
2 , · · · ,X

•
r of R-A bimodules

which areR-free of �nite rank, such that almost all indecomposableX• of cohomology dimension vector
h in Db(A) is a direct summand of S ⊗R X•

i , for some 1 ≤ i ≤ r and some simple R-module S.

Note that in the de�nition of weakly derived tameness, as in the de�nition of derived tameness, the
bounded complexes of k[x]f -A bimodules can be replacedwith bounded complexes of k[x]-A bimodules.
Moreover, derived tameness implies weakly tameness obviously. We will prove the converse is true for
these bounded categories with �nite global dimension. For this we need some preparations.

Let A be a bounded category. Recall that the repetitive category Â of A has the pairs (a, i) as objects,
where a ∈ A and i ∈ Z, while the morphisms from (a, i) to (b, i) and (b, i + 1) are determined by

A(a, b) andA(b, a), respectively, and zero else [21]. Note that Â is self-injective locally bounded category.

Moreover, there is a full embedding triangulated functor F : Db(A) → modÂ.

Lemma 2.2. Let A be a bounded category with �nite global dimension. Then A is weakly derived tame if

and only if Â is weakly tame.

Proof. It is well known that the functor F : Db(A) → modÂ is an equivalence in the case of gl.dimA <

∞. We assume Â is weakly tame. For any h ∈ N
(Z) and any indecomposable complex X• ∈ Db(A) of

cohomology dimension vector h, F(X•) ∈ modÂ has a common upper bound in N
(A×Z) by Lemma

4.6 in [16], then there exist �nitely many k[x]-Â-bimodulesM1,M2, · · · ,Ml which are k[x]-free of �nite
rank, such that any indecomposable complex X• ∈ Db(A) of cohomology dimension vector h satis�es

F(X•) ⊕ M ∼= S ⊗k[x] Mj for some j, S andM ∈ modÂ. Note thatM ∼= F(Y•) for some Y• ∈ Db(A) by
the denseness of F. Since by Proposition 5.2(2) in [16], we can �nd a localizationR = k[x]f and bounded
complexes Y•

j of R-A bimodules which are R-free of �nite rank such that F(S ⊗R Y•
j )

∼= S ⊗R (Mj)f ∼=

S ⊗k[x] Mj for 1 ≤ j ≤ l and all simple S. Thus F(X• ⊕ Y•) ∼= F(X•) ⊕ F(Y•) ∼= F(S ⊗R Y•
j ), and thus

each indecomposable complex X• ∈ Db(A) of cohomology dimension vector h is a direct summand of
S ⊗R Y•

j for some 1 ≤ j ≤ l and simple module S. Hence A is weakly derived tame.

Conversely, we assume A is weakly derived tame. For any d ∈ N
(A×Z) and non-projective indecom-

posable Â-moduleM,M ∼= F(Y•) for some indecomposable object Y• ∈ Db(A). Moreover, by Lemma
4.7 in [16], the cohomology dimension vector of Y• has a common upper bound, and thus there exist
bounded complexes Y•

1 ,Y
•
2 , · · · ,Y

•
l of k[x]-A bimodules which are k[x]-free of �nite rank, such that

almost all non-projective indecomposable Â-moduleM of dimension vector d satis�esM ∼= F(Y•) and
is a direct summand of F(S⊗k[x] Y

•
j ) for some 1 ≤ j ≤ l and some simple module S. Moreover, one can

construct appropriate localization R = k[x]h and R-Â-bimodules M1,M2, · · · ,Ml which are R-free of
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�nite rank such thatM is a direct summand of S⊗RMj for some j and simple R-module S by Proposition

5.2(1) in [16]. Therefore, Â is weakly tame.

Now we are ready to prove the equivalence of derived tameness and weakly derive tameness for
bounded categories of �nite global dimension.

Proposition 2.3. Let A be a bounded category with gl.dimA < ∞. Then A is weakly derived tame if and
only if A is derived tame.

Proof. IfA is derived tame, then clearlyA is weakly derived tame by de�nition. Now assumeA is weakly

derived tame, we have Â is weakly tame by previous lemma. Note that Â is locally bounded, then Â is

tame by [15]. Since Â is tame if and only if A is derived tame for bounded categories of �nite global
dimension [16], A is derived tame.

3. Cleaving functors and derived representation type

Recall that to a k-linear functor F : B → A between bounded categories, we associate a restriction
functor F∗ : modA → modB, which is given by F∗(M) = M ◦ F and exact. The restriction functor F∗

admits a le� adjoint functor F∗, called the extension functor, which sends a projective B-module B(b,−)

to a projective A-module A(Fb,−). Moreover, if gl.dimB < ∞ then F∗ extends naturally to a derived
functor F∗ : Db(A) → Db(B), which has a le� adjoint LF∗ : Db(B) → Db(A). Note that LF∗ is the
le� derived functor associated with F∗ and maps Kb(projB) into Kb(projA). We refer to [23] for the
de�nition of derived functors.

A k-linear functor F : B → A with gl.dimB < ∞ between bounded categories is called a cleaving
functor [5, 22] if it satis�es the following equivalent conditions:
(1) The linear map B(b, b′) → A(Fb, Fb′) associated with F admits a natural retraction for all b, b′ ∈ B;
(2) The adjunction morphism φM : M → (F∗ ◦ F∗)(M) admits a natural retraction for allM ∈ modB;
(3) The adjunction morphism 8X• : X• → (F∗ ◦ LF∗)(X•) admits a natural retraction for all X• ∈

Db(B).
The following proposition provides us a method to determine a bounded category to be derived wild

by cleaving functors.

Theorem 3.1. Let F : B → A be a cleaving functor between bounded categories with gl.dimB < ∞. Then
B derived wild implies A derived wild.

Proof. We assume A is not derived wild and then A is derived tame [7]. Fix d ∈ N
(Z), then for any

indecomposable complex X• ∈ Db(B) with Dim(X•) = d, we have Dim(LF∗(X•)) ∈ N
(Z) has a

common upper bound by the estimate given in [22], and thus so is any indecomposable direct summand
Z• of LF∗(X•). Therefore we can choose a localization R = k[x]f and �nitely many bounded complexes
Y•
1 ,Y

•
2 , · · · ,Y

•
l of R-A-bimodules which are R-free of �nite rank, such that almost all indecomposable

direct summand Z• of these LF∗(X•)’s has the form of S⊗R Y
•
j , for some j and simple module S. Since F

is a cleaving functor, for almost all indecomposable complex X• of cohomological dimension d, we can
�nd a direct summand Z• of LF∗(X•), such that X• is a direct summand of F∗(Z

•) = F∗(S ⊗R Y•
j ) =

S⊗R F∗(Y
•
j ), for some j and simple R-module S, which implies that B is weakly derived tame. Thus B is

derived tame by Proposition 2.3, which contradicts to the derived wildness of B.
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4. The application to self-injective nakayama algebras

Let A(n,m)(m ≥ 2) is the bounded category determined by the quiver

1
α1 // · · ·

αn−r−2 // n − r − 1
αn−r−1

%%K
KK

KK
KK

KK
K

0

α0

==zzzzzzzzz
n − r

αn−r
yyss
ss
ss
ss
ss

n − 1

αn−1

aaDDDDDDDD

· · ·
αn−2

oo n − r + 1
αn−r+1

oo

and the relation of all paths of lengthm. Note that the A(n,m)’s, viewed as �nite-dimensional algebras,
are the so-calledm-truncated cycle algebras, and are the unique class of self-injectiveNakayama algebras,
see [1, Chapter V Proposition 3.8] for details.

As an application of Theorem 3.1, we determine the derived representation type of A(n,m), which
coincides with that in [4, Corollary 2.6] and [22]. Note that A(n,m) is an representation-�nite algebra,
and the following proposition implies that the bounded derived category of A(n,m) is very complicated
ifm > 2.

Proposition 4.1. A(n,m) is derived tame if and only if m = 2.

Proof. Ifm = 2, then A(n,m) is a gentle algebra and hence derived tame [10]. Now assumem ≥ 3. We

consider the bounded category A
p
l de�ned by the quiver

0
α0 // 1

α1 // · · ·
αl−3 // 1 − 2

αl−2 // l − 1 ,

and the admissible ideal generated by paths of length p, where l > p. It is well known that the functor
F : Am

jn → A(n,m) such that F(i) = ī and F(αi) = αī is a cleaving functor, where ī satis�es 0 ≤

ī ≤ n − 1 and stands for the representation element of i in the residue class ring Zn. Moreover, A
p
l

is a tree algebra, and thus it is derived tame if and only if its Euler form is non-negative [11]. Note that
Am
m+2(m ≥ 8) is piecewise hereditary of wild type [20] and thus derived wild, andA3

11,A
4
10,A

5
11,A

6
11,A

7
10

have negative Euler forms. Therefore, for anym ≥ 3, Am
4m is derived wild since it contains a derived wild

full subcategory, and thus A(n,m) is wild as well by Theorem 3.1.

Remark 4.2. If n = 1, then the proposition implies that k[x]/(xm)(m ≥ 2) is derived tame if and only
ifm = 2, which coincides with the result in [9].
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