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DERIVED REPRESENTATION TYPE AND FIELD EXTENSIONS

BY

JIE LI (Hefei) and CHAO ZHANG (Guiyang)

Abstract. Let A be a finite-dimensional algebra over a field k. We define A to be
C-dichotomic if it has the dichotomy property of the representation type on the category
of certain bounded complexes of projective A-modules. If k admits a finite separable field
extension K/k such that K is algebraically closed (the real number field for example), we
prove that A is C-dichotomic. As a consequence, the second derived Brauer–Thrall type
theorem holds for A, i.e., A is either derived-discrete or strongly derived-unbounded.

1. Introduction. Representation type is an important topic in repre-
sentation theory of algebras, which studies the classification and distribu-
tion of indecomposable modules. The most stimulating problems, the clas-
sical Brauer–Thrall conjectures, were formulated for finite-dimensional k-al-
gebras; see [Br41, Th47, Jans57]. The first Brauer–Thrall conjecture says
that an algebra either is of finite representation type or admits modules
of arbitrary large dimensions. The second Brauer–Thrall conjecture states
that any algebra is either of finite representation type or of strongly un-
bounded representation type. The two conjectures were proved for algebras
over infinite perfect fields; see [ASS06, Aus74, NR75, Ro68, Ro78, Rin80]
and references therein.

Brauer–Thrall type theorems are also related to the celebrated tame-wild
dichotomy theorem first proved by Drozd [Dro86] for finite-dimensional mod-
ules over finite-dimensional K-algebras over an algebraically closed field K.
The tame-wild dichotomy theorem was generalized to Cohen-Macaulay mod-
ules in [DG92] and to a class of bimodule matrix problems (over not only
algebraically closed fields) in [Sim97, Sim05].

For algebras over algebraically closed fields, the derived representation
type was pioneered by Vossieck [Vo01]. He defined derived-discrete algebras
and classified them into two types: algebras derived equivalent to hered-
itary algebras of finite type, and gentle one-cycle algebras not satisfying
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the clock condition. To study Brauer–Thrall type theorems for derived cat-
egories, in [ZH16], some numerical invariants were introduced and strongly
derived-unbounded algebras were naturally defined. Then in [ZH16] two de-
rived Brauer–Thrall type theorems for algebras over algebraically closed
fields were proved. Moreover, the first one was proved by Zhang in [Zh16b]
for arbitrary Artin algebras. We mention that the tame-wild dichotomy for
bounded derived categories of finite-dimensional algebras was established
in [BD03].

The second derived Brauer–Thrall type theorem says that any finite-
dimensional algebra A has the dichotomy property at the level of the derived
category, i.e., A is either derived-discrete or strongly derived-unbounded.
Strongly derived-unbounded algebras have been extensively studied, and
dichotomy properties of representation types at the levels of the complex
category and homotopy category for finite-dimensional algebras have been
obtained [Zh16a]. Note that the dichotomy properties at three levels, in-
cluding the second derived Brauer–Thrall type theorem, rely heavily on the
classification of derived-discrete algebras, where the base field is required to
be algebraically closed.

It is natural to ask if the second derived Brauer–Thrall type theorem
and other dichotomy properties still hold for algebras over arbitrary infinite
fields. Since the classification of derived-discrete algebras over arbitrary fields
is unknown, our method is to establish whether the properties are compatible
under field extensions. Many properties of module categories, such as repre-
sentation type [JL82] and Auslander–Reiten theory [Ka00], are compatible
under ground field extensions. In [Li19], derived-discreteness is proved to be
compatible under finite separable field extensions.

In this paper, we revisit the notions of representation type on complex
categories, homotopy categories and derived categories for finite-dimensional
algebras over arbitrary fields.

Let A be a finite-dimensional k-algebra. Denote by Cm(A-proj) the cat-
egory of homotopy minimal complexes of projective A-modules which are
concentrated between degree 0 and m. An algebra A is called C-dichotomic
if either Cm(A-proj) is of finite representation type for each m ≥ 1, or
Cm′(A-proj) is of strongly unbounded type for some m′ ≥ 1.

We then prove that C-dichotomic algebras are preserved under finite
separable field extensions. Making use of the dichotomy theorem (see [Zh16a,
Corollary 2.9]) for algebras over algebraically closed fields, we obtain the
following main theorem.

Main Theorem. Let A be a finite-dimensional k-algebra and K/k be a
finite separable field extension such that K is algebraically closed. Then A is
C-dichotomic.
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Since the C-dichotomy implies the dichotomy properties of representa-
tion type at the levels of the homotopy category and derived category (see
Proposition 2.10), we have

The second derived Brauer–Thrall type theorem. If A is a
finite-dimensional k-algebra and K/k is a finite separable extension such
that K is algebraically closed, then A is either derived-discrete or strongly
derived-unbounded.

As an example, if k is the real number field R, then the main theorem
holds. In particular, the second derived Brauer–Thrall type theorem is true
for any finite-dimensional R-algebra.

2. The derived representation type of algebras. In this section,
we recall the definitions related to derived representation types, and then
introduce C-dichotomic algebras.

2.1. Definitions related to derived representation type. Let k be
an infinite field and A a finite-dimensional algebra over k. Denote by A-mod
the category of all finite-dimensional left A-modules and A-proj its full sub-
category consisting of all finitely generated projective left A-modules. De-
note by Cb(A-mod) the category of all bounded complexes of A-mod, and
by Cb(A-proj) its full subcategory consisting of all bounded complexes of
A-proj. Denote by Kb(A-proj) the homotopy category of Cb(A-proj), and
by Db(A-mod) the bounded derived category of A-mod.

Recall that a complex X = (Xi, di) ∈ Cb(A-proj) is said to be homotopy
minimal if Im di ⊆ radXi+1 for all i ∈ Z. For any integer m ≥ 0, denote by
Cm(A-proj) the full subcategory of Cb(A-proj) consisting of all homotopy
minimal complexes X = (Xi, di) such that Xi = 0 for any i /∈ {0, 1, . . . ,m}.

We recall from [ZH16] the definitions related to finite derived represen-
tation type.

Definition 2.1. Let A be a k-algebra.

(1) The category Cm(A-proj) is defined to be of finite representation type if
up to isomorphism, there are only finitely many indecomposable objects
in Cm(A-proj).

(2) The category Kb(A-proj) is defined to be discrete if for each cohomology
dimension vector, there are only finitely many objects in Kb(A-proj) (up
to isomorphism) with that dimension vector.

(3) The algebra A is defined to be derived-discrete if for each cohomology
dimension vector, there are only finitely many objects in Db(A-mod)
(up to isomorphism) with that dimension vector.

The next lemma shows the connections between the above definitions.
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Lemma 2.2. Let A be a k-algebra. Consider the following statements:

(1) for each m > 0, Cm(A-proj) is of finite representation type,
(2) the category Kb(A-proj) is discrete,
(3) A is derived-discrete.

Then (1)⇒(2)⇔(3).
Proof. (1)⇒(2). By [Li19, Lemma 2.5], we only need to prove that, for

each dimension vector (ni)i∈Z ∈ N(Z), the set
{X = (Xi, di) ∈ Kb(A-proj) | dimkXi = ni, ∀i ∈ Z}

has finitely many isomorphism classes. After some shifts, there is an integer
m > 0 such that ni = 0 for i < 0 and i > m. By assumption, Cm(A-proj)
has finitely many isomorphism classes. Each object X in the above set is
homotopy equivalent to a homotopy minimal complex, denoted by X̄, in
Cm(A-proj). Since if X̄ is isomorphic to Ȳ in Cm(A-proj) then X is iso-
morphic to Y in Kb(A-proj), the above set has finitely many isomorphism
classes.

The equivalence (2)⇔(3) follows by applying [Li19, Lemma 2.5].
Following [ZH16], given a complex X in Cb(A-mod), the cohomological

range of X is defined as
hrk(X) := hlk(X) · hw(X),

where
hlk(X) := max {dimkH

i(X) | i ∈ Z},
hw(X) := max {j − i+ 1 | H i(X) 6= 0 6= Hj(X)}.

Now we recall from [ZH16] the definitions related to infinite derived rep-
resentation type. Note that the definition (1) has an equivalent form using
the dimension of a complex; see [Zh16a, Lemma 1.6].

Definition 2.3. Let A be a k-algebra.
(1) We say Cm(A-proj) is of strongly unbounded type if there is an increasing

sequence (ri)i∈N ∈ NN such that for each i, up to isomorphism, there are
infinitely many indecomposable objects in Cm(A-proj) with cohomolog-
ical range ri.

(2) We say Kb(A-proj) is of strongly unbounded type if there is an increasing
sequence (ri)i∈N ∈ NN such that for each i, up to shift and isomorphism,
there are infinitely many indecomposable objects in Kb(A-proj) with
cohomological range ri.

(3) We say A is strongly derived-unbounded if there is an increasing sequence
(ri)i∈N ∈ NN such that for each i, up to shift and isomorphism, there are
infinitely many indecomposable objects in Db(A-mod) with cohomolog-
ical range ri.
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Example 2.4. (1) Representation-infinite algebras over infinite perfect
fields are strongly derived-unbounded, in view of the truth of the classical
Brauer–Thrall conjecture II for the module category [NR75, Rin80] and the
embedding from the module category to the derived category.

(2) Let k be an algebraically closed field, and A be a gentle algebra
with one cycle with clock condition or more than one cycle. Then A is
strongly unbounded. Here, the clock condition means that the number of
clockwise relations on the cycle equals that of counterclockwise ones. In-
deed, A has generalized bands in these cases (see [Rin97] for example), and
then one can construct an increasing sequence (ri)i∈N ∈ NN and infinitely
many non-isomorphic indecomposables in the derived category for each ri
by the combinatorial description in [BM03].

(3) Algebras which are derived equivalent to strongly derived-unbounded
algebras, are also strongly derived-unbounded, since the derived equivalences
can be realized as tensor functors by two-sided tilting complexes, under which
cohomological ranges can be controlled [ZH16, Prop. 4].

The next lemma shows the connections between the above notions. They
were essentially proved in [Bau07, Zh16a], where k was supposed to be al-
gebraically closed. Here we include a proof for an arbitrary infinite field k.
The following notion is needed in the proof.

Let K−,b(A-proj) be the homotopy category consisting of bounded-above
complexes with bounded cohomology. There is a well-known triangle equiv-
alence

p : Db(A-mod)→ K−,b(A-proj),

sending X to its projective resolution pX; see [Wei95]. We can further as-
sume that pX is homotopy minimal. For each P in K−(A-proj), let P≥t ∈
Kb(A-proj) be the brutal truncation of P at degree t.

Lemma 2.5. Let A be a k-algebra. Consider the following statements:

(1) there is an m ≥ 1 such that Cm(A-proj) is of strongly unbounded type,
(2) the category Kb(A-proj) is of strongly unbounded type,
(3) the algebra A is strongly derived-unbounded.

Then (1)⇒(2)⇔(3).

Proof. (1)⇒(2). By (1), there is an increasing sequence (ri)i∈N ∈ NN

such that for each i, up to isomorphism, there are infinitely many indecom-
posable objects in Cm(A-proj) with cohomological range ri for some m ≥ 1.
Given two complexes in Cm(A-proj), the property of homotopy minimal-
ity implies that they are isomorphic in Kb(A-proj) if and only if they are
isomorphic inCm(A-proj). In addition, a complex inCm(A-proj) is indecom-
posable if and only if it is indecomposable as a complex inKb(A-proj). Hence
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for each ri, there are infinitely many indecomposable objects in Kb(A-proj)
with cohomological range ri.

(2)⇔(3). The “⇒” part holds because Kb(A-proj) is a full subcategory
of Db(A-mod) by embedding into K−,b(A-proj).

For the “⇐” part, by assumption, there is an increasing sequence (ri)i∈N
∈ NN such that for each i, up to shift and isomorphism, there are infinitely
many indecomposable objects in Db(A-mod) with cohomological range ri.
Let Xi be the set of complexes in Db(A-mod) with cohomological range ri
whose non-zero cohomology concentrates between degrees 1 and ri. Then up
to shift and isomorphism, Xi has infinitely many objects.

For each i > 0 and each X in Xi, denote by pX its homotopy minimal
projective resolution and by (pX)≥0 the brutal truncation at degree 0. Then
(pX)≥0 is an indecomposable object in Cri(A-proj) with hr((pX)≥0) ≥ ri.
By [Li19, Lemma 2.4], the set

{hr((pX)≥0) | X ∈ Xi}
also has an upper bound. By [Li19, Lemma 2.3], there is a positive number si
between ri and the upper bound above such that the set

{(pX)≥0 ∈ Kb(A-proj) | X ∈ Xi}
has infinitely many objects up to isomorphism.

Since (ri)i∈N is an increasing sequence and si ≥ ri for each i, we can in-
ductively pick an increasing subsequence (s′i)i∈N ∈ NN of (si)i∈N such that,
up to shift and isomorphism, there are infinitely many indecomposable ob-
jects in Kb(A-proj) with cohomological range s′i. This completes the proof.

Notice that the proof does not imply the strong unboundedness of
Cm(A-proj) for somem, since different setsXi belong to differentCm(A-proj)
and we cannot find a uniform integer m such that for each ti, up to isomor-
phism, there are infinitely many indecomposable objects in Cm(A-proj) with
cohomological range ti for some increasing sequence (ti)i∈N ∈ NN.

2.2. C-dichotomic algebras. In this subsection, we introduce the def-
inition of C-dichotomic algebras and their relation to the second derived
Brauer–Thrall type theorem.

By Lemmas 2.2 and 2.5, we have the following proposition.

Proposition 2.6. For a finite-dimensional k-algebra A, the following
statements are equivalent:

(1) the category Kb(A-proj) is either discrete or of strongly unbounded type,
(2) A is either derived-discrete or strongly derived-unbounded.

As in [ZH16], if one of the above statements holds, we say that the second
derived Brauer–Thrall type theorem holds for A. The following proposition
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of [ZH16] shows that, for any finite-dimensional algebra over an algebraically
closed field, the second derived Brauer–Thrall type theorem holds.

Proposition 2.7. Let A be a finite-dimensional algebra over an al-
gebraically closed field. Then A is either derived-discrete or strongly derived-
unbounded.

Definition 2.8. A finite-dimensional k-algebra A is defined to be C-
dichotomic if either Cm(A-proj) is of finite representation type for each
m ≥ 1, or Cm′(A-proj) is of strongly unbounded type for some m′ ≥ 1.

Remark 2.9. The category Cm(A-proj) is of strongly unbounded type
for some integer m = M ≥ 1, which is equivalent to Cm(A-proj) being of
strongly unbounded type for all m ≥M since Cm(A-proj) ⊆ Cm+1(A-proj).
Thus a k-algebra A is C-dichotomic if either Cm(A-proj) is of finite repre-
sentation type for any m ≥ 1, or Cm(A-proj) is of strongly unbounded type
for almost all positive integers m.

Proposition 2.10. Assume that A is a C-dichotomic finite-dimensional
k-algebra.

(1) The category Kb(A-proj) is either discrete or of strongly unbounded type.
(2) The second derived Brauer–Thrall type theorem holds for A.

Proof. (1) By Lemma 2.2, if Kb(A-proj) is not discrete, then it is not
true that Cm(A-proj) is of finite representation type for each m ≥ 1. So
Cm′(A-proj) is of strongly unbounded type for some m′ ≥ 1 by assumption.
By Lemma 2.5, Kb(A-proj) is of strongly unbounded type.

(2) follows from (1) and Proposition 2.6.

Note that our definitions in this section also make sense for algebras over
finite fields. In this case, we give an example which shows that the converse
of the proposition may be not true.

Example 2.11. Let k be a finite field. For each finite-dimensional k-al-
gebra A, there are finitely many morphisms between projective A-modules.
Then by [Li19, Lemma 2.5] (whose proof does not depend on the cardinality
of k), Kb(A-proj) is always discrete.

If A is a hereditary algebra over k which is not of finite representation
type, then C1(A-proj) is not of finite representation type. However, for any
m ≥ 1 and any ri > 0, there are finitely many objects (Xj , dj) inCm(A-proj)
with

∑m
j=0X

j = ri. By [Zh16a, Lemma 1.6] (whose proof does not depend
on the cardinality of k), Cm(A-proj) is not of strongly unbounded type for
any m ≥ 1. Hence A is not C-dichotomic.

TheC-dichotomy implies not only the second derived Brauer–Thrall type
theorem, but also the equivalence of discreteness and strongly unbounded
properties at three levels, as in the following corollary.
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Corollary 2.12. Assume that A is a C-dichotomic finite-dimensional
k-algebra.

(a) The following three conditions are equivalent:

(a1) A is derived-discrete,
(a2) the category Kb(A-proj) is discrete,
(a3) the category Cm(A-proj) is of finite representation type for each

m ≥ 1.

(b) The following three conditions are equivalent:

(b1) A is strongly derived-unbounded,
(b2) the category Kb(A-proj) is of strongly unbounded type,
(b3) the category Cm(A-proj) is of strongly unbounded type for some

m ≥ 1.

Proof. We only prove (a), and (b) can be proved in a similar way. By
Lemma 2.5, to prove the equivalence of the three statements, it suffices to
show that the discreteness ofDb(A-mod) implies the finiteness ofCm(A-proj)
for any m > 1. If not, then CM (A-proj) is of strongly unbounded type for
some M > 1 since A is a C-dichotomic k-algebra. Therefore A is strongly
derived-unbounded by Lemma 2.5. This is absurd since no algebra can be
derived-discrete and strongly derived-unbounded by definition.

Remark 2.13. Assume that A is a finite-dimensional k-algebra.

(1) If the field k is algebraically closed, then A is C-dichotomic; see [Zh16a,
Corollary 2.9].

(2) We do not know whether or not A is C-dichotomic if the field k is not
algebraically closed.

3. Base field extensions. In this section, we mainly explore the C-
dichotomy of a k-algebra with k admitting a finite separable extension K/k
such that K is an algebraically closed field.

Let K/k be a finite separable field extension. It is well known that the
algebra extension A→ A⊗kK induces an adjoint pair (−⊗kK,F ) between
A-mod and A⊗k K-mod, where

F : A⊗k K-mod→ A-mod

is the restriction functor. These two functors are both exact, mapping projec-
tive modules to projective modules and radicals to radicals. So they extend
in a natural manner to adjoint pairs between Cm(A-proj) and Cm(A ⊗k

K-proj). We still denote them by (−⊗k K,F ) for convenience.
Since both − ⊗k K and F are separable functors, each complex X is a

direct summand of F (X ⊗k K) in Cm(A-proj), and each complex Y is a
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direct summand of F (Y )⊗k K in Cm(A⊗k K-proj); see [Li19]. So we have
the following lemmas.

Lemma 3.1.

(1) For each indecomposable object X in Cm(A-proj), there is an indecom-
posable direct summand Y of X ⊗k K in Cm(A ⊗k K-proj) such that
X is a direct summand of F (Y ).

(2) For each indecomposable object Y in Cm(A⊗kK-proj), there is an inde-
composable direct summand X of F (Y ) in Cm(A-proj) such that Y is
a direct summand of X ⊗k K.

Lemma 3.2. Let K/k be a field extension of degree l, and A be a k-
algebra.

(1) For each indecomposable object X in Cm(A-proj), X ⊗k K has at most
l indecomposable direct summands up to isomorphism.

(2) For each indecomposable object Y in Cm(A ⊗k K-proj), F (Y ) has at
most l indecomposable direct summands up to isomorphism.

Proof. (1) Let {α1, . . . , αl} be a k-basis of K. We have an isomorphism
in Cm(A-proj),

F (X ⊗k K) ' X⊕l, x⊗ λ 7→ (λix)li=1,

where X⊕l is the direct sum of l copies of X and the λi are elements in k such
that λ =

∑l
i=1 λiαi. So our statement holds since F is an additive functor.

(2) For each indecomposable object Y in Cm(A ⊗k K-proj), there is an
indecomposable direct summand X of F (Y ) in Cm(A-proj) such that Y is a
direct summand of X ⊗k K (Lemma 3.1). Hence F (Y ) is a direct summand
of F (X ⊗k K) in Cm(A-proj). The isomorphism F (X ⊗k K) ' X⊕l then
implies that F (Y ) has at most l indecomposable direct summands.

Proposition 3.3. Let A be a k-algebra and K/k be a finite separable
field extension.

(1) For each m > 0, Cm(A-proj) is of finite representation type if and only
if so is Cm(A⊗k K-proj).

(2) For each m > 0, Cm(A-proj) is of strongly unbounded type if and only
if so is Cm(A⊗k K-proj).

As a consequence, A is C-dichotomic if and only if so is A⊗k K.

Proof. Let l be the degree of the extension K/k.
(1) The “if” part. For each m ≥ 1, up to isomorphism, let Y1, . . . , Yn be

all the indecomposable objects inCm(A⊗kK-proj). For each indecomposable
X in Cm(A-proj), X is a direct summand of F (X ⊗k K). By Lemma 3.1,
there is an indecomposable object, say Yi for some i ∈ {1, . . . , n}, which is
a direct summand of X ⊗k K such that X is a direct summand of F (Yi).
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Since up to isomorphism, there are only finitely many indecomposable direct
summands of

⊕n
i=1 F (Yi), Cm(A-proj) is of finite representation type.

The “only if” part can be proved similarly.
(2) For the “if” part, let (ri)i∈N ∈ NN be an increasing sequence such that

for each i, the set

Xi = {X ∈ Cm(A-proj) | X is indecomposable with hrk(X) = ri}
has infinitely many objects up to isomorphism (i.e. Xi has infinitely many
isomorphism classes in Cm(A-proj)). Denote by Yi all the indecomposable
objects Y in Cm(A⊗kK-proj) such that Y is a direct summand of X ⊗kK
and F (Y ) contains X as a direct summand for some X in Xi. Because Xi

contains infinitely many objects up to isomorphism, so does Yi.
By the exactness of−⊗kK, we have hrK(X⊗kK) = ri. By Lemma 3.2(1),

{hrK(Y ) | Y ∈ Yi} ⊆ [ri/l, ri].

So there is an integer si between ri/l and ri such that, up to isomorphism,
there are infinitely many indecomposable objects in Cm(A⊗k K-proj) with
cohomological range si.

Since (ri)i∈N is an increasing sequence, for each i there is a larger j such
that rj > ri/l. Because ri ≥ si ≥ ri/l, we can pick inductively an increasing
subsequence (s′i)i∈N ∈ NN of (si)i∈N such that, up to isomorphism, there are
infinitely many indecomposable objects in Cm(A ⊗k K-proj) with cohomo-
logical range s′i. Therefore Cm(A⊗k K-proj) is of strongly unbounded type.

The “only if ” part. Let (ri)i∈N ∈ NN be an increasing sequence such that
for each ri, the set

Yi = {Y ∈ Cm(A⊗k K-proj) | Y is indecomposable with hrK(Y ) = ri}
has infinitely many objects up to isomorphism. We denote by Xi all the
indecomposable objects X in Cm(A-proj) such that X is a direct summand
of F (Y ) and X ⊗k K contains Y as a direct summand for some Y in Yi.
Then Xi has infinitely many objects up to isomorphism.

Since F is exact, hrk(F (Y )) = l · ri. Here, notice that the cohomological
range is defined by the dimension over k. By Lemma 3.2(2),

{hrk(X) | X ∈ Xi} ⊆ [ri, l · ri].
Then there is an integer si between ri and l ·ri such that, up to isomorphism,
there are infinitely many indecomposable objects in Cm(A-proj) with coho-
mological range si.

Since (ri)i∈N is an increasing sequence, for each i there is a larger j
such that rj > l · ri. So we can find inductively an increasing subsequence
(s′i)i∈N ∈ NN of (si)i∈N such that, up to isomorphism, there are infinitely
many indecomposable objects in Cm(A-proj) with cohomological range s′i.
Therefore Cm(A-proj) is of strongly unbounded type.
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Remark 3.4. The adjoint pairs (− ⊗k K,F ) exist at the levels of the
homotopy category and the derived category. By the argument used in the
proof of Proposition 3.3, we can prove that the second derived Brauer–Thrall
type theorem holds for A if and only if it holds for A⊗k K.

If K is algebraically closed, then by [Zh16a, Corollary 2.9] and the above
proposition, we have

Theorem 3.5. Let A be a k-algebra and K/k be a finite separable ex-
tension such that K is algebraically closed. Then A is C-dichotomic.

In view of Proposition 2.10 and Corollary 2.12, we deduce from Theo-
rem 3.5 the following useful corollary.

Corollary 3.6. Let A be a k-algebra and K/k be a finite separable
extension such that K is algebraically closed.

(1) The second Brauer–Thrall type theorem holds for A.
(2) The category Kb(A-proj) is either discrete or of strongly unbounded type.
(3) The algebra A is derived-discrete if and only if Kb(A-proj) is discrete if

and only if Cm(A-proj) is of finite representation type for each m ≥ 1.
(4) The algebra A is strongly derived-unbounded if and only if Kb(A-proj)

is of strongly unbounded type if and only if Cm(A-proj) is of strongly
unbounded type for some m ≥ 1.

Corollary 3.7. Let A be a finite-dimensional algebra over the real num-
ber field. Then the second derived Brauer–Thrall type theorem holds for A.

Remark 3.8. (1) In Theorem 3.5, the condition that K/k is separable
is necessary; see the example in [JL82, Remark 3.4].

(2) It is still unknown whether Theorem 3.5 is true or not if K/k is a
MacLane-separable infinite field extension; see [JL82].

(3) Let k be a finite field with K its algebraic closure and Q be a Kro-
necker quiver. Then kQ is derived-discrete while KQ is not.
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