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Abstract Let Λn be the Beilinson algebra of exterior algebra of an n-dimensional vector space, which is

derived equivalent to the endomorphism algebra EndOX
(T ) of a tilting complex T = Πn

i=0OX(i) of coherent

OX -modules over a projective scheme X = Pn
k . In this paper we first construct a minimal projective bimodule

resolution of Λn, and then apply it to calculate k-dimensions of the Hochschild cohomology groups of Λn in terms

of parallel paths. Finally, we give an explicit description of the cup product and obtain a Gabriel presentation

of Hochschild cohomology ring of Λn. As a consequence, we provide a class of algebras of finite global dimension

whose Hochschild cohomology rings have non-trivial multiplicative structures.
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1 Introduction

Representation dimensions of artin algebras were introduced by Auslander to measure homologically

how far an artin algebra is from being of finite representation type [2]. However, during the last thirty

years, there was not much progress in this subject [28, 29]. Until recently, Iyama [15] showed that the

representation dimensions of artin algebras are always finite. Then many examples concerning the rep-

resentation dimensions of artin algebras having upper bounds were founded, but little is known about

the lower bounds and even less is known if there exist artin algebras having the representation dimen-

sions larger than 3. Until 2005, by studying the triangulated category, Rouquier [25] showed that the

representation dimension of exterior algebra of an n-dimensional vector space is n + 1, thus gave the

first example of an algebra known to have representation dimension strictly larger than 3. Then Krause

and Kussin [16] showed that the representation dimension of the endomorphism algebra Λn = EndOX (T )

of a tilting complex T =
∏n

i=0 OX(i) of coherent OX -modules over a projective scheme X = Pn
k is at

least n, thus simplified Rouquier’s original proof concerning the representation dimension which has no

boundary. The algebra Λn is derived equivalent to the Beilinson algebra b(A) of the exterior algebra A

of an n-dimensional vector space (with the usual grading), which appeared in Beilinson’s study on the

bounded derived category of projective spaces, see [4,10]. We also call the algebra Λn Beilinson algebra.

The purpose of this paper is to give a further investigation on the Hochschild cohomology behavior of

∗Corresponding author
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Λn. Note that Λn is a triangular algebra (or directed in some literature), all the Hochschild homology

groups of non-zero order are zero.

Hochschild cohomology was introduced by Hochschild in 1945, and was developed and improved by

Cartan and Eilenberg [9, 14]. In recent years, the Hochschild cohomology and Hochschild cohomology

rings have been studied extensively [5, 6, 13, 23, 30–32], and have played an important role in many

branches of mathematics and physics. For example, the Hochschild cohomology is a subtle invariance

(such as Morita equivalent invariance, tilting equivalent invariance and derived equivalent invariance) of

associative algebras [13,24]; Hochschild cohomology is closely related to simple connectedness, separability

and deformation theory [1, 17, 27]. It is well known that HH∗(Λ) = ⊕∞
i=0HH

i(Λ) is endowed with the so-

called Gerstenhaber algebra structure under the cup product and Gerstenhaber Lie bracket [18]. However,

for most finite dimensional algebras, little is known about the Hochschild cohomology groups and even

less is known about the Hochschild cohomology rings. As Green and Solberg pointed out in [22], “the

ring structure of HH∗(Λ) has often been observed to be trivial”, such as algebras of radical square zero

whose ordinary quivers are not oriented cycles [11], quadratic triangular string algebras [7], Fibonacci

algebras [12] and so on. Although “one knows that for many self-injective rings there are non-zero

products in HH∗(Λ)”, there are rather few known examples of algebras having finite global dimensions

such that the ring structures of HH∗(Λ) are non-trivial. And based on this, Bustamante gave the following

conjecture in [7]: Let Λ = kQ/I be a monomial triangular algebra. Then the ring structure of HH∗(Λ)
is trivial. Note also that Green et al. introduced a method of constructing non-selfinjective algebras

(possibly, of infinite global dimension) with non-trivial ring structure on the Hochschild cohomology ring

by means of one-point extensions [21].

In this paper, we will provide a class of algebras of finite global dimension whose Hochschild cohomology

rings have non-trivial cup products by studying the Hochschild cohomology of the Beilinson algebra Λn.

We first construct a minimal projective bimodule resolution of the Beilinson algebra Λn in Section 2,

and then calculate k-dimensions of all the Hochschild cohomology spaces of Λn in terms of combinatorics

in Section 3. Furthermore, in the final section, we find k-base of Hochschild cohomology spaces of Λn,

and give an explicit description of the cup product in terms of parallel paths by showing that the cup

product is essentially juxtaposition of parallel paths up to sign. Based on this description, we obtain

a presentation of Hochschild cohomology ring of the Beilinson algebra Λn. This shows that Hochschild

cohomology rings of Beilinson algebras have non-trivial cup products (note that the global dimension of

Λn is finite).

Throughout the paper, we always fix a field k, and write the composition of arrows from left to right,

but for the composition of maps, from right to left.

2 Minimal projective bimodule resolutions

Let Λ be a finite-dimensional k-algebra (associative with identity). Denote by Λe the enveloping algebra

of Λ, i.e., the tensor product Λ⊗kΛ
op of the algebra Λ and its opposite Λop. Then by Cartan-Eilenberg [9]

the m-th Hochschild cohomology of Λ is identified with k-space

HHm(Λ) = ExtmΛe(Λ,Λ).

So the first step for computing the Hochschild cohomology of Λ is to seek a minimal projective resolution

of Λ over its enveloping algebra Λe.

It follows from the proof of the main theorem in [16] (see also [4]) that the Beilinson algebra Λn is

isomorphic to the quotient algebra kQ/I, where Q is the following finite quiver with n+ 1 vertices and



Xu Y G et al. Sci China Math June 2012 Vol. 55 No. 6 1155

n(n+ 1) arrows (n > 1):

Q = 0

x00

��

x0n

��... 1

x10

��

x1n

��... 2 · · · n− 1

xn−1,0

��

xn−1,n

��...
n

and I is the admissible ideal of kQ generated by R = {xtixt+1,j − xtjxt+1,i | t = 0, 1, . . . , n − 2; i, j =

0, 1, . . . , n}. Throughout the paper we always fix the positive integer n and denote by Λ the Beilinson

algebra Λn. Let e0, e1, . . . , en be the complete set of primitive orthogonal idempotents in Λ which are

viewed as paths of length 0. Order the paths in Q by left length lexicographic order by choosing e0 < e1 <

· · · < en and xij < xkl if i < k, or i = k but j < l. Clearly, R is a reduced Gröbner basis of I consisting

of quadratic elements and hence Λ is a Koszul algebra [20]. Furthermore, if we identify the paths in Q

with their images in Λ, then by [3] Λ has a multiplicative basis B consisting of paths. Denote by Bm the

subset of B consisting of all paths of length m and for j = 0, 1, . . . , n−m,

Bj
m = {bm,j

i1i2···im = xji1xj+1,i2 · · ·xj+m−1,im | n � i1 � i2 � · · · � im � 0}

is the subset of Bm consisting of all paths of origin j. It is not difficult to check that |Bj
m|, the cardinary of

Bj
m, is the number of non-negative integral solutions of the linear Diophantine equation x0+x1+· · ·+xn =

m, so |Bj
m| = (

n+m
n

)
. Set Bm =

⋃n−m
j=0 Bj

m. Then |Bm| = (n+ 1−m)
(
n+m
n

)
.

Next we will construct a minimal projective bimodule resolution of Λ over Λe. For each m � 0,

we firstly construct elements {fm,j

i1i2···im | n � i1 > i2 > · · · > im � 0, j = 0, 1, . . . , n − m}. Let

f
0,j

= ej , j = 0, 1, . . . , n, and f
1,j

i1 = xji1 , j = 0, 1, . . . , n− 1. For m � 2 and 0 � j � n−m, one defines

f
m,j

i1i2···im inductively by setting

f
m,j

i1i2···im =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m∑

t=1

(−1)tf
m−1,j

i1···it−1it+1···imxj+m−1,it , if m is even,

m∑

t=1

(−1)t+1f
m−1,j

i1···it−1it+1···imxj+m−1,it , if m is odd,

(∗)

where f
−1,j

= 0 = f
n+1,j

i1i2···in+1
, j = 0, 1, . . . , n −m. Denote by F (m) = {fm,j

i1i2···im | n � i1 > i2 > · · · >
im � 0, j = 0, 1, . . . , n−m}. Clearly, |F (m)| = (n+ 1−m)

(
n+1
m

)
.

Lemma 2.1. For all 1 � m � n, j = 0, 1, . . . , n−m, we have

f
m,j

i1i2···im =
m∑

t=1

(−1)t+1xjitf
m−1,j+1

i1···it−1it+1···im .

Proof. We prove this by induction on m. It is clear that the lemma holds for m = 1, 2. We assume

that the lemma is true for m− 1. If m is even,

f
m,j

i1i2···im =
m∑

t=1

(−1)tf
m−1,j

i1···it−1it+1···imxj+m−1,it

=
m∑

t=1

(−1)t
[ t−1∑

k=1

(−1)k+1xjikf
m−2,j+1

i1···ik−1ik+1···it−1it+1···im

+

m∑

k=t+1

(−1)kxjikf
m−2,j+1

i1···it−1it+1···ik−1ik+1···im

]

xj+m−1,it

=

m∑

k=1

[ m∑

t=k+1

(−1)t+k+1xjikf
m−2,j+1

i1···ik−1ik+1···it−1it+1···im
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+

k−1∑

t=1

(−1)t+kxjikf
m−2,j+1

i1···it−1it+1···ik−1ik+1···im

]

xj+m−1,it

=
m∑

k=1

(−1)k+1xjik

[ m∑

t=k+1

(−1)tf
m−2,j+1

i1···ik−1ik+1···it−1it+1···imxj+m−1,it

+

k−1∑

t=1

(−1)t+1f
m−2,j+1

i1···it−1it+1···ik−1ik+1···imxj+m−1,it

]

=

m∑

k=1

(−1)k+1xjikf
m−1,j+1

i1···ik−1ik+1···im

as desired. If m is odd, the argument is similar. The proof is completed.

Recall that a non-zero element x in kQ is called uniform if there exist vertices u and v in Q such that

x = uxv. Note that for any f ∈ F (m), it is clear that f is uniform. We usually denote by o(f) and t(f)

the common origin and terminus of all the paths occurring in f .

Denote ⊗ := ⊗k. Let Pm :=
∐

f∈F (m) Λo(f)⊗ t(f)Λ,m � 0, and define δm : Pm −→ Pm−1 by

δm(o(f
m,j

i1i2···im)⊗ t(f
m,j

i1i2···im))

=

m∑

t=1

[(−1)t+1xjit ⊗ t(f
m−1,j+1

i1···it−1it+1···im) + (−1)to(f
m−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ].

Theorem 2.2. Let Λ be the Beilinson algebra of exterior algebra. Then the complex (P•, δ•):

0 −→ Pn
δn−→ · · · → Pm+1

δm+1−→ Pm
δm−→ · · · δ2−→ P1

δ1−→ P0
δ0−→ Λ → 0

is a minimal projective bimodule resolution of Λ, where δ0 is the multiplication map.

Proof. Let X = {xti | t = 0, 1, . . . , n− 1, i = 0, 1, . . . , n} be the set of arrows in Q, and R be the set of

generators of I as above. Since Λ is a Koszul algebra, by [8, Sect. 9], it suffices to show that F (m) is a

k-basis of the k-vector space Km :=
⋂

p+q=m−2X
pRXq for m � 2.

We first show that all the f
m,j

i1i2···im belong to Km inductively. It is trivial for m = 2. Assume that the

assertion holds for m− 1 and we prove it for m. By induction hypothesis and the formula (∗), fm,j

i1i2···im ∈
RXm−2 ∩Km−1X . And induction hypothesis and Lemma 2.1 show that f

m,j

i1i2···im ∈ Xm−2R ∩XKm−1.

The assertion follows from the fact that Km = RXm−2 ∩Xm−2R ∩XKm−1 ∩Km−1X .

Next, F (m) is k-linearly independent since they have distinct supports. Also, the quadratic duality

Λ! = kQ/I⊥ of Λ is isomorphic to the Yoneda algebra E(Λ) of Λ, where I⊥ is the ideal of kQ generated

by R⊥ = {xtixt+1,j + xtjxt+1,i | t = 0, 1, . . . , n− 1; i, j = 0, 1, . . . , n, i �= j}. So the Betti number of the

minimal projective bimodule resolution of Λ over Λe is dimkKm = (n + 1 −m)
(
n+1
m

)
. Hence F (m) is a

k-basis of Km.

Finally, by [8, Sect. 9] and [19], if m is even,

δm(o(f
m,j

i1i2···im)⊗ t(f
m,j

i1i2···im))

=

m∑

t=1

[(−1)t+1xjit ⊗ t(f
m−1,j+1

i1···it−1it+1···im) + (−1)m(−1)to(f
m−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ]

=
m∑

t=1

[(−1)t+1xjit ⊗ t(f
m−1,j+1

i1···it−1it+1···im) + (−1)to(f
m−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ],

and if m is odd,

δm(o(f
m,j

i1i2···im)⊗ t(f
m,j

i1i2···im))
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=
m∑

t=1

[(−1)t+1xjit ⊗ t(f
m−1,j+1

i1···it−1it+1···im) + (−1)m(−1)t+1o(f
m−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ]

=

m∑

t=1

[(−1)t+1xjit ⊗ t(f
m−1,j+1

i1···it−1it+1···im) + (−1)to(f
m−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ].

So the maps δ• are obtained.

Since Λ/r ∼= kn+1 is separable, the theorem above immediately implies the following corollary:

Corollary 2.3. Let Λ be the Beilinson algebra of exterior algebra. Then gl.dimΛ = n.

3 Hochschild cohomology groups

In this section we calculate k-dimensions of Hochschild cohomology groups of Λ. Let X and Y be sets

of some uniform elements in kQ. Then one defines a set of parallel paths X//Y = {(p, q) | o(p) =

o(q) and t(p) = t(q)} and that k(X//Y ) is a k-vector space having the set X//Y as a basis.

For the sake of convenience, we consider another resolution (Q•, σ•) which is isomorphic to the minimal

resolution (P•, δ•).
Let Γ(m,j) = {fm,j

i1···im = xji1xj+1,i2 · · ·xj+m−1,im | n � i1 > i2 > · · · > im � 0}, and Γ(m) =
⋃n−m

j=0 Γ(m,j). Then Γ =
⋃

m�0 Γ
(m) is a k-basis of Λ!, the quadratic duality of Λ. It is clear that

|Γ(m)| = (n+ 1−m)
(
n+1
m

)
, and

(−1)t−1xjitf
m−1,j+1
i1···it−1it+1···im = fm,j

i1···im = (−1)m−tfm−1,j
i1···it−1it+1···imxj+m−1,it .

Denote Qm :=
∐

f∈Γ(m) Λo(f) ⊗ t(f)Λ, and define σ0 : Q0 → Λn to be the multiplication map and

σm : Qm −→ Qm−1 for m > 0 as

σm(o(fm,j
i1i2···im)⊗ t(fm,j

i1i2···im))

=

m∑

t=1

[(−1)t−1xjit ⊗ t(fm−1,j+1
i1···it−1it+1···im) + (−1)m(−1)m−to(fm−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ]

=

m∑

t=1

[(−1)t−1xjit ⊗ t(fm−1,j+1
i1···it−1it+1···im) + (−1)to(fm−1,j

i1···it−1it+1···im)⊗ xj+m−1,it ].

It is easy to check that (Q•, σ•) is isomorphic to the resolution (P•, δ•), and thus we obtain another

minimal projective resolution (Q•, σ•) of Λ over Λe.

Applying the functor HomΛe(−,Λ) to the minimal projective bimodule resolution (Q•, σ•), we have

HomΛe((Q•, σ•),Λ) = (Q∗
•, σ

∗
•), where Q

∗
m = HomΛe(Qm,Λ) and σ

∗
m(η) = ησm for any η ∈ Q∗

m−1.

We first fix some notations. Given a decreasing sequence i1i2 · · · im, we define a position function of

ik relative to the sequence i1i2 · · · im by

μ(ik) = μi1i2···im(ik) = k.

And we denote

Ωi1i2···im = {0, 1, . . . , n} \ {i1, i2, . . . , im}.
For any s∈Ωi1i2···im , if ik>s>ik+1, we denote by i1i2 · · · imŝ the decreasing sequence i1 · · · iksik+1 · · · im.

Clearly, μi1i2···imŝ(s) = k + 1.

We now can describe the complex (Q∗•, σ∗•) in terms of parallel paths.
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Lemma 3.1. The complex (Q∗
•, σ

∗
•) is isomorphic to complex (M•, τ•), where Mm := k(Bm//Γ

(m))

and for any j = 0, 1, . . . , n−m, (b, fm,j
i1i2···im) ∈ Bm//Γ

(m), τ• is given by

τm+1(b, fm,j
i1i2···im) =

∑

s∈Ωi1i2···im

[(−1)μ(s)−1(xj−1,sb, f
m+1,j−1
i1i2···im ŝ ) + (−1)μ(s)(bxj+m,s, f

m+1,j
i1i2···im ŝ)].

Proof. Clearly, Q∗
m = HomΛe(Qm,Λ) = HomΛe(

∐
f∈Γ(m) Λe(o(f) ⊗k t(f)),Λ) ∼= ∐

f∈Γ(m)(o(f) ⊗k

t(f)Λ) ∼= ∐
f∈Γ(m)(o(f)Λt(f)) ∼= k(Bm//Γ

(m)). The k-vector spaces isomorphism φ from k(Bm//Γ
(m))

to Q∗
m is given by φ(b, f) = η(b,f), where

η(b,f)(o(g) ⊗ t(g)) =

{
b, if g = f,

0, otherwise,

for any (b, f) ∈ Bm//Γ
(m).

It suffices to check that σ∗
m+1φ = φτm+1. For any (b, fm,j

i1i2···im) ∈ k(Bm//Γ
m) and

∑
f∈Γ(m+1) αfo(f)⊗

t(f)βf ∈ Qm+1, where αf , βf ∈ Λ, we have

(σ∗
m+1φ(b, f

m,j
i1i2···im))

( ∑

f∈Γ(m+1)

αfo(f)⊗ t(f)βf

)

= η(b,fm,j
i1i2···im )σm+1

( ∑

f∈Γ(m+1)

αfo(f)⊗ t(f)βf

)

=
∑

fm+1,j′
l1l2···lm+1

∈Γ(m+1)

α
fm+1,j′
l1l2···lm+1

[η(b,fm,j
i1i2···im )σm+1(o(f

m+1,j′
l1l2···lm+1

)⊗ t(fm+1,j′
l1l2···lm+1

))]β
fm+1,j′
l1l2···lm+1

=
∑

k∈Ωi1i2···im

αfm+1,j−1

i1i2···imk̂

η(b,fm,j
i1i2···im )((−1)μ(k)−1xj−1,k ⊗ t(fm,j

i1i2···im))βfm+1,j−1

i1i2···imk̂

+
∑

k′∈Ωi1i2···im

αfm+1,j

i1i2···imk̂′
η(b,fm,j

i1i2···im )((−1)μ(k
′)o(fm,j

i1i2···im)⊗ xj+m,k′ )βfm+1,j

i1i2···imk̂′

=
∑

k∈Ωi1i2···im

αfm+1,j−1

i1i2···imk̂

(−1)μ(k)−1xj−1,kbβfm+1,j−1

i1i2···imk̂

+
∑

k′∈Ωi1i2···im

αfm+1,j

i1i2···imk̂′
(−1)μ(k)bxj+m,kβfm+1,j

i1i2···imk̂′
,

and

(φτm+1(b, fm,j
i1i2···im))

( ∑

f∈Γ(m+1)

αfo(f)⊗ t(f)βf

)

=

[

φ
∑

s∈Ωi1i2···im

[(−1)μ(s)−1(xj−1,sb, f
m+1,j−1
i1i2···imŝ ) + (−1)μ(s)(bxj+m,s, f

m+1,j
i1i2···im ŝ)]

]

( ∑

f∈Γ(m+1)

αfo(f)⊗ t(f)βf

)

=
∑

s∈Ωi1i2···im

[

(−1)μ(s)−1η(xj−1,sb,f
m+1,j−1
i1i2···imŝ)

( ∑

f∈Γ(m+1)

αfo(f)⊗ t(f)βf

)

+ (−1)μ(s)η(bxj+m,s,f
m+1,j
i1i2···imŝ)

( ∑

f∈Γ(m+1)

αfo(f)⊗ t(f)βf

)]

=
∑

s∈Ωi1i2···im

(−1)μ(s)−1η(xj−1,sb,f
m+1,j−1
i1i2···imŝ)

( ∑

k∈Ωi1i2···im

αfm+1,j−1

i1i2···imk̂

o(fm+1,j−1

i1i2···imk̂
)⊗ t(fm+1,j−1

i1i2···imk̂
)βfm+1,j−1

i1i2···imk̂

)
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+ (−1)μ(s)η(bxj+m,s,f
m+1,j
i1i2···imŝ)

( ∑

k′∈Ωi1i2···im

αfm+1,j

i1i2···imk̂′
o(fm+1,j

i1i2···imk̂′)⊗ t(fm+1,j

i1i2···imk̂′ )βfm+1,j

i1i2···imk̂′

)

=
∑

k∈Ωi1i2···im

αfm+1,j−1

i1i2···imk̂

(−1)μ(k)−1xj−1,kbβfm+1,j−1

i1i2···imk̂

+
∑

k′∈Ωi1i2···im

αfm+1,j

i1i2···imk̂′
(−1)μ(k)bxj+m,kβfm+1,j

i1i2···imk̂′
.

Thus σ∗
m+1φ = φτm+1 as desired.

To calculate the dimensions of Hochschild cohomology groups of Λ, note that HHm(Λ) =

Kerτm+1/Imτm by definition, we have

dimk HH
m(Λ) = dimk Kerτm+1 − dimk Imτ

m = dimkM
m − dimk Imτ

m+1 − dimk Imτ
m.

Since Mm = k(Bm//Γ
(m)), dimkM

m = (n + 1 − m)
(
n+m
m

)(
n+1
m

)
. Hence it suffices to determine

dimk Imτ
m+1 and dimk Imτ

m.

We say the sequences r1 · · · rm < s1 · · · sm if there is some 1 � t � m such that ri = si for 1 �
i < t and rt < st, where ri, si ∈ {0, 1, . . . , n}. Then we define an order on Bm by setting bm,j1

r1r2···rm <

bm,j2
s1s2···sm , if j1 < j2, or j1 = j2 but r1r2 · · · rm < s1s2 · · · sm. Similarly, we can define an order on Γ(m)

by setting fm,j1
i1i2···im < fm,j2

k1k2···km
, if j1 < j2, or j1 = j2 but i1i2 · · · im < k1k2 · · · km. The orders defined

as above induce an order on Bm//Γ
(m) as follows:

(b1, f1) < (b2, f2), if f1 < f2, or f1 = f2 but b1 < b2.

We still denote by τm+1 the matrix of the differential τm+1 under the ordered bases above. Based on

the description of τm+1 in Lemma 3.1, a rather lengthly analysis shows that τm+1 has the following form:

τm+1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

A

−A A

−A A

. . .
. . .

−A A

−A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(n+1−m)×(n−m)

where A is an
(
n+m
n

)(
n+1
m

)×(
n+m+1

n

)(
n+1
m+1

)
matrix. And the rows and columns of A are just corresponding

to the basis elements in B0
m//Γ

(m,0) and B0
m+1//Γ

(m+1,0) respectively. So, for the sake of convenience,

we can use the basis elements in B0
m//Γ

(m,0) and B0
m+1//Γ

(m+1,0) as the index sets of rows and columns

of A respectively, and write the row index (r1r2 · · · rm, j1j2 · · · jm) instead of (bm,0
r1r2···rm , f

m,0
j1j2···jm), and

similarly for column indices. The matrix A is described as follows: given the (r1r2 · · · rm, j1j2 · · · jm)-th

row of A, the (r1 · · · rmŝ, j1 · · · jmŝ)-th component of the row is (−1)μj1j2...jmŝ(s) for s ∈ Ωj1j2...jm , and

other components are 0. Obviously, rankτm+1 = (n − m)rankA. The following lemma gives the rank

of A.

Lemma 3.2.

rankA =

m∑

i=0

(
n− i+m

n− i

)(
n− i

m− i

)

.

Proof. For any i = 0, 1, . . . ,m, we denote Tm
i = {(r1 · · · rm, n(n− 1) · · · (n− i+1)h1 · · ·hm−i) | n− i �

r1 � r2 � · · · � rm � 0, n − i − 1 � h1 > h2 > · · · > hm−i � 0} and Tm =
⋃m

i=0 T
m
i . And for any

i = 0, 1, . . . ,m − 1, Sm
i = {(n − i)r1r2 · · · rm−1, n(n − 1) · · · (n − i)h1h2 · · ·hm−i−1) | n − i � r1 � r2 �

· · · � rm−1 � 0, n− i − 1 � h1 > h2 > · · · > hm−i−1 � 0} and Sm =
⋃m−1

i=0 Sm
i . Here, once and for all,
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we always view n(n− 1) · · · (n− i+1)h1 · · ·hm−i as h1 · · ·hm when i = 0, and as n(n− 1) · · · (n−m+1)

when i = m. It is easy to see that Tm∩Sm = ∅ and Tm∪Sm is the set of indices of all row vectors of A.

We first claim that the row vectors of A with indices in Tm are linearly independent since the last

non-zero components of them are pairwise distinct. To see this, it is enough to note that the last non-

zero component of the (r1 · · · rm, n(n− 1) · · · (n− i + 1)h1 · · ·hm−i)-th row of A is the ((n − i)r1 · · · rm,
n(n− 1) · · · (n− i)h1 · · ·hm−i)-th component.

Next, we assert that any row vector of A with index in Sm can be written as a linear combination

of some row vectors with indices in Tm. More precisely, for any row vector β with row index ((n −
i)r1r2 · · · rm−1, n(n− 1) · · · (n− i)h1h2 · · ·hm−i−1) ∈ Sm, we will prove that

β =
∑

s∈Ωn(n−1)···(n−i)h1h2···hm−i−1

(−1)μh1···hm−i−1 ŝ(s)βh1···hm−i−1ŝ, (3.1)

where βh1···hm−i−1ŝ denotes the row vector of A with the row index (r1 · · · rm−1ŝ, n(n − 1) · · · (n − i +

1)h1 · · ·hm−i−1ŝ) ∈ Tm.

Firstly, we consider the non-zero components of the vector β. We simply denote μ(s) = μh1···hm−i−1 ŝ(s)

for any s ∈ Ωn(n−1)···(n−i)h1h2···hm−i−1
. Then, by definition of τm+1, the ((n − i)r1 · · · rm−1ŝ, n(n −

1) · · · (n − i)h1 · · ·hm−i−1ŝ)-th component of β is (−1)i+1+μ(s) for s ∈ Ωn(n−1)···(n−i)h1h2···hm−i−1
, and

other components are 0.

Secondly, consider the non-zero components of βh1···hm−i−1ŝ for any given s∈Ωn(n−1)···(n−i)h1h2···hm−i−1
.

By the description of the matrix A in the paragraph before the lemma, there are two classes of non-

zero components: the first class is only the ((n − i)r1 · · · rm−1ŝ, n(n − 1) · · · (n − i)h1 · · ·hm−i−1ŝ)-th

component of βh1···hm−i−1 ŝ which is (−1)i+1, and the other class is those components corresponding to

(r1 · · · rm−1ŝĥ, n(n − 1) · · · (n − i + 1)h1 · · · hm−i−1ŝĥ) for h ∈ Ωn(n−1)···(n−i)h1···hm−i−1ŝ. In the latter

case, the (r1 · · · rm−1ŝĥ, n(n − 1) · · · (n − i + 1)h1 · · ·hm−i−1ŝĥ)-th component is (−1)i+μ(h) whenever

h > s, and (−1)i+μ(h)+1 whenever h < s.

Finally, we will show that the formula (3.1) is true by componentwise. We will prove this by dividing

components of β into three classes.

We first consider the ((n − i)r1 · · · rm−1ŝ, n(n − 1) · · · (n − i)h1 · · ·hm−i−1ŝ)-th component of the

formula (3.1) with s ∈ Ωn(n−1)···(n−i)h1h2···hm−i−1
. Clearly, the component of β is (−1)i+1+μ(s), and for

h ∈ Ωn(n−1)···(n−i)h1h2···hm−i−1
, the ((n− i)r1 · · · rm−1ŝ, n(n− 1) · · · (n− i)h1 · · ·hm−i−1ŝ)-th component

of βh1···hm−i−1ĥ
is (−1)i+1 if h = s, and 0 otherwise. Note that (−1)μ(s) · (−1)i+1 = (−1)i+1+μ(s), the

formula (3.1) is true for the ((n−i)r1 · · · rm−1ŝ, n(n−1) · · · (n−i)h1 · · ·hm−i−1ŝ)-th non-zero component.

Given any u, v ∈ Ωn(n−1)···(n−i)h1···hm−i−1
with u �= v, we next show that the formula (3.1) is also true

for the (r1 · · · rm−1ûv̂, n(n− 1) · · · (n− i + 1)h1 · · ·hm−i−1ûv̂)-th component. Without loss of generality

we may assume u > v. By the description of the fourth paragraph of the proof, the component of β is

zero. On the other hand, among the vectors βh1···hm−i−1 ŝ appearing in the right-hand side of the formula

(3.1) for s ∈ Ωn(n−1)···(n−i)h1h2···hm−i−1
, there are only two vectors, βh1···hm−i−1û and βh1···hm−i−1v̂, such

that the (r1 · · · rm−1ûv̂, n(n−1) · · · (n−i+1)h1 · · ·hm−i−1ûv̂)-th components of them are non-zero, which

are (−1)i+1+μ(v) and (−1)i+μ(u), respectively. Since (−1)μ(u) · (−1)i+1+μ(v) + (−1)μ(v) · (−1)i+μ(u) = 0,

we have the formula (3.1) holds as desired.

The rest components of β are zero by the description of the fourth paragraph of the proof; and

the corresponding components of βh1···hm−i−1ŝ appearing in the right-hand side of the formula (3.1) for

s ∈ Ωn(n−1)···(n−i)h1h2···hm−i−1
are also zero by the description of the fifth paragraph of the proof. Thus

we have finished the proof of the formula (3.1) componentwise.

Hence, rankA = |Tm| = ∑m
i=0

(
n−i+m
n−i

)(
n−i
m−i

)
.

Lemma 3.3. For any 0 � m � n− 1, we have

rankτm+1 = (n−m)

(
n

m

)(
n+m+ 1

m

)

.
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Proof. Since

m∑

i=0

(
n+m− i

m− i

)

=

(
n+m

m

)

+

m−1∑

i=1

(
n+m− i

m− i

)

+ 1

=

(
n+m

m

)

+

m−1∑

i=1

((
n+m− i+ 1

m− i

)

−
(
n+m− i

m− i− 1

))

+ 1

=

(
n+m

m

)

+

m−2∑

i=0

(
n+m− i

m− 1− i

)

−
m−1∑

i=1

(
n+m− i

m− i− 1

)

+ 1

=

(
n+m

m

)

+

(
n+m

m− 1

)

+

m−2∑

i=1

(
n+m− i

m− i− 1

)

−
m−2∑

i=1

(
n+m− i

m− i− 1

)

=

(
n+m

m

)

+

(
n+m

m− 1

)

=

(
n+m+ 1

m

)

,

we have

rankτm+1 = (n−m)rankA = (n−m)

m∑

i=0

((
n− i+m

n− i

)(
n− i

m− i

))

= (n−m)

m∑

i=0

((
n

m

)(
n+m− i

m− i

))

= (n−m)

(
n

m

) m∑

i=0

(
n+m− i

m− i

)

= (n−m)

(
n

m

)(
n+m+ 1

m

)

.

Now we can calculate the dimensions of all the Hochschild cohomology spaces of the Beilinson algebra

Λ of exterior algebra.

Theorem 3.4. Let Λ be the Beilinson algebra of exterior algebra. Then for any m � 0, we have

dimk HH
m(Λ) =

(
n

m

)(
n+ 1 +m

m

)

,

where
(
n
m

)
= 0 if m > n.

Proof. It is clear that dimk HH
m(Λ) = 0 if m > n. By Lemma 3.3 we have

rankτm+1 + rankτm = (n−m)

(
n

m

)(
n+m+ 1

m

)

+ (n−m+ 1)

(
n

m− 1

)(
n+m

m− 1

)

= (n−m)
(n+ 1−m)(n+ 1 +m)

(n+ 1)2

(
n+ 1

m

)(
n+m

m

)

+ (n−m+ 1)
m2

(n+ 1)2

(
n+ 1

m

)(
n+m

m

)

=

(

n−m+
m2

(n+ 1)2

)(
n+ 1

m

)(
n+m

m

)

,

so

dimk HH
m(Λ) = dimkM

m − (dimk Imτ
m+1 + dimk Imτ

m)

= dimkM
m − (rankτm+1 + rankτm)

= (n+ 1−m)

(
n+m

m

)(
n+ 1

m

)

−
(

n−m+
m2

(n+ 1)2

)(
n+ 1

m

)(
n+m

m

)

=

[

n+ 1−m−
(

n−m+
m2

(n+ 1)2

)](
n+ 1

m

)(
n+m

m

)

=
(n+ 1)2 −m2

(n+ 1)2

(
n+ 1

m

)(
n+m

m

)

=

(
n

m

)(
n+ 1 +m

m

)

.
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4 Hochschild cohomology rings

This section is devoted to the description of Hochschild cohomology rings of the Beilinson algebras Λ. As

a consequence, we provide a class of algebras of finite global dimensions whose multiplicative structures

of Hochschild cohomology rings are non-trivial.

Let T =
⋃n

m=0 T
m, where the index set Tm is defined in the proof of Lemma 3.2. We first construct

a k-basis of the Hochschild cohomology space HHm(Λ) for any 0 � m � n. Given a non-negative integer

0 � i � m, and (r1r2 · · · rm, n(n− 1) · · · (n− i+ 1)h1 · · ·hm−i) ∈ T , we denote

ξi = ξi(r1r2···rm,n(n−1)···(n−i+1)h1···hm−i)
=

n−m∑

j=0

(bm,j
r1···rm , f

m,j
n(n−1)···(n−i+1)h1···hm−i

).

Set H(m,i) = {ξi(r1r2···rm,n(n−1)···(n−i+1)h1···hm−i)
| (r1r2 · · · rm, n(n− 1) · · · (n − i + 1)h1 · · ·hm−i) ∈ Tm

i }
and Hm =

⋃m
i=0 H(m,i). Then we have the following lemma:

Lemma 4.1. Hm forms a k-basis of the k-vector space HHm(Λ).

Proof. We first consider the k-basis of Kerτm+1. It is straightforward to check that τm+1(ξ) = 0 for

ξ ∈ Hm. For j = 0, 1, . . . , n−m, we denote

ζ = ζj((n−i) r1···rm−1,n(n−1)···(n−i)h1···hm−i−1)

= (bm,j
(n−i) r1···rm−1

, fm,j
n(n−1)···(n−i)h1···hm−i−1

)

+
∑

s

(−1)μ(s)+1(bm,j
r1···rm−1ŝ

, fm,j
n(n−1)···(n−i+1)h1h2···hm−i−1 ŝ

),

where s ∈ Ωn(n−1)···(n−i)h1···hm−i−1
, and μ(s) = μh1h2···hm−i−1ŝ(s). Set

K(m,j) = {ζj((n−i) r1···rm−1,n(n−1)···(n−i)h1···hm−i−1)
|

((n− i) r1 · · · rm−1, n(n− 1) · · · (n− i)h1 · · ·hm−i−1) ∈ Sm},

and Km =
⋃n−m

j=0 K(m,j).

Formula (3.1) implies that τm+1(a) = 0 for a ∈ Km, so Hm ∪Km ⊂ Kerτm+1. It is not difficult to

check that Hm ∪Km is a linearly independent set, and

|Hm| =
m∑

i=0

((
n− i+m

n− i

)(
n− i

m− i

))

=

(
n

m

)(
n+ 1 +m

m

)

,

|Km| = (n+ 1−m)

m−1∑

i=0

((
n− i+m− 1

n− i

)(
n− i

m− i− 1

))

= (n+ 1−m)

m−1∑

i=0

((
n

m− 1

)(
n+m− 1− i

m− 1− i

))

= (n+ 1−m)

(
n

m− 1

)(
n+m

m− 1

)

.

Also,

dimk Kerτm+1 = dimkM
m − dimk Imτ

m+1

= (n+ 1−m)

(
n+m

n

)(
n+ 1

m

)

− (n−m)

(
n

m

)(
n+m+ 1

m

)

= (n+ 1−m)

((
n+m

n

)(
n+ 1

m

)

−
(
n

m

)(
n+ 1 +m

m

))

+

(
n

m

)(
n+m+ 1

m

)
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= (n+ 1−m)

(
n

m− 1

)(
n+m

m− 1

)

+

(
n

m

)(
n+m+ 1

m

)

= |Hm|+ |Km|.

Hence, Hm ∪Km forms a k-basis of Kerτm+1.

We next claim that Km forms a k-basis of Imτm. Indeed,

τm
(

(−1)i+1

j∑

t=0

(bm−1,t
r1···rm−1

, fm−1,t
n(n−1)···(n−i+1)h1···hm−i−1

)

)

= (−1)i+1

j∑

t=0

∑

s∈Ω

[(−1)μ(s)+i−1(bm,t−1
r1···rm−1ŝ

, fm,t−1
n(n−1)···(n−i+1)h1···hm−i−1ŝ

)

+ (−1)μ(s)+i(bm,t
r1···rm−1ŝ

, fm,t
n(n−1)···(n−i+1) h1···hm−i−1 ŝ

)]

=
∑

s∈Ω

(−1)μ(s)+1

( j∑

t=0

[−(bm,t−1
r1···rm−1ŝ

, fm,t−1
n(n−1)···(n−i+1)h1···hm−i−1ŝ

)

+ (bm,t
r1···rm−1ŝ

, fm,t
n(n−1)···(n−i+1) h1···hm−i−1ŝ

)]

)

=
∑

s∈Ω

(−1)μ(s)+1(bm,j
r1···rm−1ŝ

, fm,j
n(n−1)···(n−i+1)h1···hm−i−1 ŝ

)

=
∑

s∈Ωn(n−1)···(n−i)h1h2···hm−i−1

(−1)μ(s)+1(bm,j
r1···rm−1ŝ

, fm,j
n(n−1)···(n−i+1)h1···hm−i−1ŝ

)

+ (bm,j
(n−i)r1···rm−1

, fm,j
n(n−1)···(n−i)h1···hm−i−1

)

= ζj((n−i) r1···rm−1,n(n−1)···(n−i)h1···hm−i−1)
∈ K(m,j),

where Ω = Ωn(n−1)···(n−i+1)h1h2···hm−i−1
and μ(s)=μh1···hm−i−1ŝ(s). So spanKm⊆ Imτm, but dimk Imτ

m

= (n−m+ 1)
(

n
m−1

)(
n+m
m−1

)
= |Km|, thus Km forms a k-basis of Imτm.

Since HHm(Λ) = Kerτm+1/Imτm, Hm forms a k-basis of HHm(Λ).

In the following we will describe the multiplicative structure of Hochschild cohomology ring of Λ in

terms of parallel paths. In [26] it was shown that any projective Λe-resolution X of Λ gives rise to a

“cup product”, which coincides with the ordinary cup product. Let X be a projective Λe-resolution of Λ.

There exists a chain map Δ : X −→ X⊗Λ X lifting the identity, which is unique up to homotopy. Siegel

and Witherspoon defined in [26] a cup product of two elements η in HHm(Λ) and θ in HHs(Λ) as above

using the composition

X
Δ−→ X⊗Λ X

η⊗θ−→ Λ⊗Λ Λ
ν−→ Λ,

and note that it is independent of the projective resolution X of Λ and the chain map Δ. Based on this

context Buchweitz et al. gave in [5] a description of multiplicative structure of Hochschild cohomology

ring of a Koszul algebra. Now we give an explicit formula of Δ for the minimal projective Λe-resolution

(Q•, σ•) of the Beilinson algebra Λ constructed in Section 3.

Recall that (Q⊗Λ Q, D) is still a projective Λe-resolution of Λ which is given by

(Q ⊗Λ Q)m =
∐

i+j=m

Qi ⊗Λ Qj

and Dm : (Q ⊗Λ Q)m −→ (Q ⊗Λ Q)m−1 is given by

Dm =

m−1∑

i=0

((−1)i ⊗ σm−i + σi+1 ⊗ 1).
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Now we will define a chain map Δ : (Q•, σ•) −→ (Q⊗Λ Q, D). Note that Qm =
∐

f∈Γm Λo(f)⊗ t(f)Λ ∼=
∐

f∈Γm Λ⊗ f ⊗Λ as Λ-bimodules. For simplicity, we will adopt the notation Qm =
∐

f∈Γm Λ⊗ f ⊗Λ for

the rest of this section.

Definition 4.2. The map Δ : (Q•, σ•) −→ (Q⊗Λ Q, D) is defined by

Δm(1⊗ fm,j
i1···im ⊗ 1) =

m∑

s=0

∑

1�p1<···<ps�m

(−1)ε(p1p2···pm)(1⊗ f s,j
ip1 ···ips ⊗ 1)⊗Λ (1⊗ fm−s,j+s

ips+1
···ipm ⊗ 1),

where ε(p1p2 · · · pm) denotes the sign of the permutation κ =
(

1 2 ··· m
p1 p2 ··· pm

)
, i.e.,

ε(p1p2 · · · pm) =

{
1, if κ is even;

−1, if κ is odd.

Lemma 4.3. The map Δ : (Q•, σ•) −→ (Q ⊗Λ Q, D) defined as above is a chain map which lifts the

identity.

Proof. It is sufficient to show that the following diagram

Qm
σm−−−−→ Qm−1

Δm

⏐
⏐
�

⏐
⏐
�Δm−1

(Q ⊗Λ Q)m
Dm−−−−→ (Q ⊗Λ Q)m−1

(4.1)

is commutative for allm � 1. By the linearity of Δ and σ, it is enough to prove for any 1⊗fm,j
i1···im⊗1 ∈ Qm,

DmΔm(1⊗ fm,j
i1···im ⊗ 1) = Δm−1σm(1 ⊗ fm,j

i1···im ⊗ 1).

Since

(Q⊗Λ Q)m−1 =

m−1∐

r=0

Qr ⊗Λ Qm−1−r,

we will prove that the r-th component ofDmΔm(1⊗fm,j
i1···im⊗1) is equal to that of Δm−1σm(1⊗fm,j

i1···im⊗1)

for each 0 � r � m− 1. By definition,

σm(1 ⊗ fm,j
i1···im ⊗ 1) =

m∑

t=1

[(−1)t−1xjit ⊗ fm−1,j+1
i1···it−1it+1···im ⊗ 1 + (−1)t1⊗ fm−1,j

i1···it−1it+1···im ⊗ xj+m−1,it ],

we obtain the r-th component of Δm−1σm(1⊗ fm,j
i1···im ⊗ 1) is the sum of

m∑

t=1

∑

p1···pr

(−1)ε(p1p2···pm−1)(−1)t−1(xjit ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1) (4.2)

and

m∑

t=1

∑

p1···pr

(−1)ε(p1p2···pm−1)(−1)t(1 ⊗ f r,j
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r

ipr+1
···ipm−1

⊗ xjit), (4.3)

where p1 · · · pr runs over all the strict increasing sequences p1 · · · pr with pi ∈ {1, 2, . . . ,m}\{t}. Note that
the sequence p1p2 · · · pm−1 is not necessary to be strict increasing though both p1 · · · pr and pr+1 · · · pm−1

are.

On the other hand, by the definition of Δ, we have

Δm(1⊗ fm,j
i1···im ⊗ 1) =

m∑

s=0

∑

1�p1<···<ps�m

(−1)ε(p1p2···pm)(1⊗ f s,j
ip1 ···ips ⊗ 1)⊗Λ (1⊗ fm−s,j+s

ips+1
···ipm ⊗ 1).
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Then the r-component of DmΔm(1⊗ fm,j
i1···im ⊗ 1) is the sum of the following four terms:

∑

1�q1<···<qr+1�m

r+1∑

t=1

(−1)ε(q1q2···qm)(−1)t−1(xjiqt ⊗ f r,j+1
iq1 ···iqt−1

iqt+1
···iqr+1

⊗ 1)

⊗Λ (1⊗ fm−1−r,j+r+1
iqr+2

···iqm ⊗ 1), (4.4)

∑

1�q1<···<qr+1�m

r+1∑

t=1

(−1)ε(q1q2···qm)(−1)t(1⊗ f r,j
iq1 ···iqt−1

iqt+1
···iqr+1

⊗ xj+r,iqt
)

⊗Λ (1⊗ fm−1−r,j+r+1
iqr+2

···iqm ⊗ 1), (4.5)

∑

1�q1<···<qr�m

m−r∑

t=1

(−1)ε(q1q2···qm)(−1)r+t−1(1⊗ f r,j
iq1 ···iqr ⊗ 1)

⊗Λ (xj+r,iqr+t
⊗ fm−1−r,j+r+1

iqr+1
···iqr+t−1

iqr+t+1
···iqm ⊗ 1), (4.6)

∑

1�q1<···<qr�m

m−r∑

t=1

(−1)ε(q1q2···qm)(−1)t(1⊗ f r,j
iq1 ···iqr ⊗ 1)

⊗Λ (1⊗ fm−1−r,j+r
iqr+1

···iqr+t−1
iqr+t+1

···iqm ⊗ xj+m−1,iqr+t
). (4.7)

To prove that the diagram (4.1) is commutative, it suffices to prove (4.2) + (4.3) = (4.4) + (4.5) +

(4.6) + (4.7). In fact, we will show that (4.2) = (4.4), (4.3) = (4.7) and (4.5) + (4.6) = 0.

In order to prove (4.2) = (4.4), we first show that each summand of (4.2) is a summand of (4.4). Taken

a summand (−1)ε(p1p2···pm−1)(−1)t−1(xjit ⊗ f r,j+1
ip1 ···ipr ⊗ 1) ⊗Λ (1 ⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1) in Formula (4.2),

we assume s = μip1 ···ipr (it) and write the sequence q1q2 · · · qm instead of p1 · · · ps−1tps · · · pm−1. Thus we

have

(−1)t−1(−1)ε(p1···pm−1)(xjit ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1)

= (−1)(t−s)(−1)ε(p1···pm−1)(−1)s−1(xjit ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1)

= (−1)ε(p1···ps−1tps+1···pm−1)(−1)s−1(xjit ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1 ⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1)

= (−1)ε(q1q2···qm)(−1)s−1(xjiqs ⊗ f r,j+1
iq1 ···iqs−1

iqs+1
···iqr+1

⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1
iqr+2

···iqm ⊗ 1),

which is a summand of the formula (4.4). Conversely, given a summand (−1)ε(q1q2···qm) (−1)t−1(xjiqt ⊗
f r,j+1
iq1 ···iqt−1

iqt+1
···iqr+1

⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1
iqr+2

···iqm ⊗ 1) of the formula (4.4), we assume s = qt and write the

sequence p1 · · · pm−1 as q1 · · · qt−1qt+1 · · · qm. Then we have

(−1)ε(q1q2···qm)(−1)t−1(xjiqt ⊗ f r,j+1
iq1 ···iqt−1

iqt+1
···iqr+1

⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1
iqr+2

···iqm ⊗ 1)

= (−1)ε(p1···pt−1spt···pm−1)(−1)t−1(xjis ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1)

= (−1)(t−1)−(s−1)(−1)ε(p1···pm−1)(−1)t−1(xjis ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1)

= (−1)s−1(−1)ε(p1···pm−1)(xjis ⊗ f r,j+1
ip1 ···ipr ⊗ 1)⊗Λ (1⊗ fm−1−r,j+r+1

ipr+1
···ipm−1

⊗ 1),

which is a summand of the formula (4.2). Thus (4.2) = (4.4).

A similar argument yields (4.3) = (4.7). It remains to be show that (4.5) + (4.6) = 0. We do this by

showing that any summand in Formula (4.5) appears in Formula (4.6) with the opposite sign and the

converse holds as well.

Taken a summand (−1)ε(q1q2···qm)(−1)t(1⊗ f r,j
iq1 ···iqt−1

iqt+1
···iqr+1

⊗ xj+r,iqt
)⊗Λ (1⊗ fm−1−r,j+r+1

iqr+2
···iqm ⊗ 1)

in Formula (4.5), we assume pr+s = qt and write p1 · · · pr+s−1 pr+s+1 · · · pm as q1 · · · qt−1qt+1 · · · qm, then
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we have

(−1)ε(q1q2···qm)(−1)t(1⊗ f r,j
iq1 ···iqt−1

iqt+1
···iqr+1

⊗ xj+r,iqt
)⊗Λ (1⊗ fm−1−r,j+r+1

iqr+2
···iqm ⊗ 1)

= (−1)r+s−t(−1)ε(p1···pm)(−1)t(1⊗ f r,j
ip1 ······ipr ⊗ xj+r,ipr+s

)⊗Λ (1⊗ fm−1−r,j+r+1
ipr+1

···ipm ⊗ 1)

= −(−1)ε(p1···pm)(−1)r+s−1(1 ⊗ f r,j
ip1 ······ipr ⊗ 1)⊗Λ (xj+r,ipr+s

⊗ fm−1−r,j+r+1
ipr+1

···ipm ⊗ 1),

which is in (4.6) with the opposite sign. Conversely, given a summand (−1)ε(q1q2···qm)(−1)r+t−1(1 ⊗
f r,j
iq1 ···iqr ⊗1)⊗Λ(xj+r,iqr+t

⊗fm−1−r,j+r+1
iqr+1

···iqr+t−1
iqr+t+1

···iqm ⊗1) in the formula (4.6), we assume s=μiq1 ···iqr (iqr+t)

and we set ps = qr+t and write the sequence p1 · · · ps−1ps+1 · · · pm as q1 · · · qr+t−1qr+t+1 · · · qm, thus we

have

(−1)ε(q1q2···qm)(−1)r+t−1(1⊗ f r,j
iq1 ···iqr ⊗ 1)⊗Λ (xj+r,iqr+t

⊗ fm−1−r,j+r+1
iqr+1

···iqr+t−1
iqr+t+1

···iqm ⊗ 1)

= −(−1)s(−1)ε(p1···pm)(1 ⊗ f r,j
ip1 ···ips−1

ips+1
···ipr+1

⊗ 1)⊗Λ (xj+r,ips ⊗ fm−1−r,j+r+1
ipr+2

···ipm ⊗ 1)

= −(−1)s(−1)ε(p1···pm)(1 ⊗ f r,j
ip1 ···ips−1

ips+1
···ipr+1

⊗ xj+r,ips )⊗Λ (1⊗ fm−1−r,j+r+1
ipr+2

···ipm ⊗ 1),

which is also a summand of Formula (4.5) with the opposite sign.

The proof is finished.

The following theorem shows that the cup product in Hochschild cohomology ring of the Beilinson

algebra Λ is essentially juxtaposition of parallel paths up to sign, which will provide an explicit description

of the multiplicative structure of Hochschild cohomology ring.

Theorem 4.4. Let Λ be the Beilinson algebra of exterior algebra. Suppose that

ξ = (bm,i
r1···rm , f

m,i
i1i2···im) ∈Mm, θ = (bs,jr′1···r′s , f

s,j
i′1i

′
2···i′s) ∈M s

represent two cochains in Q∗
m and Q∗

s. Then the cup product of ξ and θ in Q∗
m+s is

ξ � θ =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)ε(i1i2···imi′1i
′
2···i′s)(bm,i

r1···rmb
s,i+m
r′1···r′s , f

m+s,i

i1···im î′1···î′s
),

if {i1, i2, . . . , im} ∩ {i′1, i′2, . . . , i′s} = ∅ and j = i+m;

0, otherwise.

Recall that i1 · · · imî′1 · · · î′s stands for the strict decreasing sequence consisting of i1, . . . , im, i
′
1, . . . , i

′
s.

Proof. For simplicity, we still denote by ξ and θ the elements φ(ξ) and φ(θ) in Q∗
m and Q∗

s respectively,

where φ is the isomorphism defined in the proof of Lemma 3.1. Note that the cup product of ξ and θ is

the composition of the following maps

Q
Δ−→ Q⊗Λ Q

ξ⊗θ−→ Λ⊗Λ Λ
ν−→ Λ,

then for any element 1⊗ fm+s,k
j1···jm+s

⊗ 1 ∈ Qm+s, we have

ξ � θ(1 ⊗ fm+s,k
j1···jm+s

⊗ 1) = ν(ξ ⊗ θ)Δ(1 ⊗ fm+s,k
j1···jm+s

⊗ 1)

= ν(ξ ⊗ θ)

[m+s∑

l=0

∑

1�p1�···�pl�m+s

(−1)ε(p1p2···pm+s)(1⊗ f l,k
ip1 ···ipl ⊗ 1)⊗Λ (1⊗ fm+s−l,k+l

ipl+1
···ipm+s

⊗ 1)

]

=
∑

p1,...,pm∈{1,...,m+s}
(−1)ε(p1p2···pm+s)ξ(1⊗ fm,k

ip1 ···ipm ⊗ 1)θ(1⊗ f s,k+m
ipm+1

···ipm+s
⊗ 1)

=

⎧
⎪⎪⎨

⎪⎪⎩

(−1)ε(i1i2···imi′1i
′
2···i′s)bm,i

r1···rmb
s,i+m
r′1···r′s ,

if {j1, . . . , jm+s} = {i1, i2, . . . , im, i′1, i′2, . . . , i′s} and k = i, j = i+m;

0, otherwise.
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So, under the isomorphism φ defined as in the proof of Lemma 3.1,

ξ � θ =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)ε(i1i2···imi′1i
′
2···i′s)(bm,i

r1···rmb
s,i+m
r′1···r′s , f

m+s,i

i1···im î′1···î′s
),

if {i1, i2, . . . , im} ∩ {i′1, i′2, . . . , i′s} = ∅ and j = i+m,

0, otherwise,

as desired.

Lemma 4.5. The Hochschild cohomology ring HH∗(Λ) is generated by HH0(Λ) and HH1(Λ).

Proof. By Lemma 4.1, Hm =
⋃m

i=0 H(m,i) forms a k-basis of HHm(Λ), and thus it suffices to show

that every element in Hm can be generated by elements in HH0(Λ) and HH1(Λ). Taken any element

ξ0 =
∑n−m

j=0 (bm,j
r1···rm , f

m,j
h1···hm

) in H(m,0) (here n � r1 � · · · � rm � 0, n − 1 � h1 > · · · > hm � 0), by

Theorem 4.4, we have

ξ0 =

n−m∑

j=0

(b1,jr1 b
1,j+1
r2 · · · b1,j+m−1

rm , f1,j
h1
f1,j+1
h2

· · · f1,j+m−1
hm

)

=

( n−1∑

j=0

(b1,jr1 , f
1,j
h1

)

)

�
( n−1∑

j=0

(b1,jr2 , f
1,j
h2

)

)

� · · · �
( n−1∑

j=0

(b1,jrm , f
1,j
hm

)

)

,

where
∑n−1

j=0 (b
1,j
rk
, f1,j

hk
)(1 � k � m) lies in HH1(Λ).

If 1 � i � m, given an element ξi =
∑n−m

j=0 (bm,j
r1···rm , f

m,j
n(n−1)···(n−i+1)h1···hm−i

) in H(m,i) (here n − i �
r1 � · · · � rm � 0, n− i− 1 � h1 > · · · > hm � 0), we have

ξi =

n−m∑

j=0

(b1,jr1 b
1,j+1
r2 · · · b1,j+m−1

rm , f1,j
n · · · f1,j+i−1

n−i+1 f1,j+i
h1

· · · f1,j+m−1
hm−i

)

=

( n−1∑

j=0

(b1,jr1 , f
1,j
n )

)

� · · · �
( n−1∑

j=0

(b1,jri , f
1,j
n−i+1)

)

�
( n−1∑

j=0

(b1,jri+1
, f1,j

h1
)

)

� · · · �
( n−1∑

j=0

(b1,jrm , f
1,j
hm−i

)

)

.

Therefore, H(m,i) is generated by HH1(Λ).

Recall from Lemma 4.1 that H =
⋃n

m=0 Hm =
⋃n

m=0(
⋃m

i=0 H(m,i)) forms a k-basis of the k-vector

space HH∗(Λ), where H(m,i) = {∑n−m
j=0 (bm,j

r1···rm , f
m,j
n(n−1)···(n−i+1)h1···hm−i

) | (r1r2 · · · rm, n(n − 1) · · · (n −
i+ 1)h1 · · · hm−i) ∈ Tm

i }, Tm
i = {(r1 · · · rm, n(n− 1) · · · (n− i+ 1)h1 · · ·hm−i) | n− i � r1 � r2 � · · · �

rm � 0, n− i− 1 � h1 > h2 > · · · > hm−i � 0} and Tm =
⋃m

i=0 T
m
i defined as in the proof of Lemma 3.2.

It follows from Lemma 4.5 that, as a k-algebra, HH∗(Λ) is generated by H0 ∪ H1 = {∑n
j=0(ej , ej)} ∪

{∑n−1
j=0 (xjr , xjh) | 0 � r � n, 0 � h � n, (r, h) �= (n, n)}. Note that

∑n
j=0(ej , ej) is the identity in

HH∗(Λ) and it is easy to check that the others satisfy the following relations:

(1)
n−1∑

j=0

(xjr1 , xjh1) �
n−1∑

j=0

(xjr2 , xjh2 ) = 0, if h1 = h2;

(2)

n−1∑

j=0

(xjr1 , xjh1) �
n−1∑

j=0

(xjr2 , xjh2 )

=

⎧
⎪⎪⎨

⎪⎪⎩

−
n−1∑

j=0

(xjr1 , xjh2 ) �
n−1∑

j=0

(xjr2 , xjh1 ), if (r1, h2) �= (n, n), (r2, h1) �= (n, n);

0, otherwise;

(3)

n−1∑

j=0

(xjr1 , xjh1) �
n−1∑

j=0

(xjr2 , xjh2 )
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=

⎧
⎪⎪⎨

⎪⎪⎩

n−1∑

j=0

(xjr2 , xjh1) �
n−1∑

j=0

(xjr1 , xjh2 ), if (r1, h2) �= (n, n), (r2, h1) �= (n, n);

0, otherwise.

Replacing the above
∑n

j=0(ej , ej) and
∑n−1

j=0 (xjr , xjh) in H0∪H1 with 1, urh respectively, and omitting

the symbol � for simplicity, we have the following relations:

(1)′ ur1h1ur2h2 = 0, if h1 = h2;

(2)′

ur1h1ur2h2 =

{
−ur1h2ur2h1 , if (r1, h2) �= (n, n), (r2, h1) �= (n, n);

0, otherwise;

(3)′

ur1h1ur2h2 =

{
ur2h1ur1h2 , if (r1, h2) �= (n, n), (r2, h1) �= (n, n);

0, otherwise.

Note that since 0 � hi � n, the product
∏n+1

i=0 urihi in HH∗(Λ) must be zero because of the relation (1)′.
Clearly, for any monomial us1p1us2p2 · · ·uslpl

of degree l (l > 0), using the relations (1)′–(3)′ one can

reduce it to 0 or the form with the decreasing indices, namely, us1p1us2p2 · · ·uslpl
can be changed to the

form of

ur1h1ur2h2 · · ·urlhl
with n � r1 � r2 � · · · � rl � 0, n � h1 > h2 > · · · > hl � 0,

which is called the normal form of us1p1us2p2 · · ·uslpl
, and denoted by

N(us1p1us2p2 · · ·uslpl
) = ur1h1ur2h2 · · ·urlhl

.

We add the relation

(4)′ us1p1us2p2 · · ·uslpl
= 0 if the pair (r1r2 · · · rl, h1h2 · · ·hl) of the subscripts of the normal form

N(us1p1us2p2 · · ·uslpl
) does not belong to T .

We now can give a presentation of the Hochschild cohomology ring HH∗(Λ). Let Q′ be the quiver with
one vertex 1 and n2 + 2n loops {urh| 0 � r � n, 0 � h � n, (r, h) �= (n, n)}, and I ′ be the ideal of KQ′

generated by the relations (1)′–(4)′.

Theorem 4.6. Let Λ be the Beilinson algebra of exterior algebra. Then the Hochschild cohomology

ring HH∗(Λ) is isomorphic to kQ′/I ′.

Proof. Denote by Q′
0 and Q′

1 the sets of vertex and arrows of the local quiver Q′ defined as above,

respectively. Then the maps ψ0 : Q′
0 → HH∗(Λ) given by 1 �→ ∑n

j=0(ej, ej) and ψ1 : Q′
1 → HH∗(Λ) given

by ur1h1 �→ ∑n−1
j=0 (xjr1 , xjh1), ur1n �→ ∑n−1

j=0 (xjr1 , xjn) can be uniquely extended to an epimorphism of

k-algebras ψ : kQ′ → HH∗(Λ).
Let Ī be the ideal of kQ′ generated by the relations (1)′–(3)′. It follows that Ī ⊆ Kerψ from the

relations (1)–(3) directly, and thus ψ induces an epimorphism ψ̄ : Γn = kQ′/Ī → HH∗(Λ). For legibility,
we do not distinguish a path inKQ′ with its image in Γn. In particular, Γn is a finite dimensional algebra,

and Γn = Γ
(1)
n ⊕ Γ

(2)
n as vector spaces, where Γ

(1)
n = span{1, ur1h1ur2h2 · · ·urlhl

| n � r1 � r2 � · · · �
rl � 0, n � h1 > h2 > · · · > hl � 0, (r1r2 · · · rl, h1h2 · · ·hl) ∈ T } and Γ

(2)
n = span{ur1h1ur2h2 · · ·urlhl

|
n � r1 � r2 � · · · � rl � 0, n � h1 > h2 > · · · > hl � 0, (r1r2 · · · rl, h1h2 · · ·hl) /∈ T }. Let Ĩ be an ideal

of Γn generated by the set {ur1h1ur2h2 · · ·urlhl
| n � r1 � r2 � · · · � rl � 0, n � h1 > h2 > · · · > hl �

0, (r1r2 · · · rl, h1h2 · · ·hl) /∈ T }.We claim that ψ̄(Ĩ) = 0. Indeed, for any index (r1r2 · · · rm, n(n−1) · · · (n−
i + 1)h1 · · ·hm−i) ∈ Tm

i , we have ψ̄(ur1n · · ·uri+1h1 · · ·urmhm−i) = ξi(r1r2···rm,n(n−1)···(n−i+1)h1···hm−i)
∈

H(m,i) by the proof of Lemma 4.5. So, as linear maps, the restriction of ψ̄ to Γ
(1)
n is an isomorphism, and

zero to Γ
(2)
n . Thus Ĩ ⊆ Kerψ̄ as desired. So ψ̄ induces an epimorphism ψ̃ : Γn/Ĩ → HH∗(Λ).
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It is clear that the set V =
⋃n

m=1{ur1h1ur2h2 · · ·urmhm | (r1r2 · · · rm, h1h2 · · ·hm ∈ Tm} ∪ {1} is a

k-basis of Γn/Ĩ. So dimk Γn/Ĩ = |T | = dimk HH
∗(Λ). Hence ψ̃ is an isomorphism.

Since Ĩ ∼= I ′/Ī, we have kQ′/I ′ ∼= (kQ′/Ī)
/
(I ′/Ī) ∼= Γn/Ĩ ∼= HH∗(Λ) as desired.

Example 4.7. We consider the case n = 2. In this case, Λn = kQ2/I2, where Q2 is the quiver with 3

vertices and 6 arrows as follows:

0

x00

��x01 		

x02



 1

x10

��x11 		

x12



 2

and I2 = 〈x0ix1j − x0jx1i | 0 � i, j � 2〉. From Lemma 4.1, we know that H = H0 ∪ H1 ∪ H2 forms a

k-basis of HH∗(Λ2), where

H0 =

{ 2∑

j=0

(ej , ej)

}

;

H1 =

{ 1∑

j=0

(xjr , xjh) | 2 � r � 0, 1 � h � 0

}

∪
{ 1∑

j=0

(xjr , xj2) | 1 � r � 0

}

;

H2 = {(b2,0r1r2 , f
2,0
10 ) | 2 � r1 � r2 � 0} ∪ {(b2,0r1r2 , f

2,0
20 ) | 1 � r1 � r2 � 0} ∪ {(b2,000 , f

2,0
21 )}.

Thus dimk HH
∗(Λ2) = 19. Using Theorem 4.6, we can give a presentation of HH∗(Λ2). Let kQ′

2 be the

path algebra corresponding to the quiver with 1 vertex and 8 loops {uij | 2 � i, j � 0, (i, j) �= (2, 2)},
and Γ2 be the quotient of kQ′

2 by the ideal Ī2 generated by the set

{ur1h1ur2h1 , u2hur2, ur2u2h, ur3h3ur4h4 + ur3h4ur4h3 , ur3h3ur4h4 − ur4h3ur3h4

| 2 � r1, r2, r3, r4, h1 � 0, 1 � h, r � 0, (ri, hj) �= (2, 2), i, j ∈ {3, 4}}.
Note that u2hur2, ur2u2h ∈ Ī2 by the relation (2′) and (3′). Then Γ2 = kQ′

2/Ī2 has as a k-basis the

set U = {1, urh | (r, h) �= (2, 2)} ∪ {ur1h1ur2h2 | 2 � r1 � r2 � 0, 2 � h1 > h2 � 0, (r1, h1) �=
(2, 2)} ∪ {ur12ur21ur30 | 1 � r1 � r2 � r3 � 0}. Consider the ideal of Γ2,

Ĩ2 = 〈ur1h1ur2h2 · · ·urmhm | (r1r2 · · · rm, h1h2 · · ·hm) /∈ Tm〉
= 〈u12ur1, ur12ur21ur30 | 1 � r � 0, 1 � r1 � r2 � r3 � 0〉,

and we have an epimorphism ψ̃ : Γ2/Ĩ2 → HH∗(Λ2). Moreover, Γ2/Ĩ2 has a k-basis V = {1, urh |
(r, h) �= (2, 2)} ∪ {ur11ur20 | 2 � r1 � r2 � 0} ∪ {ur12ur20 | 1 � r1 � r2 � 0} ∪ {u02u01}. Therefore
Γ2/Ĩ2 ∼= HH∗(Λ2) since dimk Γ2/Ĩ2 = 19 = dimk HH

∗(Λ2).
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